ZASTOSOWANIE TECHNIK EKSPLORACJI DANYCH DO ESTYMACJI PRACOCHŁONNO CI PROJEKTÓW INFORMATYCZNYCH

Wielkość: px
Rozpocząć pokaz od strony:

Download "ZASTOSOWANIE TECHNIK EKSPLORACJI DANYCH DO ESTYMACJI PRACOCHŁONNO CI PROJEKTÓW INFORMATYCZNYCH"

Transkrypt

1 ZASTOSOWANIE TECHNIK EKSPLORACJI DANYCH DO ESTYMACJI PRACOCHŁONNO CI PROJEKTÓW INFORMATYCZNYCH ANDRZEJ KOBYLI SKI, PRZEMYSŁAW POSPIESZNY Szkoła Główna Handlowa w Warszawie Streszczenie W dzisiejszym wiecie opartym na wiedzy, informacja stanowi o przewadze konkurencyjnej i decyduje o szybko ci adaptacji do wymaga rynku. W ostatnich latach techniki pozyskiwania wiedzy, takie jak eksploracja danych (ang. data mining), znalazły powszechne zastosowanie w ró norodnych dyscyplinach jako narz dzia wsparcia procesu decyzyjnego, dostarczaj c kluczowych informacji zarz dczych. S one wykorzystywane w szczególno ci do problematyki, gdzie wyst puje du a niepewno i prawdopodobie stwo zaistnienia niekorzystnych zjawisk. W odniesieniu do zarz dzania projektami informatycznymi, techniki eksploracji danych umo liwiaj szeroki zakres zastosowa, w tym przede wszystkim do rozwi zywania problemów pojawiaj cych si w pocz tkowych fazach przedsi wzi informatycznych, a zwi zanych z planowaniem zasobów niezb dnych do zako czenia projektu sukcesem. Celem tego artykułu jest przedstawienie mo liwo ci zastosowania algorytmów data mining do estymacji pracochłonno ci inicjatyw informatycznych we wst pnych etapach realizacji projektów, gdy informacja o wytwarzanym produkcie ko cowym jest niepełna. W pracy dokonano porównania dokładno ci szacunków otrzymanych przy pomocy trzech powszechnie uznawanych za efektywne technik predykcyjnych: ogólnych modeli liniowych, sieci neuronowych i drzew decyzyjnych CHAID. Omówiono mo liwo wdro enia tych technik w praktyce, jako narz dzi wsparcia decyzyjnego. Słowa kluczowe: eksploracja danych, data mining, algorytmy predykcyjne, zarz dzanie projektami informatycznymi, estymacja pracochłonno ci, szacowanie rozmiaru oprogramowania Wst p Zarz dzanie projektami pojawiało si od zarania dziejów, jednak najwi kszy rozwój i popularyzacja tej dyscypliny przypada na drug połow 20. wieku. W latach 60. metodyki i narz dzia zarz dzania inicjatywami zostały zastosowane w szerokim zakresie do realizacji zło onych przedsi wzi przez takie organizacje, jak NASA i IBM. W tamtym te okresie powstały organizacje odpowiedzialne za powstanie wielu standardów prowadzenia projektów, takie jak Project Management Institute (PMI) oraz International Project Management Association (IPMA). Dyscyplina zarz dzania projektami odgrywa w dzisiejszym wiecie wa n rol. Wynika to z wszechobecno ci aplikacji informatycznych, które zostały wytworzone w procesie realizacji projektu. To dzi ki rozwi zaniom informatycznym istnieje mo liwo automatyzacji procesów zarz dzania i wytwarzania dóbr oraz podejmowania racjonalnych decyzji, w oparciu o dostarczone

2 68 Andrzej Kobyli ski, Przemysław Pospieszny Zastosowanie technik eksploracji danych do estymacji pracochłonno ci projektów informatycznych informacje zarz dcze. W rezultacie mo e si to przeło y na redukcj kosztów, usprawnienie komunikacji, czy te popraw efektywno ci zachodz cych procesów [1, 33]. Realizacja projektów informatycznych jest ograniczana przez trzy stałe projektu, takie jak: ramy czasowe, bud et oraz zakres. Definiowane s one w pocz tkowych etapach przedsi wzi, celem okre lenia opłacalno ci inicjatyw, zdefiniowania przypadków biznesowych oraz zaplanowania prac zwi zanych z wytworzeniem produktu ko cowego. Jednak zgodnie z przeprowadzonymi badaniami [2] [3], w ostatnim 20-leciu mo na było zaobserwowa, e w znacznym odsetku projektów nie udało si utrzyma pierwotnie przyj tych zało e odno nie do bud etu, harmonogramu i zakresu. Zjawisko to cz sto prowadzi do zaniechania rozpocz tych ju przedsi wzi, gdy okazuje si, e koszt realizacji przewy sza potencjalne korzy ci z wdro enia systemu lub czas realizacji nie gwarantuje osi gni cia przewagi konkurencyjnej. Przyjmuje si, e jedn z przyczyn powy szych zjawisk s zaniedbania poczynione w procesie planowania projektu [4], kiedy to definiowane s zało enia inicjatywy, odnosz ce si w szczególno ci do pracochłonno ci. Okre lenie pracochłonno- ci jest istotne, gdy od niej zale y czas i bud et, jaki nale y zapewni wykonawcom, by ci mogli skutecznie opracowa produkt ko cowy. Estymacja pracochłonno ci zwi zanej z realizacj projektu, przeprowadzona w fazie inicjacji lub planowania, jest trudnym zadaniem. Trudno ta wynika z niepełnej wiedzy, jak posiada estymuj cy, na temat zakresu ko cowego produktu i jego funkcjonalno ci. Powszechnie wykorzystywane techniki wspomagaj ce ten proces przewa nie polegaj na szacowaniu przez analogi, ocenie eksperckiej lub przez dekompozycj. U yte przez niedo wiadczonych kierowników projektów dostarczaj bł dnych, przewa nie nadmiernie optymistycznych szacunków. Organizacje, w których zarz dzanie projektami stoi na wy szym poziomie, stosuj bardziej zaawansowane metody algorytmiczne, oparte na liniach kodu ródłowego (ang. source lines of code, SLOC) lub punktach funkcyjnych (ang. function points, FP). Przykładami technik wykorzystuj cych te miary s SLIM i COCOMO II. Jednak podej cia te s w znacznej mierze subiektywne [11, 62 63] oraz słabo odzwierciedlaj rzeczywisto, gdy stosowane s współczesne j zyki programowania (4GL) [5]. Dodatkowo, wspomniane metody cz sto nie uwzgl dniaj pełnej pracochłonno ci zwi zanej z definiowaniem funkcjonalno ci produktu ko cowego i jego testami [6, 12], wymagaj przeszkolonego personelu oraz przeprowadzenia manualnych, stosunkowo skomplikowanych oblicze. Z powodu wspomnianych niedoskonało ci obecnie stosowanych metod szacowania pracochłonno ci przedsi wzi, pojawiło si zapotrzebowanie na bardziej dokładne i zautomatyzowane metody estymacji tej e pracochłonno ci. W ostatnich dwóch dekadach techniki eksploracji danych (ang. data mining) s szeroko stosowane w ró nych dziedzinach, w szczególno ci do prognozowania zjawisk, w których wyst puje du y poziom niepewno ci i mo liwo ci wyst pienia ryzyka. W odniesieniu do zarzadzania projektami, techniki data mining maj potencjalnie szeroki zakres wykorzystania. Mog by stosowane do predykcji pracochłonno ci, monitorowania z u yciem EVA (ang. earned value analysis) lub te oceny kosztu przyszłego utrzymania systemu. Niniejsza praca po wi cona jest najbardziej istotnemu, z punktu widzenia sukcesu projektu, aspektowi zwi zanego z realizacj przedsi wzi : estymacji pracochłonno ci projektu. Jej celem jest wykazanie, e metody eksploracji danych mog by skutecznie zastosowane do szacowania pracochłonno ci projektów informatycznych. Do tego wykorzystane zostan trzy algorytmy predykcyjne: ogólny model liniowy (ang. generalized linear model, GLM), sie neuronowa i drzewo decyzyjne CHAID. Do budowy modeli wykorzystano dane z bazy projektów informatycznych International Software Benchmarking Standards Group (ISBSG) [7]. W celu okre lenia dokładno ci

3 POLSKIE STOWARZYSZENIE ZARZ DZANIA WIEDZ Seria: Studia i Materiały, nr 73, wymienionych metod do estymowania pracochłonno ci, zdefiniowane zostan kryteria ewaluacji. Posłu one do porównania wyników uzyskanych trzema badanymi algorytmami. Zaprezentowana zostanie dyskusja odno nie do mo liwo ci wykorzystania tych algorytmów w praktyce zarz dzania projektami informatycznymi. 1. Estymacja projektów Szacowanie pracochłonno ci przedsi wzi cia jest jedn z najwa niejszych i stanowi cych najwi ksze wyzwanie czynno ci realizowanych w ramach zarz dzania projektem. Jest ono niezb dne do ustalenia ram projektu w postaci bud etu oraz harmonogramu. Ustalenie tych parametrów projektu pozwala na bie ce mierzenie post pu inicjatywy oraz na jej monitorowanie i kontrolowanie. Wszelkie odchylenia od zało onych parametrów mog by zidentyfikowane, a odpowiednie plany naprawcze wdro one. W wyniku tego kierownik projektu mo e podejmowa dobre decyzje w trakcie sterowania projektem i osi gn zało ony efekt ko cowy w postaci produktu lub usługi [8, 14]. Rys. 1. Sto ek niepewno ci w projektach, przedstawiaj cy przedziały szacunkowego kosztu realizacji inicjatyw w poszczególnych krokach milowych ródło: Opracowanie własne na podstawie [9]. Zło ono procesu szacowania jest uwarunkowana specyfik produktu ko cowego projektu informatycznego, którym jest przewa nie zestaw logicznie poł czonych instrukcji i zbioru informacji. Dodatkowo, na etapie estymacji w pocz tkowych fazach inicjatywy, jego posta nie jest w pełni sprecyzowana, tak wi c wyst puje wysoki poziom niejasno ci i niepewno ci co do jego finalnych funkcjonalno ci. Tak wi c proces szacowania odbywa si na podstawie niepełnej wiedzy, co zwi ksza ryzyko popełnienia bł du i mo e skutkowa niepowodzeniem przedsi wzi cia. Jak wynika ze sto ka niepewno ci Boehma z roku 1981 [9], przedstawionego na rys. 1, najwi ksza niepewno

