Krystalizacja i witryfikacja o dwóch stronach tego samego medalu
|
|
- Antonina Skrzypczak
- 6 lat temu
- Przeglądów:
Transkrypt
1 4 Foton 143, Zima 2018 Krystalizacja i witryfikacja o dwóch stronach tego samego medalu Karolina Adrjanowicz 1 Zakład Biofizyki i Fizyki Molekularnej Instytut Fizyki, Uniwersytet Śląski w Katowicach Gaz, ciecz i ciało stałe to tradycyjny podział stanów skupienia materii, który znamy ze szkoły. Gdy myślimy o tym pierwszym od razu nasuwa nam się słowo powietrze. Gdy o tym drugim woda w szklance. A co w przypadku ciał stałych? Kostka lodu, kryształek soli kuchennej, cukru, a może diament? Stany skupienia materii klasyfikujemy biorąc pod uwagę ich objętość i kształt. W przypadku ciał stałych objętość i kształt są w zasadzie zachowane, w przypadku cieczy trudno zmienić objętość, ale kształt już łatwo. Natomiast substancje w stanie gazowym zajmują całą dostępną przestrzeń, przyjmując objętość i kształt naczynia, w którym się znajdują. Używając bardziej precyzyjnej terminologii powiedzielibyśmy, że cząsteczki gazu są cały czas w chaotycznym ruchu, odległości między nimi są duże więc oddziaływania międzycząsteczkowe słabe. Podobnie jest dla cieczy, w której molekuły są również cały czas w chaotycznym ruchu, jednak odległości międzycząsteczkowe są mniejsze, a oddziaływania pomiędzy nimi większe niż w gazie. W ciele stałym cząsteczki są unieruchomione, drgają tylko wokół położeń równowagi. Odległości między nimi są małe, a oddziaływania międzycząsteczkowe silne. Te różnice w budowie molekularnej ciał stałych, cieczy i gazów ilustruje rys. 1. Rys. 1. Schematyczny rysunek ilustrujący różnicę w budowie molekularnej gazów, cieczy i ciał stałych. Ciała stałe zazwyczaj utożsamiamy z uporządkowanym układem atomów (cząsteczek), które budują jego trwałą konstrukcję. W ten sposób dochodzimy do pojęcia kryształu, w którym cząsteczki zajmują ściśle określone miejsca, zwane węzłami sieci krystalicznej, i mogą jedynie drgać wokół tych położeń. Podstawowym elementem charakteryzującym budowę kryształu jest komórka elementarna, która określa pewną konfigurację atomów, cząsteczek, jonów. Znając jej 1 kadrjano@us.edu.pl
2 Foton 143, Zima rozmiar i kształt jesteśmy w stanie zbudować całą sieć krystaliczną poprzez wielokrotne powtórzenie we wszystkich trzech wymiarach przestrzennych. Ale czy każde ciało stałe musi mieć uporządkowaną strukturę? Okazuje się, że niekoniecznie, bo natura lubi także nieco bałaganu i nieporządku. I właśnie to jest główną cechą charakterystyczną wszechobecnych wokół nas amorficznych ciał stałych, a w szczególności szkieł. Rys. 2. Dwuwymiarowy schemat uporządkowania (a) krystalicznego oraz (b) amorficznego wraz z odpowiadającymi im dyfraktogramami rentgenowskimi. Cechą charakterystyczną materiałów amorficznych jest brak dalekiego uporządkowania atomów typowego dla ciał krystalicznych, co jednak nie oznacza całkowitego braku uporządkowania. W przypadku materiałów amorficznych istnieje bowiem uporządkowanie średniego oraz bliskiego zasięgu, odpowiednio 5-20 Å (1 Å = 0,1 nm) oraz rzędu kilku Å. Materiały amorficzne na pierwszy rzut oka trudno odróżnić od tych krystalicznych, dlatego typowym narzędziem eksperymentalnym umożliwiającym rozpoznanie, z jakim rodzajem ciała stałego mamy do czynienia, stanowi dyfrakcja rentgenowska. Na rysunku 2 pokazano typowy dyfraktogram rentgenowski ciała amorficznego i krystalicznego. Konsekwencją braku uporządkowanej struktury przestrzennej jest brak wyraźnych refleksów dyfrakcyjnych pochodzących od poszczególnych płaszczyzn symetrii, jak ma to miejsce dla substancji krystalicznych. Zamiast tego, na dyfraktogramach rentgenowskich substancji amorficznych obserwuje się tzw. szerokie halo amorficzne. Z materiałami o budowie amorficznej mamy do czynienia niemalże na każdym kroku, począwszy od opakowań foliowych, szyb w oknach, szklanych przedmiotach codziennego użytku, gumach, żywicach, biżuterii wykonanej z bursztynu, słodkiej wacie cukrowej, wyświetlaczach w naszych telefonach komórkowych, skończywszy na bardziej wyszukanych zastosowaniach w przemyśle jak choćby światłowody czy ogniwa słoneczne.
