Podstawa programowa z matematyki dla szkoły podstawowej klasy IV - VI
|
|
- Ludwik Czerwiński
- 9 lat temu
- Przeglądów:
Transkrypt
1 Podstawa programowa z matematyki dla szkoły podstawowej klasy IV - VI Rozporządzenie Ministra Edukacji Narodowej z 27 VIII 2012 w sprawie podstawy programowej wychowania przedszkolnego oraz kształcenia ogólnego w poszczególnych typach szkół (Dziennik Ustaw z 2012, poz.977, załącznik 2) Podstawa programowa określa, czego szkoła jest zobowiązana nauczyć ucznia o przeciętnych uzdolnieniach na każdym etapie kształcenia. Nie wyklucza to poszerzania zakresu nauczanych treści, wręcz przeciwnie - podstawa zobowiązuje nauczyciela do indywidualizacji nauczania stosownie do możliwości i potrzeb każdego ucznia oraz wzbogacania i pogłębiania treści nauczania stosownie do uzdolnień uczniów. Podstawa programowa określa, co ma być należycie opanowane i czego będzie się wymagać od uczniów podczas egzaminów. Dla każdego przedmiotu na koniec każdego etapu kształcenia opisane zostały cele kształcenia sformułowane jako wymagania ogólne i treści nauczania oraz oczekiwane umiejętności uczniów sformułowane jako wymagania szczegółowe. Wymagania te stanowią jedyną podstawę oceniania na egzaminach zewnętrznych, bez osobnego określania standardów wymagań egzaminacyjnych. II etap edukacyjny (klasy IV-VI SP) Cele kształcenia (wymagania ogólne): sprawność rachunkowa - uczeń wykonuje proste działania pamięciowe na liczbach naturalnych, całkowitych i ułamkach, zna i stosuje algorytmy działań pisemnych oraz potrafi wykorzystać te umiejętności w sytuacjach praktycznych, wykorzystanie i tworzenie informacji - uczeń interpretuje i przetwarza informacje tekstowe, liczbowe, graficzne, rozumie i interpretuje odpowiednie pojęcia matematyczne, zna podstawową terminologię, formułuje odpowiedzi i prawidłowo zapisuje wyniki, modelowanie matematyczne - uczeń dobiera odpowiedni model matematyczny do prostej sytuacji, stosuje poznane wzory i zależności, przetwarza tekst zadania na działania arytmetyczne i proste równania, rozumowanie i tworzenie strategii - uczeń prowadzi proste rozumowanie składające się z niewielkiej liczby kroków, ustala kolejność czynności (w tym obliczeń) prowadzących do rozwiązania problemu, potrafi wyciągnąć wnioski z kilku informacji podanych w różnej postaci. 1
2 Treści nauczania (wymagania szczegółowe): 1. Liczby naturalne w dziesiątkowym układzie pozycyjnym odczytywanie i zapisywanie liczb naturalnych wielocyfrowych, interpretacja liczb naturalnych na osi liczbowej, porównywanie liczb naturalnych, zaokrąglanie liczb naturalnych, odczytywanie i zapisywanie liczb w systemie rzymskim w zakresie do Działania na liczbach naturalnych dodawanie i odejmowanie w pamięci liczb naturalnych dwucyfrowych oraz liczb wielocyfrowych w przypadkach takich jak lub , dodawanie liczby jednocyfrowej do dowolnej liczby naturalnej i odejmowanie jej od dowolnej liczby naturalnej, pisemne dodawanie i odejmowanie liczb naturalnych wielocyfrowych, dodawanie i odejmowanie liczb naturalnych wielocyfrowych za pomocą kalkulatora, mnożenie i dzielenie liczby naturalnej przez liczbę naturalną jednocyfrową, dwucyfrową lub trzycyfrową w prostych przypadkach w pamięci, w pozostałych pisemnie i za pomocą kalkulatora, dzielenie z resztą liczb naturalnych, stosowanie wygodnych technik ułatwiających obliczenia, w tym przemienności i łączności dodawania lub mnożenia oraz rozdzielności mnożenia względem dodawania, porównywanie różnicowe i ilorazowe liczb naturalnych, rozpoznawanie podzielności liczb naturalnych przez 2, 3, 5, 9, 10, 100, rozpoznawanie liczb złożonych jednocyfrowych i dwucyfrowych, a także większych, gdy istnienie dzielnika wynika z cechy podzielności, rozkładanie liczb dwucyfrowych na czynniki pierwsze, obliczanie kwadratów i sześcianów liczb naturalnych, stosowanie reguł kolejności wykonywania działań, szacowanie wyników działań. 3. Liczby całkowite praktyczne przykłady stosowania liczb ujemnych, interpretacja liczb całkowitych na osi liczbowej, obliczanie wartości bezwzględnej, porównywanie liczb całkowitych, wykonywanie prostych rachunków pamięciowych na liczbach całkowitych. 2