4 70 Andrzej Kobyli ski, Przemysław Pospieszny Zastosowanie technik eksploracji danych do estymacji pracochłonno ci projektów informatycznych istnieje w momencie rozpocz cia projektu, kiedy to rzeczywista, ostateczna warto mo e by nawet cztery razy wi ksza lub cztery razy mniejsza od wst pnie szacowanej. Dokładno estymowanych warto ci ro nie wraz z post pem inicjatywy, gdy informacja o produkcie ko cowym staje si pełniejsza. W wyniku post pu technologicznego oraz usprawnie metodyk zarz dzania projektami skala Boehma uległa spłaszczeniu i obecnie przyjmuje si warto ci bł du zwi zanego z estymowaniem parametrów na poziomie +100/-50% dla studium wykonalno ci, +50/-25% dla opracowania wymaga i +20/-10% dla projektowania [10, 111]. 2. Zarz dzanie wiedz w projektach Osi gni cie celów projektu i zako czenie go sukcesem jest w znacznym stopniu uwarunkowane odpowiednim zarz dzaniem wiedz w ramach danej inicjatywy. Wiedza jako zasób jest generowana na ka dym etapie przedsi wzi cia w postaci nieustrukturowanej wiedzy członków projektu, jak i sformalizowanego repozytorium informacji i dokumentacji projektowej. Od jej odpowiedniego wykorzystania zale y wytworzenie produktu w ramach zało onego harmonogramu, bud etu, a tak e spełniaj cego wymagania funkcjonalne i jako ciowe u ytkownika ko cowego. Zarz dzanie wiedz w projektach składa si z szeregu procesów, maj cych na celu wytwarzanie, u ycie i rozpowszechnianie wiedzy niezb dnej do przeprowadzenia projektu (mikro-wiedzy) oraz przyczyniaj cych si do budowania wiedzy organizacji (makro-wiedza), zwi kszaj c zdolno ci organizacji do osi gania celów biznesowych i tym samym wpływaj c pozytywnie na prowadzone w ramach przedsi biorstwa inicjatywy [12]. Project Management Institute definiuje 10 podstawowych obszarów wiedzy, w których zgrupowana jest wiedza projektowa generowana w procesie cyklu ycia inicjatywy. Zalicza si do nich zarz dzanie integralno ci projektu, zakresem, czasem, kosztami, jako ci, zasobami ludzkimi, komunikacj, ryzykiem, zaopatrzeniem i interesariuszami [13, 60]. W licznych organizacjach dane o inicjatywach s zbierane i utrzymywane w postaci bazy projektów. Informacja ta, generowana przez zespół projektowy, odnosi si do kluczowych aspektów przedsi wzi cia, czyli kosztu, harmonogramu, jako ci w czasie trwania projektu. Pozwala ona przede wszystkim na monitorowanie i raportowanie trwaj cych projektów, w celu identyfikacji potencjalnych zagro e. Poza tym umo liwia wyci gni cie wniosków z projektów ju zako czonych i u ycie tej wiedzy celem optymalizacji procesu zarz dzania kolejnymi projektami. Tym samym si gaj c po najlepsze praktyki i do wiadczenia organizacje stopniowo zwi kszaj szanse zako czenia inicjatyw sukcesem. Baza projektów stanowi potencjalne ródło zastosowania procesu odkrywania wiedzy (ang. knowledge discovery in databases, KDD), którego jednym z istotnych kroków jest eksploracja danych (ang. data mining). Jest to dziedzina interdyscyplinarna, czerpi ca ze statystyki, matematyki, uczenia maszynowego (ang. machine learning), sztucznej inteligencji (ang. artificial intelligence), a tak e rozpoznawania wzorców (ang. pattern recognition). Polega na analizie du ych zbiorów danych z u yciem modeli w celu wydobycia wzorców, reguł i struktur [14, 7]. W ostatnim 20-leciu data mining stała si dziedzin niezmiernie popularn, której techniki s stosowanie w szerokim spektrum dyscyplin i gał zi przemysłu, takich jak bankowo, ubezpieczenia, telekomunikacja, czy medycyna do predykcji przyszłych zjawisk lub te identyfikacji prawidłowo ci. Swoj popularyzacj algorytmy eksploracji danych zawdzi czaj przede wszystkim wysok precyzj otrzymanych rezultatów, przez co umo liwiaj redukcj kosztów, zwi kszenie sprzeda y, zwi kszenie rodków na badania i rozwój, tym samym zapewniaj c osi gni cie przewagi konkurencyjnej.

5 POLSKIE STOWARZYSZENIE ZARZ DZANIA WIEDZ Seria: Studia i Materiały, nr 73, Zasadniczo wyró nia si dwie kategorie zada do jakich eksploracja danych mo e by stosowana: opisowe i predykcyjne, które mog by u yte zale nie od oczekiwanego rezultatu. Pierwsza z nich ma na celu scharakteryzowanie własno ci danych, natomiast predykcja odpowiada za wnioskowanie na podstawie zbioru danych, celem szacowania przyszłych warto ci [15, 21]. W praktyce szczególnie u yteczna jest grupa technik predykcyjnych, które maj charakter uczenia nadzorowanego. Wymagaj one posiadania danych odzwierciedlaj cych badane zjawisko w celu estymacji nowych warto ci. Przyjmuj one posta klasyfikacji lub regresji w zale no ci od typu zmiennej zale nej. W pierwszym przypadku ma ona charakter dyskretny (binarny lub nominalny), natomiast wynikiem regresji jest warto numeryczna. W grupie znanych technik predykcyjnych mo na wyró ni trzy algorytmy, które powszechnie uznawane s za dostarczaj ce dokładnych estymacji, a tak e s odporne na braki i szumy w danych, tak powszechne w zbiorach informacji u ywanych do procesu ich uczenia: ogólny model regresji (GLM), sieci neuronowe oraz drzewa decyzyjne. Pierwszy z nich stanowi rozszerzenie linearnej regresji i umo liwia predykcj zjawisk, gdy wyst puj nieliniowe zale no ci pomi dzy zmiennymi. GLM nie wymaga rozkładu normalnego oraz stałej wariancji zmiennej obja nianej, co stanowi istotn własno w przypadku, gdy zmienne niezale ne maj niejednakowy wpływ na zmienn wynikow. Sztuczne sieci neuronowe s zespołem algorytmów nieliniowej regresji, zaliczanych do technik uczenia maszynowego, znanych z wszechstronno ci zastosowania oraz dokładno ci modeli. Podstawow zalet sieci jest zdolno do pracy z wielowymiarowymi bazami danych, charakteryzuj cymi si niepełn informacj. Natomiast drzewa klasyfikacyjne, zaliczane równie do technik uczenia maszynowego i nadzorowanego, polegaj na intuicyjnym i graficznym odzwierciedleniu wiedzy za pomoc struktury drzewa oraz zbiorów w złów decyzyjnych poł czonych poprzez gał zie rozchodz ce si w dół korzenia, a do finalnych li ci. Te odnosz ce si do zmiennej w postaci nominalnej nazywane s drzewami klasyfikacyjnymi, natomiast w przypadku zmiennej zale nej ci głej drzewami regresyjnymi. 3. Przegl d literatury Wraz z popularyzacj technik data mining, w latach 90. rozpocz ły si liczne badania w obszarze ich zastosowania do zarz dzania projektami. S one aplikowane do takich problemów zwi zanych z przeprowadzaniem inicjatyw informatycznych jak: [1] wst pna estymacja szacowanie pracochłonno ci, bud etu oraz harmonogramu projektu na etapie inicjacji lub planowania projektu, [2] monitorowanie projektów estymacja zasobów niezb dnych do uko czenia projektu podczas jego trwania; opiera si przewa nie na szacowaniu wska ników metody monitorowania Earned Value Management (EVA) [16] [17], [3] jako oprogramowania predykcja ilo ci i klasy bł dów zidentyfikowanych podczas testów oraz czasu naprawy bł dów [18] [19], [4] estymacja kosztu utrzymania systemów szacowanie zasobów niezb dnych do utrzymania wdro onego systemu, dokonane na podstawie przewidywanych zmian w systemie i liczbie prognozowanych bł dów [20]. Spo ród wymienionych problemów, najwi kszym zainteresowaniem badaczy cieszył si problem wst pnej estymacji. Wynikało to ze wzgl dów pragmatycznych to bł dna estymacja

6 72 Andrzej Kobyli ski, Przemysław Pospieszny Zastosowanie technik eksploracji danych do estymacji pracochłonno ci projektów informatycznych niezb dnych zasobów uznawana jest za podstawow przyczyn niepowodze projektów informatycznych. Tab.1 zawiera spis wybranych publikacji z tego zakresu. Tab. 1. Wybrane publikacje z zakresu zastosowania technik eksploracji danych do predykcji zasobów projektu Lp Autor Tytuł Rok Zadanie Techniki Baza danych 1 I.Barcelos Tronto, J.Simoes da Silva, N. Sant'Anna 2 D.Dzega, W.Pietruszkiewicz 3 4 A.Bakır, B.Turhan, A.Bener Promise Data Repository, Software Engineering Research Laboratory (SoftLab) Repository ISBSG C.Lopez- Martin, C.Isaza, A.Chavoya 5 J.Balsera, F.Fernandez, V.Montequin, R.Suarez 6 K.Dejaeger, W.Verbeke, D.Martens, B.Baesens ródło: opracowanie własne. Comparison of Artificial Neural Network and Regression Models in Software Effort Estimation Classification and Metaclassification in Large Scale Data Mining Application for Estimation of Software Projects A comparative study for estimating software development effort intervals Software development effort prediction of industrial projects applying a general regression neural network Effort Estimation in Information Systems Projects using Data Mining Techniques Data Mining Techniques for Software Effort Estimation: A Comparative Study 2006 Estymacja pracochłonno ci 2009 Estymacja czasu trwania 2010 Estymacja pracochłonno ci 2011 Estymacja pracochłonno ci 2012 Estymacja pracochłonno ci i czasu trwania 2012 Estymacja pracochłonno ci Sieci neuronowe, regresja liniowa Drzewa decyzyjne: C4.5, random tree oraz CART Liniowa analiza dyskryminacyjna, k-najbli szych s siadów oraz drzewa decyzyjne Sieci neuronowe, regresja Drzewa decyzyjne MARS drzewa decyzyjne (M5, CART, MARS), sieci neuronowe, maszyna wektorów no nych oraz ró nego typu modele oparte na regresji liniowej COCOMO SourceForge ISBSG Cocnasa, Maxwell, USP05, CO- COMO, Desharnais, the Experience, ESA, ISBSG, and Euroclear

7 POLSKIE STOWARZYSZENIE ZARZ DZANIA WIEDZ Seria: Studia i Materiały, nr 73, Zasadniczo prace badawcze s prowadzone w odniesieniu do problematyki klasyfikacyjnej oraz predykcyjnej data mining i dotycz szacowania pracochłonno ci oraz czasu trwania zwi zanego z wytworzeniem produktu ko cowego. W zale no ci od stosowanego podej cia, cz bada po- wi cona jest wyłonieniu najbardziej efektywnego i dokładnie wyja niaj cego badane zjawisko algorytmu, poprzez budow wielu modeli i porównaniu wyników [18] [21] [22]. Inne natomiast koncentruj si na procesie przygotowania danych, od których zale ne s ko cowe rezultaty [23]. Analizy przedstawiane w publikacjach oparte s o ró ne bazy projektów zastosowanych w procesie uczenia algorytmów. Do najwa niejszych mo na zaliczy : COCOMO [24], Albrecht [25], NASA [26], SourceForge [27] oraz ISBSG [7]. Jako kryterium oceny modeli, standardem przyj tym do porównywania dokładno ci otrzymanych szacunków, jest stosowanie redniego wzgl dnego bł du (ang. mean relative error, MRE), redniego wzgl dnego bł du wielko ci (ang. mean magnitude of relative error, MMRE) oraz stosunku predykcji do warto ci rzeczywistych (PRED) [28]. Pomimo wielu publikacji i opracowywania przez badaczy licznych modeli wykorzystuj cych szeroki zakres algorytmów, pocz wszy od uczenia maszynowego, sko czywszy na regresji, dotychczas trudno jest zaobserwowa wdro enie technik eksploracji danych do estymacji zasobów projektów informatycznych w praktyce jakiejkolwiek organizacji. Wynika to przede wszystkim z braku standardowego podej cia ukierunkowanego na zastosowanie modeli w praktyce, czego efektem s ró nice w dokładno ci poszczególnych technik i niespójno wyników. Przyczyn tego zjawiska jest niedokładna konfiguracja algorytmów [29] oraz rodzaj bazy danych u ytej do procesu ich uczenia. Cz sto stosowane zbiory danych o projektach zawieraj niewielk ilo zapisów, co mo e powodowa przeuczenie algorytmów. Dodatkowo, brak jest ogólnie przyj tej metodyki przygotowania danych do modelu, co skutkuje stosowaniem ró nych podej w odniesieniu do warto ci odstaj cych oraz brakuj cych. 4. Estymacja pracochłonno ci z u yciem technik Data Mining Ta cz artykułu po wi cona jest estymacji pracochłonno ci projektów informatycznych z wykorzystaniem predykcyjnych technik eksploracji danych. Spo ród znanych licznych metod, metod wst pnej selekcji i w oparciu o przegl d literatury, do dalszych bada wybrano trzy algorytmy powszechnie uznane za generuj ce dokładne szacunki oraz odporne na brakuj ce i zaszumione dane: ogólny model liniowy, sieci neuronowe i drzewa decyzyjne CHAID. Pierwszy z nich stanowi rozszerzenie regresji liniowej i charakteryzuje si du a dokładno ci estymacji zło onych zjawisk. Spo ród algorytmów uczenia maszynowego wybrano sieci neuronów (perceptor wielowarstwowy MLP) oraz drzewa decyzyjne CHAID. Zalet pierwszego z nich jest odporno na warto ci odstaj ce i brakuj ce oraz du ilo zmiennych wej ciowych. Natomiast zalet drzew decyzyjnych CHAID jest graficzny sposób reprezentacji wiedzy. Algorytmy te zostan porównane, celem oceny ich zdolno ci do odzwierciedlania badanego zjawiska oraz ich potencjalnej przydatno ci do zastosowania w praktyce. Do budowy modeli zastosowano metodyk Cross-Industry Standard Process for Data Mining (CRISP-DM) [30], natomiast dane zostały pobrane z bazy danych o projektach ISBSG. W odró nieniu od innych dost pnych zbiorów danych o projektach informatycznych, baza ISBSG jest najbardziej kompletnym i wiarygodnym ródłem informacji na temat inicjatyw informatycznych realizowanych przez ró ne organizacje na całym wiecie. Baza ISBSG w wersji 12 (2013) u yta do budowy modeli, zawiera dane o 6006 projektach, jakie miały miejsce w ostatnich dwóch dekadach.