3 6 Foton 143, Zima 2018 Metody uzyskiwania materiałów amorficznych Spośród wielu różnorodnych metod uzyskiwania materiałów amorficznych, które najogólniej dzielimy na fizyczne i chemiczne, najstarszym, a jednocześnie najbardziej rozpowszechnionym sposobem jest szybkie chłodzenie cieczy z pominięciem procesu krystalizacji (witryfikacja). Warto zaznaczyć, że pojęcie szkła jest zarezerwowane dla substancji uzyskiwanych poprzez szybkie schłodzenie cieczy. Każde szkło jest bowiem amorficzne, ale nie każda substancja amorficzna jest szkłem. Zgodnie z teorią D. H. Turnbulla przedstawioną w 1969 r. niemal wszystkie materiały można otrzymać w postaci ciała amorficznego, jeśli zostaną dostatecznie szybko ochłodzone. Pojęcie szybko może mieć jednak tutaj różne znaczenie, bowiem otrzymanie niektórych szkieł metalicznych wymaga tempa schładzania 1000 kelwinów w ciągu 1 milisekundy (10 6 K/s). Z kolei szkła krzemowe można uzyskać nawet z tempem chłodzenia 10 K/s. To odpowiednie tempo chłodzenia zdeterminowane jest tak naprawdę przez szybkość nukleacji (tj. szybkość formowania zarodków krystalizacyjnych), która jest cechą indywidualną różnych substancji. W przypadku powolnego chłodzenia dajemy molekułom czas niezbędny do uformowania zarodka krystalizacji i jego wzrost. Z kolei, gdy tempo chłodzenia jest zdecydowanie większe, molekuły nie zdążą się uporządkować w sieć krystaliczną, dzięki czemu możemy zeszklić wiele substancji. Stan amorficzny to przedziwny stan materii, który charakteryzuje się wieloma niezwykłymi właściwościami czyniącymi materiały amorficzne niezwykle interesującym temat badań, zwłaszcza z punktu widzenia zastosowań. Pomyślmy na przykład o super-twardych szkłach metalicznych niemal 600-krotnie bardziej wytrzymałych na deformacje niż stal albo o lekach działających szybciej, skuteczniej i bezpieczniej Ideał? Jest tylko jedno ale. Stan szklisty jest stanem nierównowagowym, którego sama natura budzi wiele kontrowersji, bo od lat wymyka się z wszystkich klasycznych definicji przejść fazowych. Czy to ciecz? Czy to ciało stałe? Z jednej strony w budowie mikroskopowej przypomina bardziej ciecz. Z kolei jego własności mechaniczne są bardziej zbliżone do ciał stałych niż cieczy Pomimo wielu lat intensywnych badań rozszyfrowanie natury przejścia szklistego wciąż znajduje się na liście nierozwiązanych problemów fizyki fazy skondensowanej. Aby odpowiedzieć na pytanie czy przejście szkliste można w ogóle zaklasyfikować jako przejście fazowe w oparciu o klasyfikację zaproponowaną przez Ehrenfesta (tj. bazującą na nieciągłości pierwszych i drugich pochodnych funkcji Gibbsa), przeanalizujmy co dzieje się w trakcie ochładzania cieczy znacznie poniżej temperatury krzepnięcia. W pierwszym i najczęściej spotykanym przypadku, podczas powolnego obniżania temperatury ciecz zaczyna krystalizować. Procesowi temu towarzyszy nieciągła zmiana objętości, entropii i potencjału chemicznego (a więc nieciągłość pierwszych pochodnych funkcji Gibbsa). Jest to więc przejście fazowe I rodzaju. Stosując relatywnie szybkie tempo chłodzenia