3 4. Ułamki zwykłe i liczby dziesiętne opisywanie części całości za pomocą ułamka, przedstawianie ułamka jako ilorazu liczb naturalnych oraz ilorazu liczb naturalnych jako ułamka, skracanie i rozszerzanie ułamków zwykłych, sprowadzanie ułamków zwykłych do wspólnego mianownika, przedstawianie ułamków niewłaściwych w postaci liczby mieszanej i odwrotnie, zapisywanie wyrażeń dwumianowanych w postaci liczby dziesiętnej i odwrotnie, zaznaczanie ułamków zwykłych i liczb dziesiętnych na osi liczbowej oraz odczytywanie ich, gdy są zaznaczone na osi, zapisywanie liczb o skończonym rozwinięciu dziesiętnym w postaci ułamka zwykłego, zamiana ułamków zwykłych o mianownikach będących dzielnikami liczb 10, 100, 1000 itd. na liczby dziesiętne skończone (dowolną metodą, np. przez rozszerzanie ułamków zwykłych, dzielenie licznika przez mianownik w pamięci, pisemnie lub za pomocą kalkulatora), zapisywanie ułamków zwykłych o mianownikach innych niż wymienione wyżej w postaci liczb z nieskończonym rozwinięciem dziesiętnym z użyciem trzech kropek po ostatniej zapisanej cyfrze (różnymi metodami, np. dzieląc licznik przez mianownik w pamięci, pisemnie lub za pomocą kalkulatora), zaokrąglanie liczb dziesiętnych z zadaną dokładnością, porównywanie ułamków zwykłych i liczb dziesiętnych. 5. Działania na ułamkach zwykłych i liczbach dziesiętnych dodawanie, odejmowanie, mnożenie i dzielenie ułamków zwykłych o mianownikach jedno- lub dwucyfrowych, także zapisanych jako liczby mieszane, dodawanie, odejmowanie, mnożenie i dzielenie liczb dziesiętnych w najprostszych przypadkach w pamięci, w pozostałych pisemnie i za pomocą kalkulatora, wykonywanie nieskomplikowanych rachunków, w których występują jednocześnie ułamki zwykłe i liczby dziesiętne, porównywanie różnicowe ułamków, obliczanie ułamka danej liczby naturalnej, obliczanie kwadratów i sześcianów ułamków zwykłych i liczb dziesiętnych oraz mieszanych, obliczanie wartości prostych wyrażeń arytmetycznych z zastosowaniem reguł dotyczących kolejności wykonywania działań, wykonywanie działań na ułamkach dziesiętnych, używając sprytnych strategii rachunkowych lub za pomocą kalkulatora, szacowanie wyników działań. 3
4 6. Elementy algebry korzystanie z nieskomplikowanych wzorów, w których występują oznaczenia literowe, zamiana wzoru na formę słowną, stosowanie oznaczeń literowych nieznanych wielkości liczbowych, zapisywanie prostych wyrażeń algebraicznych na podstawie informacji osadzonych w kontekście praktycznym, rozwiązywanie równań pierwszego stopnia z jedną niewiadomą występującą po jednej stronie równania (zgadywanie, dopełnianie lub wykonanie działania odwrotnego). 7. Proste i odcinki rozpoznawanie i nazywanie figur - punkt, prosta, półprosta, odcinek, rozpoznawanie prostych i odcinków prostopadłych i równoległych, rysowanie par odcinków prostopadłych i równoległych, mierzenie długości odcinków z dokładnością do 1 milimetra, znajdowanie odległości punktu od prostej przez znalezienie długości odpowiedniego odcinka prostopadłego. 8. Kąty wskazywanie w kątach ramion i wierzchołka, mierzenie kątów mniejszych od 180 stopni z dokładnością do 1 stopnia, rysowanie kątów o mierze mniejszej niż 180 stopni, rozpoznawanie kątów prostych, ostrych i rozwartych, porównywanie kątów, rozpoznawanie kątów wierzchołkowych i przyległych, korzystanie z ich własności. 9. Wielokąty, koła, okręgi rozpoznawanie i nazywanie trójkątów ostrokątnych, prostokątnych, rozwartokątnych, równobocznych i równoramiennych, konstruowanie trójkątów o trzech danych bokach, ustalanie możliwości zbudowania trójkąta na podstawie nierówności trójkąta, stosowanie twierdzenie o sumie kątów trójkąta, rozpoznawanie i nazywanie czworokątów - kwadrat, prostokąt, romb, równoległobok, trapez, najważniejsze własności tych czworokątów, wskazywanie na rysunku i rysowanie cięciwy, średnicy i promienia koła lub okręgu. 4
5 10. Bryły rozpoznawanie graniastosłupów prostych, ostrosłupów, walców, stożków i kul w sytuacjach praktycznych, wskazywanie tych brył wśród innych modeli, wskazywanie wśród graniastosłupów prostopadłościanów i sześcianów z uzasadnieniem, rozpoznawanie siatek graniastosłupów prostych i ostrosłupów, rysowanie siatek prostopadłościanów. 11. Obliczenia w geometrii obliczanie obwodu wielokąta o danych długościach boków, obliczanie pól kwadratu, prostokąta, rombu, równoległoboku, trójkąta, trapezu przedstawionych na rysunkach (w tym na własnym rysunku pomocniczym) oraz w sytuacjach praktycznych, stosowanie jednostek pola: m 2, cm 2, km 2, mm 2, dm 2, ar, hektar (bez zamiany jednostek w trakcie obliczeń), obliczanie objętości i pola powierzchni prostopadłościanu przy danych długościach krawędzi, stosowanie jednostek objętości i pojemności: litr, mililitr, m 3, dm 3, cm 3, mm 3, obliczanie miar kątów z zastosowaniem poznanych własności kątów i wielokątów. 