8 74 Andrzej Kobyli ski, Przemysław Pospieszny Zastosowanie technik eksploracji danych do estymacji pracochłonno ci projektów informatycznych Projekty te zrealizowano głównie w sektorze komunikacyjnym, przemysłowym, finansowym i usługowym. W ramach przygotowania danych wst pnie wybrano 28 zmiennych niezale nych, które na podstawie przeprowadzonego przegl du literatury oraz dokonanej analizy zale no ci, potencjalnie mogłyby obja nia zmienn zale n : pracochłonno. Nast pnie usuni to obserwacje o danych słabej jako ci i zawieraj ce znacz c ilo warto ci brakuj cych. Za kryterium odrzucenia warto ci odstaj cych, które równie mogłyby wpłyn negatywnie na proces uczenia si algorytmów, przyj to potrójne odchylenie standardowe od redniej wielko ci pracochłonno ci. Tab. 2. Wyniki testów Kołomogorowa-Smirnowa oraz Shapiro-Wilka na normalno rozkładów zmiennej Normalised Work Effort Kołmogorow-Smirnowa Shapiro-Wilk Statystyka df Istotno Statystyka df Istotno Normalised Work Effort 0, ,000 0, ,000 ródło: opracowanie własne. Rys. 2. Wykres normalno ci Kwantyl-Kwantyl dla zmiennej Normalised Work Effort ródło: wydruk z SPSS Statistics. W ramach przygotowania danych zbadano równie rozkład warto ci zmiennej obrazuj cej pracochłonno, która wykazała prawosko no oraz du koncentracj wyników wokół redniej (rozkład leptokurtyczny). Do potwierdzenia odst pstwa od rozkładu normalnego przeprowadzono test Kołomogorowa-Smirnowa oraz Shapiro-Wilka. Dla badanego zjawiska istotno statystyk p nie przekroczyła warto ci 0,05, tak wi c nale y odrzuci hipotez zerow o rozkładzie normalnym analizowanych zmiennych. Parametryczne algorytmy eksploracji danych oraz niektóre z grupy uczenia si maszynowego, takie jak sieci neuronowe, generuj lepsze wyniki w przypadku wyst powania

9 POLSKIE STOWARZYSZENIE ZARZ DZANIA WIEDZ Seria: Studia i Materiały, nr 73, rozkładu normalnego. W zwi zku z tym zmienn zale n poddano transformacji przez logarytmowanie. W rezultacie przygotowania danych otrzymano zbiór 13 zmiennych przedstawionych w tabeli 3 oraz 1494 obserwacji. Lp. Nazwa zmiennej 1 Industry Sector 2 Application Type 3 Development Type 4 Development Platform 5 Language Type 6 Package customization Tab. 3. Zmienne u yte do budowy modeli predykcyjnych Opis Rodzaj Liczba kategorii Rola Sektor przemysłu Nominalna 14 Predyktor Rodzaj aplikacji Nominalna 16 Predyktor Typ dewelopmentu (nowy, rozwój, redewelopment) Platforma sprz towa (PC, Mid Range, Mainframe lub Multiplatform) Rodzaj j zyka programowania (2GL, 3GL, 4GL) Czy wymagane było dopasowanie gotowego systemu? (tak, nie, brak informacji) Nominalna 3 Predyktor Nominalna 4 Predyktor Nominalna 3 Predyktor Nominalna 3 Predyktor 7 Relative Size Klasa wielko ci aplikacji Nominalna 7 Predyktor 8 Architecture Architektura systemu Nominalna 6 Predyktor 9 Agile Czy zastosowano metodyk zwinn? 10 Used Czy zastosowano Methodology metodyk? (tak, nie, brak 11 Resource Level informacji) Rodzaj zasobów projektowych: (zespół projektowy, zespół utrzymaniowy, zespół wsparcia, u ytkownicy ko cowi) 12 Effort Pracochłonno projektu w roboczomiesi cach, zlogarytmowana ródło: Opracowanie własne. Flaga 2 Predyktor Nominalna 3 Predyktor Nominalna 4 Predyktor Ilo ciowa -- Przewidywana

10 76 Andrzej Kobyli ski, Przemysław Pospieszny Zastosowanie technik eksploracji danych do estymacji pracochłonno ci projektów informatycznych W celu wyboru zmiennych istotnie wpływaj cych na pracochłonno, a tak e w celu zbadania współzale no ci pomi dzy zmiennymi zale nymi, wykonano analiz korelacji Pearsona oraz regresj krokow. Najsilniejsza korelacja wyst powała pomi dzy zmienn pracochłonno (effort) a długo ci trwania (duration) (współczynnik Pearsona na poziomie 0,47) oraz wielko projektu (0,672). Pozostałe zmienne miały wpływ na pracochłonno na znacznie ni szym poziomie (0,1-0,2). Ze wzgl du na wyst puj c relatywnie siln korelacj pomi dzy zmienn effort i duration oraz na fakt, e czas trwania projektu jest wyznaczany przewa nie na podstawie przewidywanej pracochłonno ci zdecydowano o usuni ciu zmiennej duration ze zbioru wej ciowego. Dodatkowo, wspomniana wyst puj ca silna zale no tych zmiennych mogłaby marginalizowa wpływ pozostałych czynników na dostarczane estymacje pracochłonno ci przez zbudowane modele eksploracji danych. Tab. 4. Współczynniki dopasowania modelu regresji krokowej dla zmiennej zale nej effort Model R R- kwadrat Skorygowane R- kwadrat Bł d standardowy oszacowania Predyktory 1,672,451,451,430 (Stała), Relative Size 2,686,471,471,422 (Stała), Relative Size, Language Type 3,697,486,485,416 (Stała), Relative Size, Language Type, Development Platform 4,700,490,489,414 (Stała), Relative Size, Language Type, Development Platform, Package Customization 5,702,493,492,413 (Stała), Relative Size, Language Type, Development Platform, Package Customization, Development Type ródło: opracowanie własne na podstawie wydruku SPSS Statistics. Regresja krokowa wprowadziła do modelu 5 zmiennych w nast puj cej kolejno ci (według malej cego wpływu na zmienn zale n ): Relative Size, Language Type, Development Platform, Package Customization i Development Type. Jednak, jak wykazała analiza korelacji, wszystkie zmienne maj istotny wpływ na predykcj pracochłonno ci. Dlatego do budowy modeli zdecydowano si u y pełnego zestawu czynników przedstawionego w tabeli 4. Wyselekcjonowany uprzednio zbiór danych zawieraj cy 1494 kompletnych obserwacji podzielono na treningowy (80%) i testowy (20%). Pierwszy z nich został wykorzystany do procesu uczenia modeli, natomiast drugi do ich walidacji. Do budowy modeli wykorzystano oprogramowanie IBM SPSS Modeler. Do predykcji zmiennej ci głej pracochłonno zastosowano trzy algorytmy eksploracji danych: ogólny model liniowy (GLM), sie neuronowa (perceptor wielowarstwowy MLP) oraz drzewo decyzyjne CHAID. W przypadku pierwszego zastosowano rozkład normalny, funkcje ł cz c to samo oraz metod parametru skali Chi-kwadrat. Odno nie do sieci neuronowych u yto jednej warstwy ukrytej, funkcji aktywacji typu tangens hiperboliczny. Natomiast w przypadku drzew decyzyjnych zastosowano algorytm podziału drzewa opartego na Chi-

11 POLSKIE STOWARZYSZENIE ZARZ DZANIA WIEDZ Seria: Studia i Materiały, nr 73, kwadrat, maksymaln gł boko drzewa wynosz c pi poziomów i kryterium zatrzymania wynosz ce minimum 2% rekordów w gał zi nadrz dnej i 1% w podrz dnej. W celu ewaluacji zbudowanych trzech modeli oraz oceny ich dokładno ci w predykcji pracochłonno ci projektów informatycznych zastosowano miary prognozy ex post takie jak: redni bł d (ang. mean error, ME), redni absolutny bł d (ang. mean absolute error, MAE), redni bł d kwadratowy (ang. mean squared error, MSE) oraz pierwiastek bł du redniokwadratowego (ang. root mean squared error, RMSE) [15, ] [31, 44 45]. Do oceny modeli szacuj cych pracochłonno inicjatyw zwyczajowo stosuje si dodatkowe miary, które u ywane s do porównywania efektywno ci poszczególnych podej. Do wspomnianych wielo ci odnosi si moduł bł du wzgl dnego (ang. magnitude of relative error, MRE), redni moduł bł du wzgl dnego (ang. mean magnitude of relative error, MMRE) i stosunek predykcji do warto ci rzeczywistych (PRED). W estymacji projektów informatycznych (kryterium Conte a) przyjmuje si poziom wska nika PRED na poziomie PRED(0,25) 0,75, co interpretuje si jako: przynajmniej 75% warto ci przewidywanych zawiera si w 25% rzeczywistych. Natomiast MMRE powinno by mniejsze lub równe od 0,25. W rzeczywisto ci oba poziomy s rzadko osi gane w praktyce [28] [32]. Tab. 5. Porównanie wska ników oceny algorytmów zastosowanych do predykcji pracochłonno ci Drzewo decyzyjne Ogólny model linowy Sie neuronowa CHAID Uczenie Test Uczenie Test Uczenie Test ME 0,000-0,012 0,008 0,002 0,000-0,008 MAE 0,288 0,310 0,308 0,331 0,287 0,313 MSE 0,139 0,162 0,159 0,175 0,140 0,169 RMSE 0,373 0,402 0,398 0,418 0,374 0,412 MMRE 0,203 0,053 0,226 0,113 0,225 0,050 PRED(0,25) 0,599 0,604 0,571 0,545 0,612 0,607 PRED(0,3) 0,680 0,662 0,657 0,623 0,680 0,662 ródło: opracowanie własne. Tabela 5 przedstawia miary oceny trzech modeli: ogólnego modelu liniowego, sieci neuronowej i drzewa decyzyjnego CHAID. Jak wynika z danych zawartych w tej tabeli, wszystkie trzy algorytmy posiadaj wska niki bł du i jako ci dopasowania na bardzo zbli onym poziomie, przy czym nieznacznie dokładniejsze predykcje generuje ogólny model liniowy. redni bł d prognozy (RMSE) dla tego modelu w zbiorze testowym był na poziomie 0,402, co oznacza, e o t warto rednio odchylaj si predykcje pracochłonno ci od warto ci rzeczywistych. Dla porównania wska nik ten dla sieci neuronowej wynosił 0,418 oraz drzewa decyzyjnego 0,412. Tak wi c ró nice bł du dla poszczególnych technik były niewielkie. Warto ci RMSE w niewielkim stopniu odchylały si od redniego bezwzgl dnego bł du (MAE), st d mo na wnioskowa o braku wyst powania bł dów o du ych warto ciach.