4 Foton 143, Zima możliwe jest jednak uniknięcie procesu krystalizacji. W takim przypadku dalsze obniżanie temperatury prowadzi do zjawiska zeszklenia (rys. 3), któremu towarzyszą ciągłe zmiany objętości, entropii czy też potencjału chemicznego. Ciągłe są również zmiany ciepła właściwego, współczynnika rozszerzalności termicznej czy też ściśliwości, a więc drugie pochodne funkcji termodynamicznych Gibbsa. Wygląda to więc nieco inaczej niż oczekuje się w przypadku przemian fazowych II rodzaju, gdzie ciągłe mają być pierwsze pochodne, a nieciągłe drugie. W związku z powyższym, przejście szkliste jest przez niektórych klasyfikowane jako rozmyte przejście fazowe II rodzaju. W odróżnieniu od typowych przemian fazowych temperatura przejścia szklistego nie jest stała, zależy bowiem od tempa chłodzenia. Niemniej jednak w przypadku standardowych temperatur chłodzenia stosowanych w laboratoriach zakres przejścia fazowego nie przekracza 5 K. Rys. 3. Schematyczne zmiany objętości towarzyszące procesowi krystalizacji i zeszklenia. T m oznacza temperaturę krzepnięcia, a T g przejścia szklistego. Oprócz rozpatrywania termodynamicznych aspektów przejścia szklistego w ostatnich latach coraz więcej uwagi zwraca się na jego kinetyczną naturę, a więc tę związaną z ruchliwością molekuł cieczy w trakcie zbliżania się do temperatury przejścia szklistego. W trakcie obniżania temperatury molekuły zaczynają poruszać się coraz wolniej, w sposób bardziej kooperatywny, mając do dyspozycji coraz mniej miejsca. Za przykład takich kooperatywnych ruchów molekularnych może służyć nam zapełniony ludźmi tramwaj. Jeśli chcemy z niego wysiąść najpierw pasażerowie przed nami będą musieli się wspólnie przeorganizować. Takie kooperatywne ruchy molekularne, które utożsamiamy bezpośrednio z procesem zeszklenia nazywamy a-relaksacją. Lepkość cieczy i związane z obniżaniem temperatury spowolnienie ruchów molekularnych pomiędzy T m i T g zmieniają się
5 8 Foton 143, Zima 2018 w zakresie aż do 15 rzędów wielkości. W pewnym momencie czas potrzebny na reorganizację molekuł cieczy (z definicji 100 s) okaże się być dłuższy niż czas związany ze zmianą temperatury. W takiej sytuacji molekuły nie osiągną stanu równowagi i ich struktura zostanie zamrożona w skali czasowej eksperymentu. Zatem uzyskamy szkło. Stan szklisty nie jest stanem równowagi termodynamicznej. Molekuły szkła ulegają bardzo wolnym, ciągłym przegrupowaniom, dążąc do osiągnięcia energetycznego minimum lokalnego. Poniżej przejścia szklistego czas związany z relaksacją struktury może wynieść nawet kilkaset kilka tysięcy lat. Takich zmian nie możemy obserwować eksperymentalnie. Rys. 4. Schematyczne zdjęcia przedstawiające dwa możliwe scenariusze występujące w trakcie chłodzenia cieczy, a także relację pomiędzy procesami witryfikacji (zeszklenia) i krystalizacji. Z termodynamicznego punktu widzenia ciecz, która dalej istnieje w stanie ciekłym poniżej temperatury krzepnięcia, jest stanem metastabilnym, a każde zaburzenie może spowodować tutaj krystalizację, a więc przejście do stanu o najniższej energii. Taką ciecz określamy pojęciem cieczy przechłodzonej, której chyba najbardziej znanym przykładem z codziennego życia jest miód. Bodaj każdemu z nas zdarzyło się, że po otworzeniu przechowywanego przez dłuższy czas słoika miodu zamiast lejącej konsystencji zastał twardą i grudkowatą substancję. Widok ten jest przykładem procesu krystalizacji, który po pewnym czasie może nastapić ze stanu przechłodzonej cieczy. Proces ten możemy spróbować odwrócić poprzez włożenie słoika skrystalizowanego miodu do garnka z gorącą wodą. Doszliśmy w ten sposób do wykazania nierozerwalnego związku pomiędzy procesami formowania stanu szklistego i krystalicznego, które obrazuje rys. 4. Warto jednak pamiętać, że niektóre substancje naturalnie występują w stanie cieczy przechłodzonej lub szklistej, bo nie lubią krystalizować (niektóre polimery, żywice, kleje, tłuszcze). Zrozumienie, jakie czynniki i w jaki sposób determinują tenden-