12. Obliczenia praktyczne interpretowanie 100% danej wielkości jako całości, 50% jako połowy, 25% jako ćwiartki, 10% jako jednej dziesiątej, 1% jako setnej części danej wielkości liczbowej, obliczanie procentu danej wielkości w przypadkach osadzonych w kontekście praktycznym (stopień trudności typu 50%, 10%, 20%), proste obliczenia zegarowe na godzinach, minutach i sekundach, proste obliczenia kalendarzowe na dniach, tygodniach, miesiącach, latach, odczytywanie temperatury (dodatniej i ujemnej), zamiana i prawidłowe stosowanie jednostek długości: metr, centymetr, decymetr, milimetr, kilometr, zamiana i prawidłowe stosowanie jednostki masy: gram, kilogram, dekagram, tona, obliczanie rzeczywistej długości odcinka, gdy dana jest jego długość w skali, oraz długości odcinka w skali, gdy dana jest jego długość rzeczywista, obliczanie drogi przy danych prędkości i czasie, prędkości przy danych drodze i czasie, czasu przy danych drodze i prędkości w sytuacjach praktycznych, stosowanie jednostek prędkości: km/h, m/s. 5
6 13. Elementy statystyki opisowej gromadzenie i porządkowanie danych, odczytywanie i interpretacja danych przedstawionych w tekstach, tabelach, diagramach i na wykresach. 14. Zadania tekstowe czytanie ze zrozumieniem prostych tekstów zawierających informacje liczbowe, wykonywanie wstępnych czynności ułatwiających rozwiązanie zadania (rysunek pomocniczy, wygodny zapis informacji i danych z treści zadania), dostrzeganie zależności między podanymi informacjami, dzielenie rozwiązanie zadania na etapy z zastosowaniem wygodnych strategii rozwiązania, stosowanie wiedzy z zakresu arytmetyki i geometrii oraz umiejętności i metod rachunkowych do rozwiązywania zadań osadzonych w kontekście praktycznym, weryfikacja wyniku zadania tekstowego w kontekście sensowności rozwiązania. Zalecane warunki i sposób realizacji treści programowych: należy zapewnić uczniom czynny udział w zdobywaniu wiedzy matematycznej, gdyż to przybliża dziecko do matematyki, rozwija kreatywność, umożliwia samodzielne odkrywanie związków i zależności; duże możliwości samodzielnych obserwacji i działań stwarza geometria, ale i w arytmetyce można znaleźć obszary, gdzie uczeń może poczuć się odkrywcą, znajomość algorytmów działań pisemnych jest konieczna, ale w praktyce codziennej działania pisemne są wypierane przez kalkulator, należy postarać się o to, by matematyka była dla ucznia przyjazna, nie odstraszała przesadnie skomplikowanymi i żmudnymi rachunkami, których trudność jest sztuką samą dla siebie i nie prowadzi do głębszego zrozumienia zagadnienia, umiejętność wykonywania działań pamięciowych ułatwia orientację w świecie liczb, weryfikację wyników różnych obliczeń, w tym na kalkulatorze, a także szacowanie wyników działań rachunkowych, samo szacowanie jest umiejętnością wyjątkowo praktyczną w życiu codziennym, dlatego należy szczególnie rozwijać te umiejętności nie powinno się oczekiwać od ucznia powtarzania wyuczonych regułek i precyzyjnych definicji, należy dbać o poprawność języka matematycznego i uczyć dokładnych sformułowań, ale nie oczekiwać, że przyniesie to natychmiastowe rezultaty, dopuszczenie pewnej swobody wypowiedzi bardziej otwiera dziecko i wyraźniej pokazuje stopień zrozumienia przez nie omawianego zagadnienia, przy rozwiązywaniu zadań tekstowych szczególnie wyraźnie widać, jak uczeń rozumuje, jak rozumie tekst zawierający informacje liczbowe i jaką tworzy strategię rozwiązania, należy akceptować wszelkie poprawne strategie i dopuszczać stosowanie przez ucznia jego własnych, czytelnych zapisów rozwiązania. uwzględniając zróżnicowane potrzeby edukacyjne uczniów, szkoła powinna organizować zajęcia zwiększające szanse edukacyjne uczniów zdolnych oraz uczniów mających trudności w nauce matematyki. 6
MATEMATYKA KLASA VI. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA
2016-09-01 MATEMATYKA KLASA VI Podstawa programowa przedmiotu SZKOŁY BENEDYKTA I. Sprawność rachunkowa. Cele kształcenia wymagania ogólne Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych,
MATEMATYKA KLASA IV. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA
2016-09-01 MATEMATYKA KLASA IV Podstawa programowa przedmiotu SZKOŁY BENEDYKTA Cele kształcenia wymagania ogólne I. Sprawność rachunkowa. Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych,
Zakres wymagań z Podstawy Programowej dla klas IV- VI szkoły podstawowej. z przedmiotu matematyka
Zakres wymagań z Podstawy Programowej dla klas IV- VI szkoły podstawowej z przedmiotu matematyka 1. Liczby naturalne w dziesiątkowym układzie pozycyjnym. Uczeń 1) odczytuje i zapisuje liczby naturalne
1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe Kolejność działań Sprytne rachunki. 1 1.
TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 008 R.. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki..
Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych, całkowitych i ułamkach, zna i stosuje algorytmy działań pisemnych oraz potrafi
Rozkład materiału nauczania. Matematyka wokół nas Klasa 4 DZIAŁANIA NA LICZBACH NATURALNYCH (22 h) 1 Liczby naturalne. Oś liczbowa 1. 1 ) odczytuje i zapisuje liczby naturalne wielocyfrowe 1. 2 ) interpretuje
1.3.3. Szczegółowy opis treści programowych obowiązujących na poszczególnych etapach konkursu
1.3. KONKURS Z MATEMATYKI 1.3.1. Cele edukacyjne Rozwijanie zdolności i zainteresowań matematycznych. Rozwijanie pamięci oraz umiejętności myślenia abstrakcyjnego i logicznego rozumowania. Wyrabianie umiejętności
Wymagania edukacyjne z matematyki oraz sposoby sprawdzania wiedzy i umiejętności.
Wymagania edukacyjne z matematyki oraz sposoby sprawdzania wiedzy i umiejętności. Liczby naturalne. Działania na liczbach naturalnych. Proste i odcinki. Kąty. Koła i okręgi. Działania pisemne na liczbach
Wymagania edukacyjne z matematyki w klasie piątej
Wymagania edukacyjne z matematyki w klasie piątej Klasa V Wymagania Wymagania ponad Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Zastosowania matematyki
Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń:
Klasa V Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem
Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
Wymagania na poszczególne oceny szkolne w klasie V
Wymagania na poszczególne oceny szkolne w klasie V Wymagania Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Zastosowania matematyki praktycznych liczbę
WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R. TEMAT 1.LICZBY I DZIAŁANIA
TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Sprytne rachunki. 4. Szacowanie wyników działań. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ
ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ
ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ TEMAT 1. Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII
TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH
TEMAT 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe, dodawanie i odejmowanie LICZBA GODZIN LEKCYJNYCH. O ile więcej, o ile mniej WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. Liczby naturalne w dziesiątkowym
TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH
TEMAT 1. LICZBY I DZIAŁANIA 3 1. Rachunki pamięciowe, dodawanie i odejmowanie LICZBA GODZIN LEKCYJNYCH. O ile więcej, o ile mniej WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. Liczby naturalne w dziesiątkowym
ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ
LICZBA GODZIN TEMAT LEKCYJNYCH LICZBY NATURALNE I UŁAMKI (11 H) 1. Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ WYMAGANIA SZCZEGÓŁOWE
II. Działania na liczbach naturalnych. Uczeń:
TEMAT 1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z 14. II. 2017. I. Liczby naturalne w dziesiątkowym
MATEMATYKA KLASA VI Uczeń kończący klasę VI powinien umieć:
MATEMATYKA KLASA VI Uczeń kończący klasę VI powinien umieć: dodawać, odejmować, mnożyć i dzielić liczby naturalne, ułamki zwykłe oraz ułamki dziesiętne, obliczać wartości wyrażeń arytmetycznych i algebraicznych
PRZEDMIOTOWY SYSTEM OCENIANIA W KLASIE IV MATEMATYKA Z KLASĄ
PRZEDMIOTOWY SYSTEM OCENIANIA W KLASIE IV MATEMATYKA Z KLASĄ Na ocenę niedostateczną: nie spełnia kryteriów oceny dopuszczającej. 1. Liczby naturalne w dziesiątkowym układzie pozycyjnym 1) odczytuje i
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne OCENĘ NIEDOSTATECZNĄ OTRZYMUJE UCZEŃ KTÓRY NIE SPEŁNIA KRYTERIÓW DLA OCENY DOPUSZCZAJĄCEJ, NIE KORZYSTA Z PROPONOWANEJ POMOCY W POSTACI ZAJĘĆ WYRÓWNAWCZYCH, PRACUJE
MATEMATYKA. Cele kształcenia wymagania ogólne. I. Sprawność rachunkowa.