12 78 Andrzej Kobyli ski, Przemysław Pospieszny Zastosowanie technik eksploracji danych do estymacji pracochłonno ci projektów informatycznych Analizuj c redni moduł bł du wzgl dnego (MMRE) mo na zauwa y, e był on wy szy dla zbioru treningowego, gdzie nieznacznie przekracza 20%, ni testowego (1 5%) dla wszystkich zastosowanych algorytmów. Jego poziom wiadczy o popełnianiu do 20% bł du szacuj c z u yciem ogólnego modelu liniowego, sieci neuronowej oraz drzewa decyzyjnego. MMRE dla wspomnianych technik, b d c na poziomie mniejszym ni 25%, spełnia kryterium Conte a o dobrej zdolno ci predykcyjnej zbudowanych modeli. Warto ci PRED oscyluj wokół 60%, czyli na tym poziomie warto ci szacowane zawierały si w 25% pracochłonno ci rzeczywistej. Jest to ni szy poziom ni zakładany przez Conte a ( 75%), jednak bior c pod uwag ilo obserwacji i zmiennych u ytych do szacowania mo na uzna wysoko PRED na bardzo dobrym poziomie. Resumuj c, na podstawie zastosowanych wska ników oceny poszczególnych technik mo na stwierdzi, e modele: ogólny model liniowy, sie neuronowa oraz drzewo decyzyjne CHAID charakteryzuj si dobr zdolno ci predykcji pracochłonno ci projektów informatycznych. Generowane bł dy były niewielkie i na podobnym poziomie, przy czym nieznacznie lepsze predykcje uzyskano stosuj c ogólny model liniowy. Ponadto wszystkie modele cechowały si dobrym dopasowaniem do danych wej ciowych i mog by zastosowane osobno lub razem do szacowania pracochłonno ci zwi zanej z dostarczeniem produktu finalnego projektu. 5. Zako czenie Estymacja pracochłonno ci projektów informatycznych jest jedn z istotniejszych czynno ci przeprowadzanych w pocz tkowych fazach ycia inicjatywy, od której warunkowany jest sukces projektu i wytworzenie produktu ko cowego. Dost pne techniki szacowania parametrów projektów polegaj w du ej mierze na subiektywnej ocenie asesora, co w przypadku niewykwalifikowanego personelu mo e prowadzi do nadmiernie optymistycznych estymacji. Dodatkowo cz sto wymagaj one dokonywania manualnych oblicze, co w przypadku zło onych projektów jest czaso- i pracochłonne. Techniki data mining s powszechnie wykorzystywane s w praktyce do zagadnie charakteryzuj cych si du ym niepewno ci i prawdopodobie stwem materializacji ryzyk. Dlatego te istnieje du y potencjał do ich zastosowania w organizacjach w celu wsparcia procesu estymacji pracochłonno ci projektów informatycznych poprzez zautomatyzowane modele generuj ce predykcje na podstawie danych historycznych. W niniejszej pracy porównano dokładno szacunków trzech algorytmów predykcyjnych. Ka dy z nich dostarczał dokładnych szacunków, tym samym udowodnione zostało, e istnieje potencjał na ich wdro enie w praktyce. Najlepsze rezultaty generował ogólny model liniowy, jednak jego przewaga była nieznaczna. Wdro enie algorytmów eksploracji danych do praktyki projektowej wymaga dysponowania historyczn baz projektów informatycznych. W wi kszo ci organizacji za utrzymanie takiej bazy odpowiada PMO (biuro projektów, ang. Project Management Office), które zbiera dane o przedsi wzi ciach przewa nie do celów raportowych. Aby algorytmy predykcyjne dawały wiarygodne rezultaty, trzeba unikn przeuczenia si algorytmów, wi c baza powinna zawiera wi ksz od 100 liczb inicjatyw oraz kilka do kilkunastu charakterystyk przedsi wzi. Istotnym aspektem bazy projektów jest jako danych w niej zawartych. Powinny by one weryfikowane i systematycznie aktualizowane, tak aby zapewni dokładno modelu wdro onego w praktyce. W zwi zku z tym mo na oczekiwa, e organizacjami, w których do wsparcia procesu estymacji pracochłonno ci projektów informatycznych mog by stosowane modele data mining, powinny by dojrzałe

13 POLSKIE STOWARZYSZENIE ZARZ DZANIA WIEDZ Seria: Studia i Materiały, nr 73, organizacje, na przykład posiadaj ce certyfikacj CMMI (ang. capability maturity model integration). Jako danych ma bezpo redni wpływ na predykcje generowane przez algorytmy eksploracji danych. W przypadku wyst puj cych warto ci brakuj cych lub odstaj cych predykcje mog by niepoprawne. Dlatego te istotnym etapem wdro enia modeli jest odpowiednie przygotowanie danych wej ciowych, tak aby wykluczy czynniki mog ce zakłóci poprawn estymacj. Dodatkowo algorytmy data mining mog dostarcza szacunków o ró nym poziomie dokładno ci w zale no ci od charakterystyki wykorzystywanego zbioru projektów. St d w celu unikni cia tego zjawiska powinny by one u yte w formie zespolonej, gdzie przykładowo wyniki dostarczane przez trzy algorytmy generuj ce estymaty na podobnym poziomie powinny by u rednione, eby zniwelowa mo liwo wyst pienia anomalii wytworzonej przez który z modeli indywidualnych. Pomimo e w ostatnich latach podejmowano wielokrotnie w pracach badawczych tematyk zastosowania algorytmów data mining do estymacji pracochłonno ci projektów informatycznych, brak jest jakichkolwiek doniesie o ich praktycznych wdro eniach. Sytuacja ta mo e wynika z nadmiernej koncentracji badaczy na dokładno ci szacunków dostarczanych przez poszczególne techniki, a nie na wypracowaniu podej cia i metodyki wdro enia algorytmów w organizacjach. Wobec tego, kolejne prace powinny dotyczy mo liwo ci implementacji zespolonego modelu algorytmów data mining w wybranej organizacji celem weryfikacji ich przydatno ci do estymacji pracochłonno ci przedsi wzi, jako narz dzia wsparcia decyzyjnego oraz stanowi cego alternatywne podej cie wobec istniej cych stosowanych dotychczas technik estymacji parametrów projektów. Bibliografia [1] Marchewka J., Information Technology Project Managment Providing Measurable Organizational Value, Management, Wiley [2] Standish Group, The CHAOS Manifesto 2011, The Standish Group International. EUA, [3] Czarnacka-Chrobot B., Analysis of the functional size measurement methods usage by Polish business software systems providers, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2009, t.5891 LNCS, s [4] Eveleens J., Verhoef C., The rise and fall of the chaos report figures, IEEE software, [5] Kemerer C.F., Reliability of function points measurement: a field experiment, Communications of the ACM, 1993, t.36, nr 2, s [6] Galorath D., Evans M., Software Sizing, Estimation, and Risk Management, Auerbach Publications 2006, s [7] The International Software Benchmarking Standards Group (ISBSG), [8] McConnell S., Software Estimation: Demystifying the Black Art: Demystifying the Black Art, Microsoft Press [9] Boehm B.W., Software Engineering Economics, Prentice Hall., 1981, t.10, s [10] Laird L.M., Brennan M.C., Software Measurement and Estimation: A Practical Approach, John Wiley & Sons 2006, s. 257.

14 80 Andrzej Kobyli ski, Przemysław Pospieszny Zastosowanie technik eksploracji danych do estymacji pracochłonno ci projektów informatycznych [11] Hill P., i International Software Benchmarking Standards Group, Practical Software Project Estimation: A Toolkit for Estimating Software Development Effort & Duration, McGraw Hill Professional 2010, s [12] Gasik S., A model of project knowledge management, Project Management Journal, 2011, t.42, nr 3, s [13] Project Management Institute, A Guide to the Project Management Body of Knowledge PMBOK Guide, PMI Book, Project Management Institute 2013, Fifth Edit. [14] Linoff G.S., Berry M.J.A., Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management, John Wiley & Sons [15] Han J., Kamber M., Pei J., Data Mining: Concepts and Techniques, Morgan Kaufmann [16] Iranmanesh S.H., Mokhtari Z., Application of data mining tools to predicate completion time of a project, Proceeding of world academy of science, engineering and technology, 2008, t.32, s [17] Azzeh M., Cowling P.I., Neagu D., Software stage-effort estimation based on association rule mining and Fuzzy set theory, Proceedings 10th IEEE International Conference on Computer and Information Technology, CIT-2010, 7th IEEE International Conference on Embedded Software and Systems, ICESS-2010, ScalCom-2010, 2010, s [18] Balsera J.V., Montequin V.R., Fernandez F.O., González-Fanjul C.A., Data Mining Applied to the Improvement of Project Management, InTech, [19] Nagwani N.K., Bhansali A., A data mining model to predict software bug complexity using bug estimation and clustering, ITC International Conference on Recent Trends in Information, Telecommunication, and Computing, 2010, s [20] Shukla R., Shukla M., Misra A.K., Marwala T., Clarke W.A., Dynamic software maintenance effort estimation modeling using neural network, rule engine and multi-regression approach, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2012, vol LNCS, s [21] Dzega D., Pietruszkiewicz W., Classification and metaclassification in large scale data mining application for estimation of software projects, 2010 IEEE 9th International Conference on Cybernetic Intelligent Systems, CIS 2010, [22] Dejaeger K., Verbeke W., Martens D., Baesens B., Data mining techniques for software effort estimation: A comparative study, IEEE Transactions on Software Engineering, 2012, t.38, s [23] Lopez-Martin C., Isaza C., Chavoya A., Software development effort prediction of industrial projects applying a general regression neural network, Empirical Software Engineering, 2012, t.17, s [24] Reifer D.J., Boehm B.W., Chulani S., The rosetta stone: Making COCOMO 81 Files Work With COCOMO II, University of South California, 1998, s [25] Albrecht A.J., Gaffney J.E.. J., Software Function, Source Lines of Code, and Development Effort Prediction: A Software Science Validation, IEEE Transactions on Software Engineering, 1983, t.se-9. [26] PROMISE Software Engineering Repository, SERepository/datasets/cocomonasa.arff. [27] SourceForge,

15 POLSKIE STOWARZYSZENIE ZARZ DZANIA WIEDZ Seria: Studia i Materiały, nr 73, [28] Conte S.D., Dunsmore H.E., Shen V.Y., Software engineering metrics and models, Benjamin/Cummings Pub. Co [29] Paliwal M., Kumar U., Neural networks and statistical techniques: A review of applications, Expert Systems with Applications, 2009, t.36, s [30] Pete C., Julian C., Randy K., Thomas K., Thomas R., Colin S., Wirth R., CRISP-DM 1.0, CRISP-DM Consortium, [31] Larose D.T., Data Mining Methods and Models, John Wiley & Sons [32] Jorgensen M., A Critique of How We Measure and Interpret the Accuracy of Software Development Effort Estimation, 1st International Workshop on Software Productivity Analysis and Cost Estimation, 2007, s

16 82 Andrzej Kobyli ski, Przemysław Pospieszny Zastosowanie technik eksploracji danych do estymacji pracochłonno ci projektów informatycznych APPLICATION OF DATA MINING TECHNIQUES FOR SOFTWARE PROJECT EFFORT ESTIMATION Summary In the current fast pace of the world information plays significant role. It determines companies adaptation abilities to changing market requirements in order to achieve competitive advantage. In recent years data exploration techniques, especially data mining, are utilitised for multiple disciplines as a decision support tool delivering key management information. These techniques are widely used for areas where uncertainty is substantial and where is a high risk of adverse occurrence such as credit scoring and customer churn that may lead to financial loses. In terms of software project management, data mining techniques potentially enable wide range of applications. Foremost they can be used for initial project phases where information about final product is partial due to undefined requirements and when project practitioners are obliged to estimate resources needed for successful project completion. The aim of this article is to discuss possible application of data mining techniques for software effort estimation at the initial project stages when uncertainty and risk occurrence is high. For that purpose three machine learning algorithms are used to build predictive models: generalised linear models, neural networks and decision trees CHAID. The estimation accuracy of these models is compared in order to determine their potential deployment within organisations and which could be applied in combination with traditional and parametric effort estimation techniques or as a sole tool that provide decision support information. Keywords: data mining, data exploration, predictive algorithms, software project management, software estimation, effort estimation Andrzej Kobyli ski Przemysław Pospieszny Instytut Informatyki i Gospodarki Cyfrowej Szkoła Główna Handlowa w Warszawie