6 Foton 143, Zima cję do zeszklenia/krystalizacji, stanowi już od lat przedmiot intensywnych badań naukowców na całym świecie. Rozszyfrowanie tej niezwykłej relacji pomiędzy procesami krystalizacji i zeszklenia jest kluczowe nie tylko ze względów czysto poznawczych, ale również przyszłych zastosowań. Umiejętność świadomego kontrolowania i regulowania tendencji do krystalizacji materiałów ma ogromne znaczenie w wielu dziedzinach nauki jak i też technologii, np. stabilizacja amorficznych substancji leczniczych i form polimorficznych, inżynieria materiałów o pożądanych własnościach fizykochemicznych czy też biologicznych. Wśród najczęściej wykorzystywanych obecnie strategii umożliwiających lepsze poznanie dynamiki materiałów formujących stan szklisty oraz spektakularne zmiany ich tendencji do krystalizacji wymienić można przede wszystkim zastosowanie (i) podwyższonego ciśnienia, (ii) ograniczenia przestrzennego np. poprzez wykorzystanie nieorganicznych materiałów porowatych (tzw. 2D confienement), bądź też jednowymiarowego ograniczenia (1D confinement) w postaci cienkich filmów o grubości rzędu nanometrów (rys. 5) oraz (iii) silnego pola elektrycznego. Aby w pełni scharakteryzować, zwłaszcza dynamiczne, aspekty przejścia szklistego standardowe pomiary prowadzone w funkcji temperatury i w ciśnieniu atmosferycznym uzupełnia się o wyniki badań prowadzonych w warunkach podwyższonego ciśnienia. Kompresja w stałej temperaturze podobnie jak obniżanie temperatury w stałym ciśnieniu prowadzi do spowolnienia kooperatywnych ruchów molekularnych cieczy i procesu zeszklenia. Jednak należy podkreślić, że obydwa parametry, temperatura i ciśnienie, wpływają na własności materii w nieco odmienny sposób. Zmiana temperatury modyfikuje bowiem głównie energię termiczną molekuł, a z kolei kompresja upakowanie molekuł/odległości pomiędzy molekułami. Poprzez prowadzenie badań ciśnieniowych możemy więc określić które efekty, te ze zmianą energii termicznej czy fluktuacje gęstości, odgrywają większy wpływ na dynamikę przejścia szklistego? Dlatego też, badania ciśnieniowe stanowią dopełnienie informacji na temat dynamiki materiałów formujących stan szklisty, jakie uzyskujemy w przypadku standardowych pomiarów prowadzonych w funkcji temperatury, w warunkach ciśnienia atmosferycznego. Badania wysokociśnieniowe pozwalają również lepiej poznać tendencję do krystalizacji materiałów formujących stan szklisty. Okazuje się bowiem, że wielu fundamentalnych aspektów związanych z przebiegiem procesu krystalizacji nie można po prostu rozważać, mając do dyspozycji tylko jedną zmienną termodynamiczną, temperaturą czy też ciśnieniem. Potrzebujemy obu. Dla przykładu, umiejętnie poruszając się po diagramie fazowym T p substancji formujących stan szklisty możemy kontrolować/odseparować od siebie wkłady pochodzące od składowej kinetycznej i termodynamicznej determinującej przebieg krystalizacji. Możemy również wpływać na kinetykę procesu, tj. znacząco ją spowalniać czy też przyspieszać albo też uzyskiwać materiały krystaliczne o mniej lub bardziej upakowanej strukturze.