MATEMATYKA Cele kształcenia wymagania ogólne I. Sprawność rachunkowa. Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych, całkowitych i ułamkach, zna i stosuje algorytmy działań pisemnych
WYMAGANIA EGZAMINACYJNE DLA KLASY V
TEMAT WYMAGANIA EGZAMINACYJNE DLA KLASY V WYMAGANIA SZCZEGÓŁOWE 1.LICZBY I DZIAŁANIA 1. Zapisywanie i I. Liczby naturalne w dziesiątkowym układzie pozycyjnym. porównywanie liczb. Uczeń: 1) zapisuje i odczytuje
LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI TEMAT 1. LICZBY I DZIAŁANIA 23
TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. LICZBY I DZIAŁANIA 3 1. Rachunki pamięciowe, dodawanie i odejmowanie. O ile więcej, o ile mniej 3. Rachunki pamięciowe,
Rozkład materiału nauczania. Klasa 5
1 Rozkład materiału nauczania. Klasa 5 Temat 1 2 Wakacje, wakacje... i po wakacjach 3 Systemy zapisywania liczb 4 5 Rachunek pamięciowy Dodawanie i mnożenie LICZBY NATURALNE (20 h) 1 2. 3 ) wykonuje proste
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Klasa V Rozdział Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca) 2 podstawowe (ocena dostateczna) 3 rozszerzające (ocena dobra) 4
Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas
22 Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas KLASA 5 Nr lekcji Temat lekcji 1 2 Wakacje, wakacje... i po wakacjach 3 Systemy zapisywania liczb
1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe Kolejność działań Sprytne rachunki. 1 1.
TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z 4. II. 07.. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki.
Wymagania na poszczególne oceny szkolne KLASA V
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
WYMAGANIA EGZAMINACYJNE DLA KLASY IV WYMAGANIA SZCZEGÓŁOWE
TEMAT 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe dodawanie i odejmowanie 2. O ile więcej, o ile mniej 3. Rachunki pamięciowe mnożenie i dzielenie 4. Mnożenie i dzielenie (cd.) 5. Ile razy więcej, ile
Wymagania edukacyjne z matematyki w klasie 5
Wymagania edukacyjne z matematyki w klasie 5 Wymagania podstawowe Wymagania ponadpodstawowe Rozdział konieczne (ocena dopuszczająca) 2 podstawowe (ocena dostateczna) 3 rozszerzające (ocena dobra) 4 dopełniające
Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych.
Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. TEMAT Z PODRĘCZNIKA 1. Rachunki pamięciowe, dodawanie i odejmowanie 2. O ile więcej,
WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ TEMAT 1.LICZBY I DZIAŁANIA
TEMAT.LICZBY I DZIAŁANIA LICZBA GODZ. LEKCYJN YCH. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ I. Liczby
MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń:
MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 4 h. Rachunki pamięciowe
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V. Temat lekcji Punkty z podstawy programowej z dnia 14 lutego 2017r.
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V Temat lekcji Punkty z podstawy programowej z dnia 14 lutego 2017r. Działania pamięciowe Potęgowanie 1) dodaje i odejmuje w pamięci liczby naturalne dwucyfrowe
WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń:
MATEMATYKA Z PLUSEM WYMAGANIA EDUKACYJNE DLA KLASY IV TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe dodawanie i odejmowanie I. Liczby naturalne w dziesiątkowym
1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe. 3. Kolejność działań. 1.LICZBY I DZIAŁANIA
Wymagania edukacyjne niezbędne do otrzymania przez ucznia klasy 5 poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych w roku szkolnym2016/2017. TEMAT 1.LICZBY I DZIAŁANIA 1. Zapisywanie i porównywanie
PODSTAWA PROGRAMOWA MATEMATYKI DLA KLAS IV VI SZKOŁY PODSTAWOWEJ PODPISANA PRZEZ MINISTRA EDUKACJI NARODOWEJ. W DNIU 27 SIERPNIA 2012 r.