Zarządzanie projektami. wykład 1 dr inż. Agata Klaus-Rosińska

Zarządzanie projektami. wykład 1 dr inż. Agata Klaus-Rosińska Zarządzanie projektami wykład 1 dr inż. Agata Klaus-Rosińska 1 DEFINICJA PROJEKTU Zbiór działań podejmowanych dla zrealizowania określonego celu i uzyskania konkretnego, wymiernego rezultatu produkt projektu

Bardziej szczegółowo

Harmonogramowanie projektów Zarządzanie czasem

Harmonogramowanie projektów Zarządzanie czasem Harmonogramowanie projektów Zarządzanie czasem Zarządzanie czasem TOMASZ ŁUKASZEWSKI INSTYTUT INFORMATYKI W ZARZĄDZANIU Zarządzanie czasem w projekcie /49 Czas w zarządzaniu projektami 1. Pojęcie zarządzania

Bardziej szczegółowo

Zarz dzanie Projektami Informatycznymi

Zarz dzanie Projektami Informatycznymi K.Pieńkosz Zarządzanie Projektami Informatycznymi Wprowadzenie 1 Zarz dzanie Projektami Informatycznymi dr in. Krzysztof Pie kosz Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej

Bardziej szczegółowo

Objaśnienia do Wieloletniej Prognozy Finansowej na lata 2011-2017

Objaśnienia do Wieloletniej Prognozy Finansowej na lata 2011-2017 Załącznik Nr 2 do uchwały Nr V/33/11 Rady Gminy Wilczyn z dnia 21 lutego 2011 r. w sprawie uchwalenia Wieloletniej Prognozy Finansowej na lata 2011-2017 Objaśnienia do Wieloletniej Prognozy Finansowej

Bardziej szczegółowo

Problemy w realizacji umów o dofinansowanie SPO WKP 2.3, 2.2.1, Dzia anie 4.4 PO IG

Problemy w realizacji umów o dofinansowanie SPO WKP 2.3, 2.2.1, Dzia anie 4.4 PO IG 2009 Problemy w realizacji umów o dofinansowanie SPO WKP 2.3, 2.2.1, Dzia anie 4.4 PO IG Jakub Moskal Warszawa, 30 czerwca 2009 r. Kontrola realizacji wska ników produktu Wska niki produktu musz zosta

Bardziej szczegółowo

Strategia rozwoju kariery zawodowej - Twój scenariusz (program nagrania).

Strategia rozwoju kariery zawodowej - Twój scenariusz (program nagrania). Strategia rozwoju kariery zawodowej - Twój scenariusz (program nagrania). W momencie gdy jesteś studentem lub świeżym absolwentem to znajdujesz się w dobrym momencie, aby rozpocząć planowanie swojej ścieżki

Bardziej szczegółowo

Politechnika Warszawska Wydział Matematyki i Nauk Informacyjnych ul. Koszykowa 75, 00-662 Warszawa

Politechnika Warszawska Wydział Matematyki i Nauk Informacyjnych ul. Koszykowa 75, 00-662 Warszawa Zamawiający: Wydział Matematyki i Nauk Informacyjnych Politechniki Warszawskiej 00-662 Warszawa, ul. Koszykowa 75 Przedmiot zamówienia: Produkcja Interaktywnej gry matematycznej Nr postępowania: WMiNI-39/44/AM/13

Bardziej szczegółowo

Jak usprawnić procesy controllingowe w Firmie? Jak nadać im szerszy kontekst? Nowe zastosowania naszych rozwiązań na przykładach.

Jak usprawnić procesy controllingowe w Firmie? Jak nadać im szerszy kontekst? Nowe zastosowania naszych rozwiązań na przykładach. Jak usprawnić procesy controllingowe w Firmie? Jak nadać im szerszy kontekst? Nowe zastosowania naszych rozwiązań na przykładach. 1 PROJEKTY KOSZTOWE 2 PROJEKTY PRZYCHODOWE 3 PODZIAŁ PROJEKTÓW ZE WZGLĘDU

Bardziej szczegółowo

drogowego warunkiem uzyskania dofinansowania ze rodków unijnych Wła ciwe przygotowanie i realizacja projektu Biuro JASPERS w Warszawie

drogowego warunkiem uzyskania dofinansowania ze rodków unijnych Wła ciwe przygotowanie i realizacja projektu Biuro JASPERS w Warszawie Wła ciwe przygotowanie i realizacja projektu drogowego warunkiem uzyskania dofinansowania ze rodków unijnych Robert Kietli ski Specjalista ds. Transportu Biuro JASPERS w Warszawie Realizacja projektów

Bardziej szczegółowo

Nowości w module: BI, w wersji 9.0

Nowości w module: BI, w wersji 9.0 Nowości w module: BI, w wersji 9.0 Copyright 1997-2009 COMARCH S.A. Spis treści Wstęp... 3 Obszary analityczne... 3 1. Nowa kostka CRM... 3 2. Zmiany w obszarze: Księgowość... 4 3. Analizy Data Mining...

Bardziej szczegółowo

Edycja geometrii w Solid Edge ST

Edycja geometrii w Solid Edge ST Edycja geometrii w Solid Edge ST Artykuł pt.: " Czym jest Technologia Synchroniczna a czym nie jest?" zwracał kilkukrotnie uwagę na fakt, że nie należy mylić pojęć modelowania bezpośredniego i edycji bezpośredniej.

Bardziej szczegółowo

U M O W A. zwanym w dalszej części umowy Wykonawcą

U M O W A. zwanym w dalszej części umowy Wykonawcą U M O W A zawarta w dniu pomiędzy: Miejskim Centrum Medycznym Śródmieście sp. z o.o. z siedzibą w Łodzi przy ul. Próchnika 11 reprezentowaną przez: zwanym dalej Zamawiający a zwanym w dalszej części umowy

Bardziej szczegółowo

ruchu. Regulując przy tym w sposób szczegółowy aspekty techniczne wykonywania tych prac, zabezpiecza odbiorcom opracowań, powstających w ich wyniku,

ruchu. Regulując przy tym w sposób szczegółowy aspekty techniczne wykonywania tych prac, zabezpiecza odbiorcom opracowań, powstających w ich wyniku, UZASADNIENIE Projekt rozporządzenia jest wypełnieniem delegacji ustawowej zapisanej w art. 19 ust. 1 pkt 11 ustawy z dnia 17 maja 1989 r. Prawo geodezyjne i kartograficzne (Dz. U. z 2010 r. Nr 193, poz.

Bardziej szczegółowo

Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia prostopadłościennego za pomocą arkusza kalkulacyjngo.

Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia prostopadłościennego za pomocą arkusza kalkulacyjngo. Konspekt lekcji Przedmiot: Informatyka Typ szkoły: Gimnazjum Klasa: II Nr programu nauczania: DKW-4014-87/99 Czas trwania zajęć: 90min Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2013/2014

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2013/2014 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Mechaniczny obowiązuje studentów rozpoczynających studia w roku akademickim 2013/2014 Kierunek studiów: Informatyka Stosowana Forma

Bardziej szczegółowo

Opis modułu analitycznego do śledzenia rotacji towaru oraz planowania dostaw dla programu WF-Mag dla Windows.

Opis modułu analitycznego do śledzenia rotacji towaru oraz planowania dostaw dla programu WF-Mag dla Windows. Opis modułu analitycznego do śledzenia rotacji towaru oraz planowania dostaw dla programu WF-Mag dla Windows. Zadaniem modułu jest wspomaganie zarządzania magazynem wg. algorytmu just in time, czyli planowanie

Bardziej szczegółowo

Wsparcie sektora nauki i innowacyjnych przedsiębiorstw w latach 2014-2020 - załoŝenia krajowego programu operacyjnego Marcin Łata Dyrektor Departamentu Zarządzania Programami Konkurencyjności i Innowacyjności

Bardziej szczegółowo

Lublin, 19.07.2013. Zapytanie ofertowe

Lublin, 19.07.2013. Zapytanie ofertowe Lublin, 19.07.2013 Zapytanie ofertowe na wyłonienie wykonawcy/dostawcy 1. Wartości niematerialne i prawne a) System zarządzania magazynem WMS Asseco SAFO, 2. usług informatycznych i technicznych związanych

Bardziej szczegółowo

PROCEDURA OCENY RYZYKA ZAWODOWEGO. w Urzędzie Gminy Mściwojów

PROCEDURA OCENY RYZYKA ZAWODOWEGO. w Urzędzie Gminy Mściwojów I. Postanowienia ogólne 1.Cel PROCEDURA OCENY RYZYKA ZAWODOWEGO w Urzędzie Gminy Mściwojów Przeprowadzenie oceny ryzyka zawodowego ma na celu: Załącznik A Zarządzenia oceny ryzyka zawodowego monitorowanie

Bardziej szczegółowo

Podstawowe pojęcia: Populacja. Populacja skończona zawiera skończoną liczbę jednostek statystycznych

Podstawowe pojęcia: Populacja. Populacja skończona zawiera skończoną liczbę jednostek statystycznych Podstawowe pojęcia: Badanie statystyczne - zespół czynności zmierzających do uzyskania za pomocą metod statystycznych informacji charakteryzujących interesującą nas zbiorowość (populację generalną) Populacja

Bardziej szczegółowo

Nadzór nad systemami zarządzania w transporcie kolejowym

Nadzór nad systemami zarządzania w transporcie kolejowym Nadzór nad systemami zarządzania w transporcie kolejowym W ciągu ostatnich lat Prezes Urzędu Transportu Kolejowego zintensyfikował działania nadzorcze w zakresie bezpieczeństwa ruchu kolejowego w Polsce,

Bardziej szczegółowo

Zmiany w Podstawie programowej przedmiotów informatycznych

Zmiany w Podstawie programowej przedmiotów informatycznych Spotkania Koordynatorów ds. Innowacji w Edukacji, 8 kwietnia 2016, MEN Zmiany w Podstawie programowej przedmiotów informatycznych dr Anna Beata Kwiatkowska Rada ds. Informatyzacji Edukacji Motto dla działań

Bardziej szczegółowo

Korzy ci wynikaj ce ze standaryzacji procesów w organizacjach publicznych a zarz dzanie jako ci

Korzy ci wynikaj ce ze standaryzacji procesów w organizacjach publicznych a zarz dzanie jako ci Roman Batko Korzy ci wynikaj ce ze standaryzacji procesów w organizacjach publicznych a zarz dzanie jako ci Uniwersytet Jagiello ski wypracowanie i upowszechnienie najbardziej skutecznej i efektywnej dobrej

Bardziej szczegółowo

Program Operacyjny Innowacyjna Gospodarka

Program Operacyjny Innowacyjna Gospodarka Program Operacyjny Innowacyjna Gospodarka Budowa elektronicznej administracji w ramach POIG Konferencja podsumowuj realizacj projektu pn. E-administracja warunkiem rozwoju Polski. Wzrost konkurencyjno

Bardziej szczegółowo

KONCEPCJA NAUCZANIA PRZEDMIOTU RACHUNKOWOŚĆ SKOMPUTERYZOWANA" NA WYDZIALE ZARZĄDZANIA UNIWERSYTETU GDAŃSKIEGO

KONCEPCJA NAUCZANIA PRZEDMIOTU RACHUNKOWOŚĆ SKOMPUTERYZOWANA NA WYDZIALE ZARZĄDZANIA UNIWERSYTETU GDAŃSKIEGO KONCEPCJA NAUCZANIA PRZEDMIOTU RACHUNKOWOŚĆ SKOMPUTERYZOWANA" NA WYDZIALE ZARZĄDZANIA UNIWERSYTETU GDAŃSKIEGO Grzegorz Bucior Uniwersytet Gdański, Katedra Rachunkowości 1. Wprowadzenie Rachunkowość przedsiębiorstwa