7 10 Foton 143, Zima 2018 Rys. 5. Przykłady strategii używanych w celu wywołania efektu nanoograniczeń w dwóch i jednym wymiarze, wraz ze schematami obrazującymi gradient ruchliwości molekularnej związany z obecnością powierzchni ograniczających. Dlaczego tak ważne jest poznanie zachowania materiałów formujących stan szklisty w ograniczonej do skali nano geometrii? Dzięki takim badaniom naukowcy poszukują odpowiedzi na fundamentalne pytania dotyczące tego: - Jak wygląda dynamika przejścia szklistego w skali nano i czy rządzi się ona tymi samymi prawami co w świecie makro? Ile molekuł jest potrzebnych by ruchy molekularne uznać za kooperatywne? Choć może wydać się to zaskakujące, wraz ze zmniejszeniem średnicy nanoporów czy też grubości cienkich filmów zauważono, że molekuły poruszają się szybciej niż te w żaden sposób nieograniczone (a więc materiał lity). Otoczenie molekuł staje się też coraz bardziej heterogeniczne, występuje bowiem gradient ruchliwości molekularnej związany z tym, że frakcja molekuł znajdująca się w bezpośrednim sąsiedztwie powierzchni ograniczającej silnie z nią oddziałuje i w związku z tym porusza się znacznie wolniej, niż ta ulokowana z dala od niej. - Jak przebiega krystalizacja/przemiany fazowe, gdy ilość miejsca dostępna dla molekuł staje się porównywalna z krytycznym promieniem nukleacji? Jak pokazują najnowsze doniesienia naukowe, wykorzystując nano-ograniczenia, możliwe jest również sterowanie przebiegiem procesu krystalizacji (włącznie z jej całkowitym zahamowaniem), indukowanie reakcji chemicznych, selektywne uzyskiwanie konkretnych form polimorficznych, a w konsekwencji sterowanie uzyskiwanym materiałem i jego właściwościami. Potencjalny zakres zastosowań tego typu nanomateriałów jest ogromny. Obejmuje systemy transportu leków, czy choćby sensory, a w przypadku cienkich warstw polimerowych elastyczne warstwy ochronne, przewodzące, antykorozyjne, antybakteryjne itd. W celu wpływania na przebieg i kinetykę procesu krystalizacji zarówno nisko molekularnych cieczy formujących stan szklisty, jak i wielkocząsteczkowych
8 Foton 143, Zima układów, takich jak aminokwasy i białka, można również wykorzystać silne stałe pole elektryczne (rzędu kilkudziesięciu lub kilkuset kv/cm). Podstawowy schemat ilustrujący tę ideę przedstawiony jest na rys. 6. Przyłożenie silnego (stałego) pola elektrycznego indukuje tutaj proces krystalizacji ze stanu przechłodzonej cieczy. Możliwość kontrolowania/indukowania krystalizacji polem ma potencjalnie ogromne znaczenie aplikacyjne, np. do produkcji organicznych elementów logicznych, bramek czy też sensorów molekularnych. Ale to nie wszystko, silne pole elektryczne posłużyć może do generowania zupełnie nowych odmian polimorficznych takich, których nie sposób uzyskać żadnymi innymi metodami. Rys. 6. Schemat ilustrujący ideę kontrolowania zachowań krystalizacyjnych materiałów formujących stan szklisty z wykorzystaniem silnego (stałego) pola elektrycznego. Jakimi metodami możemy badać procesy zeszklenia i krystalizacji? Własności strukturalne materiałów krystalicznych i amorficznych