PODSTAWA PROGRAMOWA MATEMATYKI DLA KLAS IV VI SZKOŁY PODSTAWOWEJ PODPISANA PRZEZ MINISTRA EDUKACJI NARODOWEJ W DNIU 27 SIERPNIA 2012 r. (ze zmianami) Cele kształcenia wymagania ogólne I. Sprawność rachunkowa.
MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń:
MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 4 h. Rachunki pamięciowe
Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych.
Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. TEMAT Z PODRĘCZNIKA 1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe.
ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ
TEMAT ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ LICZBA GODZIN LEKCYJNYCH LICZBY NATURALNE I UŁAMKI (12 H) 1. Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. WYMAGANIA SZCZEGÓŁOWE
MATEMATYKA DLA KLASY VI W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ
MATEMATYKA DLA KLASY VI W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBY NATURALNE I UŁAMKI 1. Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY
Wymagania programowe z matematyki w klasie V.
Wymagania programowe z matematyki w klasie V. I. Liczby naturalne w dziesiątkowym układzie pozycyjnym. Uczeń: zapisuje i odczytuje liczby naturalne wielocyfrowe; interpretuje liczby naturalne na osi liczbowej;
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Wymagania edukacyjne z matematyki w klasie IV - VI w roku szkolnym 2018/2019. Treści nauczania według podstawy programowej klasa IV klasa V klasa VI
Wymagania edukacyjne z matematyki w klasie IV - VI w roku szkolnym 2018/2019 W tabeli przedstawiono informacje, w których klasach według program Matematyka z plusem realizowane są poszczególne wymagania.
MATEMATYKA DLA KLASY V W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ
MATEMATYKA DLA KLASY V W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT 1.LICZBY I DZIAŁANIA 1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe. 3. Kolejność działań. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. Zgodnie z przyjętymi założeniami w programie nauczania
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IV
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IV Dział I. Liczby naturalne część 1 Jak się uczyć matematyki Oś liczbowa Jak zapisujemy liczby Szybkie dodawanie Szybkie odejmowanie Tabliczka mnożenia Tabliczka
Szkoła Podstawowa nr 43 im. I. J. Paderewskiego w Lublinie
Szkoła Podstawowa nr 43 im. I. J. Paderewskiego w Lublinie ZAKRES MATERIAŁU KONKURS MATEMATYCZNY DLA UCZNIÓW SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2016/2017 ETAP SZKOLNY Cele edukacyjne: Rozwijanie zdolności
Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
Wymagania podstawowe i ponadpodstawowe z matematyki w SP9 Klasa IV
i ponadpodstawowe z matematyki w SP9 Klasa IV Rozdział DZIAŁ 1. LICZBY NATURALNE W DZIESIĄTKOWYM UKŁADZIE POZYCYJNYM 1. Zbieranie i prezentowanie danych 2. Rzymski system zapisu liczb 3. Obliczenia kalendarzowe
MATEMATYKA DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ
MATEMATYKA DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe dodawanie i odejmowanie I. Liczby naturalne
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
Wymagania na poszczególne oceny szkolne. Matematyka
Wymagania na poszczególne oceny szkolne Matematyka Klasa IV Wymagania Wymagania ponad Dział 1. Liczby naturalne Zbieranie i prezentowanie danych gromadzi dane (13.1); odczytuje dane przedstawione w tekstach,
Przedmiotowe zasady oceniania Matematyka. Wymagania edukacyjne na poszczególne oceny
Przedmiotowe zasady oceniania Matematyka Wymagania edukacyjne na poszczególne oceny Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie
Wymagania na poszczególne oceny szkolne Klasa VI - matematyka
Wymagania na poszczególne oceny szkolne Klasa VI - matematyka Dział 1. Działania na ułamkach zwykłych i dziesiętnych wykonuje działania na ułamkach dziesiętnych z pomocą kalkulatora; mnoży ułamki zwykłe
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne OCENĘ NIEDOSTATECZNĄ OTRZYMUJE UCZEŃ KTÓRY NIE SPEŁNIA KRYTERIÓW DLA OCENY DOPUSZCZAJĄCEJ, NIE KORZYSTA Z PROPONOWANEJ POMOCY W POSTACI ZAJĘĆ WYRÓWNAWCZYCH, PRACUJE
Wymagania na poszczególne oceny szkolne KLASA VI
Matematyka Matematyka z pomysłem Klasa Szkoła podstawowa Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych.