Bardziej szczegółowo

WYDZIAŁ MATEMATYCZNO PRZYRODNICZY. SZKOŁA NAUK

WYDZIAŁ MATEMATYCZNO PRZYRODNICZY. SZKOŁA NAUK WYDZIAŁ MAEMAYCZNO PRZYRODNICZY. SZKOŁA NAUK 1. Dokumentacja dotycząca opisu efektów dla programu. Studia podyplomowe z informatyki i technologii informacyjnych dla nauczycieli Nazwa kierunku studiów i

Bardziej szczegółowo

AUTOR MAGDALENA LACH

AUTOR MAGDALENA LACH PRZEMYSŁY KREATYWNE W POLSCE ANALIZA LICZEBNOŚCI AUTOR MAGDALENA LACH WARSZAWA, 2014 Wstęp Celem raportu jest przedstawienie zmian liczby podmiotów sektora kreatywnego na obszarze Polski w latach 2009

Bardziej szczegółowo

KRYTERIA DOSTĘPU. Działanie 2.1,,E-usługi dla Mazowsza (typ projektu: e-administracja, e-zdrowie)

KRYTERIA DOSTĘPU. Działanie 2.1,,E-usługi dla Mazowsza (typ projektu: e-administracja, e-zdrowie) Załącznik nr 1 do Uchwały nr / II / 2015 Komitetu Monitorującego Regionalny Program Operacyjny Województwa Mazowieckiego na lata 201-2020 KRYTERIA DOSTĘPU Działanie 2.1,,E-usługi dla Mazowsza (typ projektu:

Bardziej szczegółowo

Załącznik Nr 2 do Uchwały Nr 161/2012 Rady Miejskiej w Jastrowiu z dnia 20 grudnia 2012

Załącznik Nr 2 do Uchwały Nr 161/2012 Rady Miejskiej w Jastrowiu z dnia 20 grudnia 2012 Załącznik Nr 2 do Uchwały Nr 161/2012 Rady Miejskiej w Jastrowiu z dnia 20 grudnia 2012 Objaśnienia przyjętych wartości do Wieloletniej Prognozy Finansowej Gminy i Miasta Jastrowie na lata 2013-2028 1.

Bardziej szczegółowo

Zaproszenie. Ocena efektywności projektów inwestycyjnych. Modelowanie procesów EFI. Jerzy T. Skrzypek Kraków 2013 Jerzy T.

Zaproszenie. Ocena efektywności projektów inwestycyjnych. Modelowanie procesów EFI. Jerzy T. Skrzypek Kraków 2013 Jerzy T. 1 1 Ocena efektywności projektów inwestycyjnych Ocena efektywności projektów inwestycyjnych Jerzy T. Skrzypek Kraków 2013 Jerzy T. Skrzypek MODEL NAJLEPSZYCH PRAKTYK SYMULACJE KOMPUTEROWE Kraków 2011 Zaproszenie

Bardziej szczegółowo

Warszawa, 24.05.2012 r.

Warszawa, 24.05.2012 r. Relacje administracji rz dowej z otoczeniem na przyk adzie dwóch projektów realizowanych przez Departament S by Cywilnej KPRM Warszawa, 24.05.2012 r. Zakres projektów realizowanych przez DSC KPRM W latach

Bardziej szczegółowo

Strona Wersja zatwierdzona przez BŚ Wersja nowa 26 Dodano następujący pkt.: Usunięto zapis pokazany w sąsiedniej kolumnie

Strona Wersja zatwierdzona przez BŚ Wersja nowa 26 Dodano następujący pkt.: Usunięto zapis pokazany w sąsiedniej kolumnie Zmiany w Podręczniku Realizacji PIS (wersja z dnia 25 sierpnia 2008) (W odniesieniu do wersji z 11 lipca 2008 zatwierdzonej warunkowo przez Bank Światowy w dniu 21 lipca 2008) Strona Wersja zatwierdzona

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW

Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Statystyczna analiza danych w programie STATISTICA ( 4 (wykład Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Regresja prosta liniowa Regresja prosta jest

Bardziej szczegółowo

RZECZPOSPOLITA POLSKA. Prezydent Miasta na Prawach Powiatu Zarząd Powiatu. wszystkie

RZECZPOSPOLITA POLSKA. Prezydent Miasta na Prawach Powiatu Zarząd Powiatu. wszystkie RZECZPOSPOLITA POLSKA Warszawa, dnia 11 lutego 2011 r. MINISTER FINANSÓW ST4-4820/109/2011 Prezydent Miasta na Prawach Powiatu Zarząd Powiatu wszystkie Zgodnie z art. 33 ust. 1 pkt 2 ustawy z dnia 13 listopada

Bardziej szczegółowo

Efektywna strategia sprzedaży

Efektywna strategia sprzedaży Efektywna strategia sprzedaży F irmy wciąż poszukują metod budowania przewagi rynkowej. Jednym z kluczowych obszarów takiej przewagi jest efektywne zarządzanie siłami sprzedaży. Jak pokazują wyniki badania

Bardziej szczegółowo

HTA (Health Technology Assessment)

HTA (Health Technology Assessment) Krzysztof Łanda 1 z 5 HTA (Health Technology Assessment) Ocena leków stosowanych w okre lonych wskazaniach podlega tym samym generalnym regu om, co inne technologie terapeutyczne, jednak specyfika interwencji

Bardziej szczegółowo

Excel w logistyce - czyli jak skrócić czas przygotowywania danych i podnieść efektywność analiz logistycznych

Excel w logistyce - czyli jak skrócić czas przygotowywania danych i podnieść efektywność analiz logistycznych Excel w logistyce - czyli jak skrócić czas przygotowywania danych i podnieść efektywność analiz logistycznych Terminy szkolenia 25-26 sierpień 2016r., Gdańsk - Mercure Gdańsk Posejdon**** 20-21 październik

Bardziej szczegółowo

Sprawozdanie z II warsztatów

Sprawozdanie z II warsztatów Sprawozdanie z II warsztatów 28 lutego 2015 roku odbyły się drugie warsztaty w ramach projektu realizowanego przez Stowarzyszenie Warnija w partnerstwie z Gminą Olsztyn, Forum Rozwoju Olsztyna OLCAMP,

Bardziej szczegółowo

ZARZĄDZENIE NR 11/2012 Wójta Gminy Rychliki. z dnia 30 stycznia 2012 r. w sprawie wdrożenia procedur zarządzania ryzykiem w Urzędzie Gminy Rychliki

ZARZĄDZENIE NR 11/2012 Wójta Gminy Rychliki. z dnia 30 stycznia 2012 r. w sprawie wdrożenia procedur zarządzania ryzykiem w Urzędzie Gminy Rychliki ZARZĄDZENIE NR 11/2012 Wójta Gminy Rychliki z dnia 30 stycznia 2012 r. w sprawie wdrożenia procedur zarządzania ryzykiem w Urzędzie Gminy Rychliki Na podstawie art. 69 ust. 1 pkt 3 w związku z art. 68

Bardziej szczegółowo

Metody wyceny zasobów, źródła informacji o kosztach jednostkowych

Metody wyceny zasobów, źródła informacji o kosztach jednostkowych Metody wyceny zasobów, źródła informacji o kosztach jednostkowych by Antoni Jeżowski, 2013 W celu kalkulacji kosztów realizacji zadania (poszczególnych działań i czynności) konieczne jest przeprowadzenie

Bardziej szczegółowo

Temat badania: Badanie systemu monitorowania realizacji P FIO 2014-2020

Temat badania: Badanie systemu monitorowania realizacji P FIO 2014-2020 Temat badania: Badanie systemu monitorowania realizacji P FIO 2014-2020 Charakterystyka przedmiotu badania W dniu 27 listopada 2013 r. Rada Ministrów przyjęła Program Fundusz Inicjatyw Obywatelskich na

Bardziej szczegółowo

7. Symulacje komputerowe z wykorzystaniem opracowanych modeli

7. Symulacje komputerowe z wykorzystaniem opracowanych modeli Opracowane w ramach wykonanych bada modele sieci neuronowych pozwalaj na przeprowadzanie symulacji komputerowych, w tym dotycz cych m.in.: zmian twardo ci stali szybkotn cych w zale no ci od zmieniaj cej

Bardziej szczegółowo

REGULAMIN KONTROLI ZARZĄDCZEJ W MIEJSKO-GMINNYM OŚRODKU POMOCY SPOŁECZNEJ W TOLKMICKU. Postanowienia ogólne

REGULAMIN KONTROLI ZARZĄDCZEJ W MIEJSKO-GMINNYM OŚRODKU POMOCY SPOŁECZNEJ W TOLKMICKU. Postanowienia ogólne Załącznik Nr 1 do Zarządzenie Nr4/2011 Kierownika Miejsko-Gminnego Ośrodka Pomocy Społecznej w Tolkmicku z dnia 20 maja 2011r. REGULAMIN KONTROLI ZARZĄDCZEJ W MIEJSKO-GMINNYM OŚRODKU POMOCY SPOŁECZNEJ

Bardziej szczegółowo

Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel

Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel według przewidywań internetowego magazynu ZDNET News z 8 lutego 2001 roku eksploracja danych (ang. data mining ) będzie jednym z najbardziej rewolucyjnych osiągnięć następnej dekady. Rzeczywiście MIT Technology

Bardziej szczegółowo

ZASADY PROWADZENIA CERTYFIKACJI FUNDUSZY EUROPEJSKICH I PRACOWNIKÓW PUNKTÓW INFORMACYJNYCH

ZASADY PROWADZENIA CERTYFIKACJI FUNDUSZY EUROPEJSKICH I PRACOWNIKÓW PUNKTÓW INFORMACYJNYCH Załącznik nr 3 do Aneksu ZASADY PROWADZENIA CERTYFIKACJI PUNKTÓW INFORMACYJNYCH FUNDUSZY EUROPEJSKICH I PRACOWNIKÓW PUNKTÓW INFORMACYJNYCH 1 ZASADY PROWADZENIA CERTYFIKACJI 1. Certyfikacja jest przeprowadzana

Bardziej szczegółowo

Tomice, dnia 15 lutego 2012 r.

Tomice, dnia 15 lutego 2012 r. WSPÓLNA METODA OCENY CAF 2006 W URZĘDZIE GMINY TOMICE PLAN DOSKONALENIA Sporządził: Ryszard Góralczyk Koordynator CAF Cel dokumentu: Przekazanie pracownikom i klientom Urzędu informacji o przyjętym planie

Bardziej szczegółowo

URZĄD OCHRONY KONKURENCJI I KONSUMENTÓW

URZĄD OCHRONY KONKURENCJI I KONSUMENTÓW URZĄD OCHRONY KONKURENCJI I KONSUMENTÓW Wyniki monitorowania pomocy publicznej udzielonej spółkom motoryzacyjnym prowadzącym działalność gospodarczą na terenie specjalnych stref ekonomicznych (stan na

Bardziej szczegółowo

Szkolenie Regresja logistyczna

Szkolenie Regresja logistyczna Szkolenie Regresja logistyczna program i cennik Łukasz Deryło Analizy statystyczne, szkolenia www.statystyka.c0.pl Szkolenie Regresja logistyczna Co to jest regresja logistyczna? Regresja logistyczna pozwala

Bardziej szczegółowo

Załącznik nr 5 - Plan komunikacji

Załącznik nr 5 - Plan komunikacji 9 Plan działania Komunikacja w procesie tworzenia i wdrażania lokalnej strategii rozwoju jest warunkiem nieodzownym w osiąganiu założonych efektów. Podstawowym warunkiem w planowaniu skutecznej jest jej

Bardziej szczegółowo

Prezentacja dotycząca sytuacji kobiet w regionie Kalabria (Włochy)

Prezentacja dotycząca sytuacji kobiet w regionie Kalabria (Włochy) Prezentacja dotycząca sytuacji kobiet w regionie Kalabria (Włochy) Położone w głębi lądu obszary Kalabrii znacznie się wyludniają. Zjawisko to dotyczy całego regionu. Do lat 50. XX wieku przyrost naturalny

Bardziej szczegółowo

Zarządzanie projektami IT

Zarządzanie projektami IT Zarządzanie projektami IT Informacje o usłudze Numer usługi 2016/04/08/7405/7700 Cena netto 5 400,00 zł Cena brutto 5 400,00 zł Cena netto za godzinę 28,72 zł Cena brutto za godzinę 28,72 Możliwe współfinansowanie