najczęściej badamy z wykorzystaniem techniki dyfrakcji promieniowania rentgenowskiego. Poza określeniem stopnia krystaliczności można w ten sposób wyznaczyć parametry komórki elementarnej, ocienić rozmiar krystalitów, czy stopień ich orientacji przestrzennej. W przypadku bardziej szczegółowej analizy struktury materiałów amorficznych badania prowadzi się w zakresie niskich wartości kąta dyfrakcji 2Q, gdzie zazwyczaj znajduje się halo amorficzne (technika SAXS). Z kolei, dynamiczne aspekty przejścia szklistego bada się zazwyczaj z wykorzystaniem następujących technik eksperymentalnych: spektroskopia mechaniczna, spektroskopia dielektryczna (DS), dynamiczne rozpraszanie światła (DLS), różnicowa kalorymetria skaningowa (DSC), spektroskopia w podczerwieni (IR) czy też spektroskopia magnetycznego rezonansu jądrowego (NMR). Każda z wyżej wspomnianych technik umożliwia uzyskanie swoistych informacji na temat badanych układów, koncentrują się bowiem one na nieco innych aspektach związanych z ruchliwością molekularną i przy wykorzystaniu odmiennych wielkości fizycznych stanowiących podstawę ich działania. Dla przykładu, informację na temat współczynnikach dyfuzji można uzyskać z wykorzystaniem techniki
9 12 Foton 143, Zima 2018 NMR, która to bazuje na obserwacji zachowania spinów jądrowych w zewnętrznym polu magnetycznym. Natomiast przy pomocy DS (która oparta jest na oddziaływaniu przyłożonego pola elektrycznego z próbką posiadającą moment dipolowy) można analizować kooperatywne ruchy reorientacyjne molekuł w fazie cieczy przechłodzonej. Z kolei technika IR idealnie nadaje się do identyfikacji ruchów molekularnych poszczególnych grup funkcyjnych czy fragmentów molekuły. Dlatego wzajemne zestawienie wyników otrzymanych z poszczególnych metod umożliwia uzyskanie pełnego zestawu danych na temat dynamiki materiałów formujących stan szklisty. Spośród wszystkich wspomnianych powyżej technik eksperymentalnych spektroskopia dielektryczna, daje nam najszersze spektrum możliwości, które obejmuje prowadzenie badań nie tylko w szerokim zakresie charakterystycznych czasów relaksacji (obejmującym nawet 10 dekad) i temperatury (od 160 C do 400 C), ale także w warunkach podwyższonego ciśnienia (nawet powyżej 1 GPa), skali nano (np. badania cienkich filmów polimerowych, czy też cieczy uwięzionych w ośrodku nanoporowatym), czy też w obecności silnego pola elektrycznego. Spektroskopia dielektryczna może zostać również użyta do analizy kinetyki krystalizacji materiałów formujących stan szklisty w różnych warunkach termodynamicznych. Wynika to z faktu, że w trakcie procesu krystalizacji molekuły z cieczy przechłodzonej są zamrażane w fazie krystalicznej. W konsekwencji liczba aktywnie reorientujących molekuł/dipoli maleje wraz ze zwiększaniem frakcji krystalicznej w układzie. Typowe zmiany obserwowane na widmach dielektrycznych w trakcie procesu krystalizacji ze stanu cieczy przechłodzonej pokazane są na rys. 7. Rys. 7. Zmiany w rzeczywistej (po lewej) i urojonej (po prawej) składowej zespolonej przenikalności dielektrycznej w trakcie procesu krystalizacji.