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Klasa 4 Dział 1. Liczby. Uczeń: gromadzi dane; porządkuje dane; przedstawia dane interpretuje dane odczytuje dane w tabelach, na przedstawione w tekstach, przedstawione
Matematyka Matematyka z pomysłem Klasy 4 6
Szczegółowy rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej w klasach IV VI Klasa IV szczegółowe z DZIAŁ I. LICZBY NATURALNE W DZIESIĄTKOWYM UKŁADZIE POZYCYJNYM (19 godz.)
Wymagania edukacyjne z matematyki- klasa 4
Wymagania edukacyjne z matematyki- klasa 4 Rozdział Wymagania podstawowe konieczne (ocena dopuszczająca) Podstawowe (ocena dostateczna) rozszerzające (ocena dobra) Wymagania ponadpodstawowe dopełniające
SZCZEGÓŁÓWE KRYTERIA OCENIANIA MATEMATYKA KL 4 Temat Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca)
SZCZEGÓŁÓWE KRYTERIA OCENIANIA MATEMATYKA KL 4 Temat Wymagania Wymagania ponad Dział 1. Liczby. Uczeń: 1. Zbieranie i prezentowanie danych gromadzi dane; odczytuje dane przedstawione w tekstach, tabelach,
Wymagania na poszczególne oceny szkolne
1 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VI
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VI Temat lekcji Punkty z podstawy programowej z dnia 14 lutego 2017r. Liczby dodatnie i ujemne Dodawanie liczb całkowitych Mnożenie i dzielenie liczb całkowitych
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. Zgodnie z przyjętymi założeniami w programie nauczania
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Klasa IV Rozdział Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca) podstawowe (ocena dostateczna) rozszerzające (ocena dobra) dopełniające
Wymagania na poszczególne oceny szkolne
1 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
DZIAŁ 1. LICZBY NATURALNE I DZIESIĘTNE. DZIAŁANIA NA LICZBACH NATURALNYCH I DZIESIĘTNYCH (40 GODZ.)
Matematyka w otaczającym nas świecie Gra tabliczka mnożenia Karta pracy 1 Po IV klasie szkoły podstawowej Ślimak gra edukacyjna z tabliczką mnożenia 1. Zastosowania matematyki w sytuacjach praktycznych
DZIAŁ 1. LICZBY NATURALNE W DZIESIĄTKOWYM UKŁADZIE POZYCYJNYM. (32 GODZ.)
DZIAŁ 1. LICZBY NATURALNE W DZIESIĄTKOWYM UKŁADZIE POZYCYJNYM. (32 GODZ.) 1 PSO i kontrakt z uczniami. 1 Matematyka w otaczającym nas świecie 1 Karta pracy 1 Po I etapie edukacyjnym 1 Ślimak gra edukacyjna
MATEMATYKA Podstawa programowa SZKOŁA BENEDYKTA
2018-09-01 MATEMATYKA klasa V Podstawa programowa SZKOŁA BENEDYKTA Cele kształcenia wymagania ogólne I. Sprawności rachunkowa. Wykonywanie nieskomplikowanych obliczeń w pamięci lub w działaniach trudniejszych
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA V LICZBY NATURALNE
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA V LICZBY NATURALNE Zapisywanie liczby naturalnej za pomocą cyfr. Wskazywanie rzędów: jedności, dziesiątek, setek. Odczytywanie liczby zapisanej cyframi. Zapisywanie
Wymagania edukacyjne z matematyki : Matematyka z plusem GWO
klasy Ewy Pakulskiej Wymagania edukacyjne z matematyki : Matematyka z plusem GWO KLASA IV Rozwijanie sprawności rachunkowej Wykonywanie jednodziałaniowych obliczeń pamięciowych na liczbach naturalnych.
Matematyka Plan wynikowy klasa 6
Matematyka 2001. Plan wynikowy klasa 6 Oznaczenia: O odtwarzanie SP stosowanie procedur RP rozwiązywanie problemów P podstawowy poziom PP ponadpodstawowy poziom 1. Mnożenie ułamków zwykłych W sezonie czy
WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki w kl. IV:
WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki w kl. IV: Na każdym poziomie obowiązują także wszystkie wymagania z poziomów niższych.