Bardziej szczegółowo

Opis przyjętych wartości do wieloletniej prognozy finansowej Gminy Udanin na lata 2013-2025

Opis przyjętych wartości do wieloletniej prognozy finansowej Gminy Udanin na lata 2013-2025 Załącznik Nr 3 do uchwały w sprawie przyjęcia wieloletniej prognozy finansowej Gminy Udanin Opis przyjętych wartości do wieloletniej prognozy finansowej Gminy Udanin na lata 2013-2025 1. Założenia wstępne

Bardziej szczegółowo

Objaśnienia wartości, przyjętych do Projektu Wieloletniej Prognozy Finansowej Gminy Golina na lata 2012-2015

Objaśnienia wartości, przyjętych do Projektu Wieloletniej Prognozy Finansowej Gminy Golina na lata 2012-2015 Załącznik Nr 2 do Uchwały Nr XIX/75/2011 Rady Miejskiej w Golinie z dnia 29 grudnia 2011 r. Objaśnienia wartości, przyjętych do Projektu Wieloletniej Prognozy Finansowej Gminy Golina na lata 2012-2015

Bardziej szczegółowo

Szczegółowy Opis Przedmiotu Zamówienia

Szczegółowy Opis Przedmiotu Zamówienia Załącznik nr 4 do SIWZ BZP.243.1.2012.KP Szczegółowy Opis Przedmiotu Zamówienia Usługa polegająca na przygotowaniu i przeprowadzeniu badania ewaluacyjnego projektu pn. Rozwój potencjału i oferty edukacyjnej

Bardziej szczegółowo

PROGRAM ZAPEWNIENIA I POPRAWY JAKOŚCI AUDYTU WEWNĘTRZNEGO

PROGRAM ZAPEWNIENIA I POPRAWY JAKOŚCI AUDYTU WEWNĘTRZNEGO Załącznik Nr 3 do Zarządzenia Nr 59/2012 Starosty Lipnowskiego z dnia 31 grudnia 2012 r. PROGRAM ZAPEWNIENIA I POPRAWY JAKOŚCI AUDYTU WEWNĘTRZNEGO PROWADZONEGO W STAROSTWIE POWIATOWYM W LIPNIE I JEDNOSTKACH

Bardziej szczegółowo

RAPORT Z EWALUACJI WEWNĘTRZNEJ. w Poradni Psychologiczno-Pedagogicznej w Bełżycach. w roku szkolnym 2013/2014

RAPORT Z EWALUACJI WEWNĘTRZNEJ. w Poradni Psychologiczno-Pedagogicznej w Bełżycach. w roku szkolnym 2013/2014 RAPORT Z EWALUACJI WEWNĘTRZNEJ w Poradni Psychologiczno-Pedagogicznej w Bełżycach w roku szkolnym 2013/2014 WYMAGANIE PLACÓWKA REALIZUJE KONCEPCJĘ PRACY Bełżyce 2014 SPIS TREŚCI: I Cele i zakres ewaluacji

Bardziej szczegółowo

CASE CPI może być wczesnym wskaźnikiem tendencji zmian cen w gospodarce

CASE CPI może być wczesnym wskaźnikiem tendencji zmian cen w gospodarce 23.11.2015 CASE CPI może być wczesnym wskaźnikiem tendencji zmian cen w gospodarce Autor: Wieczorna Image not found http://wieczorna.pl/uploads/photos/middle_ (Źródło: http://www.case-research.eu/en/node/59021)

Bardziej szczegółowo

PROJEKTOWANIE PROCESÓW PRODUKCYJNYCH

PROJEKTOWANIE PROCESÓW PRODUKCYJNYCH PROJEKTOWANIE PROCESÓW PRODUKCYJNYCH Do celów projektowania naleŝy ustalić model procesu wytwórczego: Zakłócenia i warunki otoczenia Wpływ na otoczenie WEJŚCIE materiały i półprodukty wyposaŝenie produkcyjne

Bardziej szczegółowo

Zadania powtórzeniowe I. Ile wynosi eksport netto w gospodarce, w której oszczędności równają się inwestycjom, a deficyt budżetowy wynosi 300?

Zadania powtórzeniowe I. Ile wynosi eksport netto w gospodarce, w której oszczędności równają się inwestycjom, a deficyt budżetowy wynosi 300? Zadania powtórzeniowe I Adam Narkiewicz Makroekonomia I Zadanie 1 (5 punktów) Ile wynosi eksport netto w gospodarce, w której oszczędności równają się inwestycjom, a deficyt budżetowy wynosi 300? Przypominamy

Bardziej szczegółowo

Nazwa kierunku Gospodarka przestrzenna

Nazwa kierunku Gospodarka przestrzenna Nazwa kierunku Gospodarka przestrzenna Tryb studiów stacjonarne Profil studiów ogólnoakademicki Wydział Wydział Nauk o Ziemi Opis kierunku Studia drugiego stopnia na kierunku Gospodarka przestrzenna trwają

Bardziej szczegółowo

Gospodarowanie mieniem Województwa

Gospodarowanie mieniem Województwa Projekt pn. Budowa zintegrowanego systemu informatycznego do zarządzania nieruchomościami Województwa Małopolskiego i wojewódzkich jednostek organizacyjnych 1/13 Gospodarowanie mieniem Województwa Zgodnie

Bardziej szczegółowo

Usługa Powszechna. Janusz Górski Michał Piątkowski Polska Telefonia Cyfrowa

Usługa Powszechna. Janusz Górski Michał Piątkowski Polska Telefonia Cyfrowa Usługa Powszechna Janusz Górski Michał Piątkowski Polska Telefonia Cyfrowa Konferencja PIIT: Przyszłość Usługi Powszechnej i mobilnego Internetu w technologiach UMTS/LTE 9 czerwca 2010 roku, Hotel Mercure

Bardziej szczegółowo

Program zdrowotny. Programy profilaktyczne w jednostkach samorz du terytorialnego. Programy zdrowotne a jednostki samorz du terytorialnego

Program zdrowotny. Programy profilaktyczne w jednostkach samorz du terytorialnego. Programy zdrowotne a jednostki samorz du terytorialnego Mirosław Moskalewicz 1 z 7 Programy profilaktyczne w jednostkach samorz du terytorialnego Specjalista Zdrowia Publicznego i Medycyny Spo ecznej Specjalista Po o nictwa i Ginekologii Lek. Med. Miros aw

Bardziej szczegółowo

Zobacz to na własne oczy. Przyszłość już tu jest dzięki rozwiązaniu Cisco TelePresence.

Zobacz to na własne oczy. Przyszłość już tu jest dzięki rozwiązaniu Cisco TelePresence. Informacje dla kadry zarządzającej Zobacz to na własne oczy. Przyszłość już tu jest dzięki rozwiązaniu Cisco TelePresence. 2010 Cisco i/lub firmy powiązane. Wszelkie prawa zastrzeżone. Ten dokument zawiera

Bardziej szczegółowo

Plan prezentacji. I. Pierwszy rok RADPOL S.A. na GPW. II. Realizacja celów Emisji. III.Wyniki finansowe. IV. Walne Zgromadzenie Akcjonariuszy

Plan prezentacji. I. Pierwszy rok RADPOL S.A. na GPW. II. Realizacja celów Emisji. III.Wyniki finansowe. IV. Walne Zgromadzenie Akcjonariuszy Plan prezentacji I. Pierwszy rok RADPOL S.A. na GPW II. Realizacja celów Emisji III.Wyniki finansowe IV. Walne Zgromadzenie Akcjonariuszy V. Cele długookresowe I. Pierwszy rok RADPOL S.A. na GPW Kurs akcji

Bardziej szczegółowo

Wprowadzenie do zarządzania procesami biznesowymi czym są procesy biznesowe: Part 1

Wprowadzenie do zarządzania procesami biznesowymi czym są procesy biznesowe: Part 1 Wprowadzenie do zarządzania procesami biznesowymi czym są procesy biznesowe: Part 1 Listopad 2012 Organizacja funkcjonalna Dotychczas na organizację patrzono z perspektywy realizowanych funkcji. Zarząd

Bardziej szczegółowo

REGULAMIN BIURA KARIER EUROPEJSKIEJ WYŻSZEJ SZKOŁY PRAWA I ADMINISTRACJI

REGULAMIN BIURA KARIER EUROPEJSKIEJ WYŻSZEJ SZKOŁY PRAWA I ADMINISTRACJI REGULAMIN BIURA KARIER EUROPEJSKIEJ WYŻSZEJ SZKOŁY PRAWA I ADMINISTRACJI I. POSTANOWIENIA OGÓLNE 1 1. Biuro Karier Europejskiej Wyższej Szkoły Prawa i Administracji w Warszawie, zwane dalej BK EWSPA to

Bardziej szczegółowo

KOMISJA WSPÓLNOT EUROPEJSKICH, uwzględniając Traktat ustanawiający Wspólnotę Europejską, ROZDZIAŁ 1

KOMISJA WSPÓLNOT EUROPEJSKICH, uwzględniając Traktat ustanawiający Wspólnotę Europejską, ROZDZIAŁ 1 ROZPORZĄDZENIE KOMISJI (WE) NR 1217/2003 z dnia 4 lipca 2003 r. ustanawiające powszechne specyfikacje dla krajowych programów kontroli jakości w zakresie ochrony lotnictwa cywilnego (Tekst mający znaczenie

Bardziej szczegółowo

Wsparcie w realizacji projektów. Podział projektów. Potrzeby, a rodzaje programów

Wsparcie w realizacji projektów. Podział projektów. Potrzeby, a rodzaje programów Wsparcie w realizacji projektów Narzędzia informatyczne wspomagające zarządzanie projektami mgr Marcin Darecki mgr Magdalena Marczewska TiMO(Zakład Teorii i Metod Organizacji) Wydział Zarządzania Uniwersytetu

Bardziej szczegółowo

OPIS PRZEDMIOTU ZAMÓWIENIA DO ZAPYTANIA KE1/POIG 8.2/13

OPIS PRZEDMIOTU ZAMÓWIENIA DO ZAPYTANIA KE1/POIG 8.2/13 Zapytanie ofertowe - Działanie PO IG 8.2 Warszawa, dnia 13.12.2013 r. OPIS PRZEDMIOTU ZAMÓWIENIA DO ZAPYTANIA KE1/POIG 8.2/13 ISTOTNE INFORMACJE O PROJEKCIE: Celem projektu "Wdrożenie zintegrowanego systemu

Bardziej szczegółowo

Procedura prowadzenia ewaluacji realizacji polityk i programów publicznych

Procedura prowadzenia ewaluacji realizacji polityk i programów publicznych 1 Procedura prowadzenia ewaluacji realizacji polityk i programów publicznych Opracowanie w ramach projektu Potencjał Działanie Rozwój: nowy wymiar współpracy Miasta Płocka i płockich organizacji pozarządowych.

Bardziej szczegółowo

2) Drugim Roku Programu rozumie się przez to okres od 1 stycznia 2017 roku do 31 grudnia 2017 roku.