10 Foton 143, Zima Podsumowując, materiały formujące stan szklisty mają wiele interesujących zastosowań aplikacyjnych w przemyśle i technice. Zanim to jednak nastąpi przed naukowcami długa droga konieczna do zrozumienia, w jaki sposób poradzić sobie z niestabilnością fizyczną, jak również chemiczną takich układów. Dotyczy to w szczególności poznania ścisłego związku pomiędzy procesami zeszklenia i krystalizacji, które są jak dwie strony tego samego medalu. Poprzez wykorzystanie najnowszych technik eksperymentalnych i możliwości, jakie dają nam badania prowadzone w różnych warunkach termodynamicznych (ciśnienie, nanoograniczenia, silne pole) staramy się uchylić choć rąbka tajemnicy, który pozwoli lepiej poznać i wykorzystać tego typu materiały. Podziękowania. Badania poświęcone zrozumienia zachowania materiałów formujących stan szklisty w obecności silnego pola elektrycznego i obecności nanoograniczeń prowadzone są w ramach projektów NCN Sonata Bis (Nr 2017/26/E/ ST3/00077) i Opus (Nr. 2017/27/B/ST3/00402). Bibliografia [1] Adrjanowicz K., Kaminski K., Paluch M., Niss K., Crystal Growth & Design, 15 (7), (2015). [2] Adrjanowicz K., Paluch M., Richert R., Phys. Chem. Chem. Phys. 20 (2018) [3] Alcoutlabi M., McKenna G. B., Journal of Physics: Condensed Matter 17 (15), R461 (2005). [4] Anderson, P. W. Science 1995, 267, [5] Chang, K. The Nature of Glass Remains Anything but Clear Anything but Clear. New York Times, July 29, 2008, 1-4. [6] Debenedetti, P. Metastable Liquids: Concepts and Principles. Princeton University Press, New Jersey, [7] Demetriou, M. D. et al. Nature Materials 10, (2011). Floudas, G.; Paluch, M.; Ngai, K. L., Eds. Molecular Dynamics of Glass-Forming Systems: Effects of Pressure; Springer- -Verlag: Berlin, Germany, [8] Frӧhlich, H.; Theory of Dielectrics: Dielectric Constant and Dielectric Loss 2nd Edition, Oxford University Press [9] Gibbs, J.H.; Di Marzio, E. A. The Journal of Chemical Physics, 1958, 28(3), [10] Hanakata P. Z., Douglas J. F., Starr F. W., Nature Communications, 5, 4163, (2014). [11] Jiang Q., Ward M. D., Chem. Soc. Rev., 43, 2066 (2014). [12] Kremer F. (Ed.), Series: Advances in Dielectrics, Dynamics in Geometrical Confinement. Springer International Publishing, Switzerland, [13] Kremer, F.; Schӧnhals, A.; Broadband Dielectric Spectroscopy, Springer-Verlag Berlin Heidelberg New York [14] Kremer, F.; Huwe, A.; Arndt, M.; Behrens, P.; Schwieger, W. J. Phys. Condens. Matter 1999, 11 (10), A175-A188. [15] Myerson, A. S. Handbook of Industrial Crystallization Second Editions (Butterworth Heinemann, 2002). [16] Richert, R. Annu. Rev. Phys. Chem. 2011, 62, [17] Roland, C.M.; Hensel-Bielowka, S.; Paluch. M.; Casalini, R.; Rep. Prog. Phys. 2005, 68, [18] Turnbull, D. Contemporary Physics 5, (1969). [19] Yu, L. Adv. Drug Delivery Rev. 48, (2001).
Czym się różni ciecz od ciała stałego?
Szkła Czym się różni ciecz od ciała stałego? gęstość Czy szkło to ciecz czy ciało stałe? Szkło powstaje w procesie chłodzenia cieczy. Czy szkło to ciecz przechłodzona? kryształ szkło ciecz przechłodzona
Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5. Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego
Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5 Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego Czy przejście szkliste jest termodynamicznym przejściem fazowym?
Wyznaczanie stopnia krystaliczności wybranych próbek polimerów wykorzystanie programu WAXSFIT
1 ĆWICZENIE 3 Wyznaczanie stopnia krystaliczności wybranych próbek polimerów wykorzystanie programu WAXSFIT Do wyznaczenia stopnia krystaliczności wybranych próbek polimerów wykorzystany zostanie program
3. Przejścia fazowe pomiędzy trzema stanami skupienia materii:
Temat: Zmiany stanu skupienia. 1. Energia sieci krystalicznej- wielkość dzięki której można oszacować siły przyciągania w krysztale 2. Energia wiązania sieci krystalicznej- ilość energii potrzebnej do
Klasyfikacja przemian fazowych
Klasyfikacja przemian fazowych Faza- jednorodna pod względem własności część układu, oddzielona od pozostałej częsci układu powierzchnią graniczną, po której przekroczeniu własności zmieniaja się w sposób
1) Rozmiar atomu to około? Która z odpowiedzi jest nieprawidłowa? a) 0, m b) 10-8 mm c) m d) km e) m f)
1) Rozmiar atomu to około? Która z odpowiedzi jest nieprawidłowa? a) 0,0000000001 m b) 10-8 mm c) 10-10 m d) 10-12 km e) 10-15 m f) 2) Z jakich cząstek składają się dodatnio naładowane jądra atomów? (e
Termodynamiczny opis przejść fazowych pierwszego rodzaju
Wykład II Przejścia fazowe 1 Termodynamiczny opis przejść fazowych pierwszego rodzaju Woda występuje w trzech stanach skupienia jako ciecz, jako gaz, czyli para wodna, oraz jako ciało stałe, a więc lód.