Matematyka z plusem Klasa IV
Matematyka z plusem Klasa IV KLASA IV SZCZEGÓŁOWE CELE EDUKACYJNE KSZTAŁCENIE Rozwijanie sprawności rachunkowej Wykonywanie jednodziałaniowych obliczeń pamięciowych na liczbach naturalnych. Stosowanie
Matematyka Fragmenty programu nauczania dla szkoły podstawowej klasy 4
Matematyka Fragmenty programu nauczania dla szkoły podstawowej klasy 4 Anna Konstantynowicz, Adam Konstantynowicz, Bożena Kiljańska, Małgorzata Pająk, Grażyna Ukleja [ ] 2. Szczegółowe cele kształcenia
PROGRAM NAUCZANIA 12 1. Wprowadzenie 12 2. Cele edukacyjne (cele kształcenia ogólnego)
PROGRAM NAUCZANIA 12 1. Wprowadzenie 12 2. Cele edukacyjne (cele kształcenia ogólnego) 13 3. Program a cele kształcenia 14 37 4. Propozycje kryteriów oceny i metod sprawdzania osiągnięć ucznia a) Ramowy
P L A N R E A L I Z A C J I M A T E R I A Ł U Z M A T E M A T Y K I D L A K L A S Y I V d r o k s z k o l n y 2 0 1 5 / 2 0 1 6
P L A N R E A L I Z A C J I M A T E R I A Ł U Z M A T E M A T Y K I D L A K L A S Y I V d r o k s z k o l n y 0 1 5 / 0 1 6 Program nauczania: Matematyka z pomysłem, numery dopuszczenia podręczników 687/1/014,
Przedmiotowy system oceniania z matematyki w klasach IV VI
Przedmiotowy system oceniania z matematyki w klasach IV VI Przedmiotowy system oceniania ( w skrócie PSO ) jest zgodny z Ustawą o systemie oświaty z dnia 7 września 1991 roku ( ze zmianami), oraz Rozporządzeniem
Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas
1 Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas KLASA 6 Nr lekcji Temat lekcji Zagadnienie do realizacji wg podstawy programowej LICZBY NATURALNE (8
Wymagania z matematyki dla klasy IV na poszczególne oceny
Wymagania z matematyki dla klasy IV na poszczególne oceny Treści nauczania w klasie IV na podstawie podstawy programowej I. Liczby naturalne w dziesiątkowym układzie pozycyjnym. 1) zapisuje i doczytuje
I. WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE 4 SZKOŁY PODSTAWOWEJ
I. WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE 4 SZKOŁY 1. W zakresie sprawności rachunkowej uczeń: wykonuje proste działania pamięciowe na liczbach naturalnych, zna i stosuje algorytmy działań pisemnych
Przedmiotowy System Oceniania z Matematyki w SP 12 we Wrocławiu kl. IV-VI
Przedmiotowy System Oceniania z Matematyki w SP 12 we Wrocławiu kl. IV-VI I WYMAGANIA EDUKACYJNE Cele kształcenia wymagania ogólne I. Sprawność rachunkowa. Uczeń wykonuje proste działania pamięciowe na
Wymagania szczegółowe treści nauczania edukacji matematycznej dla I etapu edukacyjnego (klasy I-III szkoły podstawowej edukacja wczesnoszkolna)
Wymagania szczegółowe treści nauczania edukacji matematycznej dla I etapu edukacyjnego (klasy I-III szkoły podstawowej edukacja wczesnoszkolna) Uczeń: 1) klasyfikuje obiekty i tworzy proste serie; dostrzega
układzie pozycyjnym. Uczeń: 1) odczytuje i zapisuje liczby naturalne wielocyfrowe układzie pozycyjnym. Uczeń: 1) odczytuje i zapisuje liczby
Numer lekcji Temat lekcji Zagadnienia wg podstawy programowej DZIAŁANIA NA LICZBACH 3 NATURALNYCH, SYSTEM DZIESIĄTKOWY Wędrówka po liczbach. Własności liczb w zakresie 00.. Liczby naturalne w dziesiątkowym
Wymagania edukacyjne z matematyki dla klasy V opracowane na podstawie programu Matematyka z plusem
mgr Mariola Jurkowska mgr Aleksandra Baster Szkoła Podstawowa nr 164 w Krakowie Wymagania edukacyjne z matematyki dla klasy V opracowane na podstawie programu Matematyka z plusem Uczeń otrzyma ocenę dopuszczającą,
Treści nauczania. Klasa 6
. Klasa 6 2. Działania na liczbach naturalnych Obliczenia pamięciowe i pisemne Podzielność liczb naturalnych przez 2, 3, 5, 9, 10, 25*, 100 Średnia arytmetyczna* wykonuje działania na liczbach naturalnych
Wymagania z matematyki dla klasy VI na poszczególne oceny
Wymagania z matematyki dla klasy VI na poszczególne oceny Treści nauczania w klasie VI na podstawie podstawy programowej I. Liczby naturalne w dziesiątkowym układzie pozycyjnym. 1) zapisuje i odczytuje
4. Program a treści nauczania
Program nauczania Matematyka z pomysłem. Program a treści nauczania z podstawy programowej to - w grupowane w a - z z podstawy programowej. Prezentowany program nauczania jest przeznaczony do realizacji