2) Drugim Roku Programu rozumie się przez to okres od 1 stycznia 2017 roku do 31 grudnia 2017 roku. REGULAMIN PROGRAMU OPCJI MENEDŻERSKICH W SPÓŁCE POD FIRMĄ 4FUN MEDIA SPÓŁKA AKCYJNA Z SIEDZIBĄ W WARSZAWIE W LATACH 2016-2018 1. Ilekroć w niniejszym Regulaminie mowa o: 1) Akcjach rozumie się przez to

Bardziej szczegółowo

OPIS PRZEDMIOTU ZAMÓWIENIA

OPIS PRZEDMIOTU ZAMÓWIENIA Załącznik nr 1 OPIS PRZEDMIOTU ZAMÓWIENIA I. Informacje ogólne Przedmiotem postępowania jest wdrożenie platformy komunikacyjnej poprzez zapewnienie możliwości dwukierunkowej wymiany danych dotyczących

Bardziej szczegółowo

Krytyczne czynniki sukcesu w zarządzaniu projektami

Krytyczne czynniki sukcesu w zarządzaniu projektami Seweryn SPAŁEK Krytyczne czynniki sukcesu w zarządzaniu projektami MONOGRAFIA Wydawnictwo Politechniki Śląskiej Gliwice 2004 SPIS TREŚCI WPROWADZENIE 5 1. ZARZĄDZANIE PROJEKTAMI W ORGANIZACJI 13 1.1. Zarządzanie

Bardziej szczegółowo

ZAPYTANIE OFERTOWE z dnia 03.12.2015r

ZAPYTANIE OFERTOWE z dnia 03.12.2015r ZAPYTANIE OFERTOWE z dnia 03.12.2015r 1. ZAMAWIAJĄCY HYDROPRESS Wojciech Górzny ul. Rawska 19B, 82-300 Elbląg 2. PRZEDMIOT ZAMÓWIENIA Przedmiotem Zamówienia jest przeprowadzenie usługi indywidualnego audytu

Bardziej szczegółowo

IDENTYFIKACJA RYZYKA PROJEKTU INFORMATYCZNEGO

IDENTYFIKACJA RYZYKA PROJEKTU INFORMATYCZNEGO IDENTYFIKACJA RYZYKA PROJEKTU INFORMATYCZNEGO JOANNA BRYNDZA Akademia Ekonomiczna we Wrocławiu Streszczenie Ryzyko jest istotnym elementem ka dego projektu. W artykule omówione s poszczególne etapy procesu

Bardziej szczegółowo

Statut Audytu Wewnętrznego Gminy Stalowa Wola

Statut Audytu Wewnętrznego Gminy Stalowa Wola Załącznik nr 1 do Zarządzenia Nr II/818/10 Prezydenta Miasta Stalowej Woli z dnia 26 kwietnia 2010r. STATUT AUDYTU WEWNĘTRZNEGO GMINY STALOWA WOLA I. Postanowienia ogólne 1 1. Statut Audytu Wewnętrznego

Bardziej szczegółowo

Ewidencjonowanie nieruchomości. W Sejmie oceniają działania starostów i prezydentów

Ewidencjonowanie nieruchomości. W Sejmie oceniają działania starostów i prezydentów Posłowie sejmowej Komisji do Spraw Kontroli Państwowej wysłuchali NIK-owców, którzy kontrolowali proces aktualizacji opłat rocznych z tytułu użytkowania wieczystego nieruchomości skarbu państwa. Podstawą

Bardziej szczegółowo

ROZWIĄZANIA PRZYKŁADOWYCH ZADAŃ. KORELACJA zmiennych jakościowych (niemierzalnych)

ROZWIĄZANIA PRZYKŁADOWYCH ZADAŃ. KORELACJA zmiennych jakościowych (niemierzalnych) ROZWIĄZANIA PRZYKŁADOWYCH ZADAŃ KORELACJA zmiennych jakościowych (niemierzalnych) Zadanie 1 Zapytano 180 osób (w tym 120 mężczyzn) o to czy rozpoczynają dzień od wypicia kawy czy też może preferują herbatę.

Bardziej szczegółowo

Zarządzanie Zasobami by CTI. Instrukcja

Zarządzanie Zasobami by CTI. Instrukcja Zarządzanie Zasobami by CTI Instrukcja Spis treści 1. Opis programu... 3 2. Konfiguracja... 4 3. Okno główne programu... 5 3.1. Narzędzia do zarządzania zasobami... 5 3.2. Oś czasu... 7 3.3. Wykres Gantta...

Bardziej szczegółowo

Warunki Oferty PrOmOcyjnej usługi z ulgą

Warunki Oferty PrOmOcyjnej usługi z ulgą Warunki Oferty PrOmOcyjnej usługi z ulgą 1. 1. Opis Oferty 1.1. Oferta Usługi z ulgą (dalej Oferta ), dostępna będzie w okresie od 16.12.2015 r. do odwołania, jednak nie dłużej niż do dnia 31.03.2016 r.

Bardziej szczegółowo

Dobre praktyki w zakresie zarządzania ładem architektury korporacyjnej

Dobre praktyki w zakresie zarządzania ładem architektury korporacyjnej Dobre praktyki w zakresie zarządzania ładem architektury korporacyjnej Dr hab. Andrzej Sobczak, prof. SGH, Kierownik Zakładu Systemów Informacyjnych, Katedra Informatyki Gospodarczej SGH Gospodarczej SGH

Bardziej szczegółowo

UCHWAŁA Nr VI/17/2015 Rady Gminy w Jedlińsku z dnia 27 marca 2015 roku

UCHWAŁA Nr VI/17/2015 Rady Gminy w Jedlińsku z dnia 27 marca 2015 roku UCHWAŁA Nr VI/17/2015 Rady Gminy w Jedlińsku z dnia 27 marca 2015 roku w sprawie przyjęcia Gminnego Programu Przeciwdziałaniu Narkomanii na lata 2015-2018 Na podstawie art. 10 ust 2 i 3 ustawy z dnia 29

Bardziej szczegółowo

4.3. Struktura bazy noclegowej oraz jej wykorzystanie w Bieszczadach

4.3. Struktura bazy noclegowej oraz jej wykorzystanie w Bieszczadach 4.3. Struktura bazy noclegowej oraz jej wykorzystanie w Bieszczadach Baza noclegowa stanowi podstawową bazę turystyczną, warunkującą w zasadzie ruch turystyczny. Dlatego projektując nowy szlak należy ją

Bardziej szczegółowo

Karta audytu wewnętrznego w Starostwie Powiatowym w Kielcach

Karta audytu wewnętrznego w Starostwie Powiatowym w Kielcach Karta audytu wewnętrznego w Starostwie Powiatowym w Kielcach Załącznik nr 1 do Zarządzenia Nr 41/10 Starosty Kieleckiego z dnia 24 maja 2010 w sprawie wprowadzenia Karty audytu wewnętrznego oraz Procedur

Bardziej szczegółowo

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Wyniki badań ankietowych przeprowadzonych przez Departament Pielęgniarek i Położnych wśród absolwentów studiów pomostowych, którzy zakończyli udział w projekcie systemowym pn. Kształcenie zawodowe pielęgniarek

Bardziej szczegółowo

UCHWAŁA NR IX / 72 / 15 RADY GMINY CHEŁMŻA. z dnia 26 sierpnia 2015 r.

UCHWAŁA NR IX / 72 / 15 RADY GMINY CHEŁMŻA. z dnia 26 sierpnia 2015 r. UCHWAŁA NR IX / 72 / 15 RADY GMINY CHEŁMŻA z dnia 26 sierpnia 2015 r. w sprawie przyjęcia Gminnego programu stypendialnego dla studentów zamieszkałych na terenie Gminy Chełmża. Na podstawie art. 18 ust.

Bardziej szczegółowo

System wielokryterialnej optymalizacji systemu traderskiego na rynku kontraktów terminowych

System wielokryterialnej optymalizacji systemu traderskiego na rynku kontraktów terminowych System wielokryterialnej optymalizacji systemu traderskiego na rynku kontraktów terminowych Bartłomiej Wietrak 1 1 Wydział Inżynierii Mechanicznej i Informatyki Kierunek informatyka, Rok IV Streszczenie

Bardziej szczegółowo

Procedura weryfikacji badania czasu przebiegu 1 paczek pocztowych

Procedura weryfikacji badania czasu przebiegu 1 paczek pocztowych Procedura weryfikacji badania czasu przebiegu 1 paczek pocztowych Warszawa 2012 (nowelizacja 2014) 1 zmiana nazwy zgodnie z terminologią zawartą w ustawie Prawo pocztowe Jednostka zlecająca: Urząd Komunikacji

Bardziej szczegółowo

Wpływ zmian klimatu na sektor rolnictwa

Wpływ zmian klimatu na sektor rolnictwa Wpływ zmian klimatu na sektor rolnictwa Elżbieta Budka I posiedzenie Grupy Tematycznej ds. Zrównoważonego Rozwoju Obszarów Wiejskich Ministerstwo Rolnictwa i Rozwoju Wsi Warszawa, 30 listopada 2010 r.

Bardziej szczegółowo

Konferencja pt.: "Zielona administracja za sprawą EMAS Ministerstwo Środowiska, 25 lutego 2015 r. e-remasjako narzędzie zielonej administracji

Konferencja pt.: Zielona administracja za sprawą EMAS Ministerstwo Środowiska, 25 lutego 2015 r. e-remasjako narzędzie zielonej administracji Konferencja pt.: "Zielona administracja za sprawą EMAS Ministerstwo Środowiska, 25 lutego 2015 r. e-remasjako narzędzie zielonej administracji 1 Wdrażanie zrównoważonego rozwoju wymaga integracji procesu

Bardziej szczegółowo

Portretowanie zdolności i ich rozwój. Projekt współfinansowany z Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Portretowanie zdolności i ich rozwój. Projekt współfinansowany z Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Portretowanie zdolności i ich rozwój Projekt współfinansowany z Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Jeśli chcesz nauczyć Jasia matematyki, to musisz znać matematykę i Jasia ks.

Bardziej szczegółowo

w sprawie przekazywania środków z Funduszu Zajęć Sportowych dla Uczniów

w sprawie przekazywania środków z Funduszu Zajęć Sportowych dla Uczniów Projekt z dnia 9 grudnia 2015 r. R O Z P O R Z Ą D Z E N I E M I N I S T R A S P O R T U I T U R Y S T Y K I 1) z dnia w sprawie przekazywania środków z Funduszu Zajęć Sportowych dla Uczniów Na podstawie

Bardziej szczegółowo

SubregionalnyProgram Rozwoju do roku 2020. Anna Mlost Zastępca Dyrektora Departamentu Polityki Regionalnej UMWM

SubregionalnyProgram Rozwoju do roku 2020. Anna Mlost Zastępca Dyrektora Departamentu Polityki Regionalnej UMWM SubregionalnyProgram Rozwoju do roku 2020 Anna Mlost Zastępca Dyrektora Departamentu Polityki Regionalnej UMWM SPR wprowadzenie Subregionalny Program Rozwoju do roku 2020: Jest instrumentem służącym wdrożeniu

Bardziej szczegółowo

Zapytanie o propozycję nr 42/CP/2013/TZ

Zapytanie o propozycję nr 42/CP/2013/TZ Skawina, dnia 20.03.2013 r. Zapytanie o propozycję nr 42/CP/2013/TZ Prowadzone wg Procedury Udzielania Zamówień w Podmiotach Grupy CEZ w Polsce I. OGŁASZAJĄCY 1. Pełna nazwa zamawiającego: CEZ Polska Sp.

Bardziej szczegółowo

Projektowanie bazy danych

Projektowanie bazy danych Projektowanie bazy danych Pierwszą fazą tworzenia projektu bazy danych jest postawienie definicji celu, założeo wstępnych i określenie podstawowych funkcji aplikacji. Każda baza danych jest projektowana

Bardziej szczegółowo

Infrastruktura krytyczna dużych aglomeracji miejskich wyznaczanie kierunków i diagnozowanie ograniczeńjako wynik szacowania ryzyka

Infrastruktura krytyczna dużych aglomeracji miejskich wyznaczanie kierunków i diagnozowanie ograniczeńjako wynik szacowania ryzyka Infrastruktura krytyczna dużych aglomeracji miejskich wyznaczanie kierunków i diagnozowanie ograniczeńjako wynik szacowania ryzyka mł. insp. dr hab. Agata Tyburska Zakład Zarządzania Kryzysowego Wyższa

Bardziej szczegółowo

OSZACOWANIE WARTOŚCI ZAMÓWIENIA z dnia... 2004 roku Dz. U. z dnia 12 marca 2004 r. Nr 40 poz.356

OSZACOWANIE WARTOŚCI ZAMÓWIENIA z dnia... 2004 roku Dz. U. z dnia 12 marca 2004 r. Nr 40 poz.356 OSZACOWANIE WARTOŚCI ZAMÓWIENIA z dnia... 2004 roku Dz. U. z dnia 12 marca 2004 r. Nr 40 poz.356 w celu wszczęcia postępowania i zawarcia umowy opłacanej ze środków publicznych 1. Przedmiot zamówienia:

Bardziej szczegółowo