Wyznaczanie stopnia krystaliczności wybranych próbek polimerów wykorzystanie programu WAXSFIT
1 ĆWICZENIE 3 Wyznaczanie stopnia krystaliczności wybranych próbek polimerów wykorzystanie programu WAXSFIT Do wyznaczenia stopnia krystaliczności wybranych próbek polimerów wykorzystany zostanie program
Utrwalenie wiadomości. Fizyka, klasa 1 Gimnazjum im. Jana Pawła II w Sułowie
Utrwalenie wiadomości Fizyka, klasa 1 Gimnazjum im. Jana Pawła II w Sułowie Za tydzień sprawdzian Ciało fizyczne a substancja Ciało Substancja gwóźdź żelazo szklanka szkło krzesło drewno Obok podanych
Wstęp. Krystalografia geometryczna
Wstęp Przedmiot badań krystalografii. Wprowadzenie do opisu struktury kryształów. Definicja sieci Bravais go i bazy atomowej, komórki prymitywnej i elementarnej. Podstawowe typy komórek elementarnych.
Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe
Technologie wytwarzania metali Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe KRYSTALIZACJA METALI I STOPÓW Krzepnięcie - przemiana fazy
Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe
Technologie wytwarzania metali Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe KRYSTALIZACJA METALI I STOPÓW Krzepnięcie - przemiana fazy
Warunki izochoryczno-izotermiczne
WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne
Stany skupienia materii
Stany skupienia materii Ciała stałe Ciecze Płyny Gazy Plazma 1 Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -
Wykład 4. Przypomnienie z poprzedniego wykładu
Wykład 4 Przejścia fazowe materii Diagram fazowy Ciepło Procesy termodynamiczne Proces kwazistatyczny Procesy odwracalne i nieodwracalne Pokazy doświadczalne W. Dominik Wydział Fizyki UW Termodynamika
Równowagi fazowe. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny
Równowagi fazowe Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny Równowaga termodynamiczna Przemianom fazowym towarzyszą procesy, podczas których nie zmienia się skład chemiczny układu, polegają
Równanie gazu doskonałego
Równanie gazu doskonałego Gaz doskonały to abstrakcyjny model gazu, który zakłada, że gaz jest zbiorem sprężyście zderzających się kulek. Wiele gazów w warunkach normalnych zachowuje się jak gaz doskonały.
CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ
CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ Ciepło i temperatura Pojemność cieplna i ciepło właściwe Ciepło przemiany Przejścia między stanami Rozszerzalność cieplna Sprężystość ciał Prawo Hooke a Mechaniczne
Cudowne bogactwo fizyki
Foton 143, Zima 2018 1 Cudowne bogactwo fizyki Przekazywany w Państwa ręce zeszyt doskonale ilustruje bogactwo i różnorodność fizyki. Sto lat temu obowiązywał kanoniczny podział fizyki na mechanikę, elektryczność
Czym jest prąd elektryczny
Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,
Fizyka 1 Wróbel Wojciech
w poprzednim odcinku 1 Stany skupienia materii Ciała stałe Ciecze Płyny Gazy 2 Stany skupienia materii Ciała stałe Ciecze Płyny Gazy Plazma 3 Ciało stałe ustalony kształt i objętość uporządkowanie dalekiego
Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36
Wykład 1 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 5 października 2015 1 / 36 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną
Szkło. T g szkła używanego w oknach katedr wynosi ok. 600 C, a czas relaksacji sięga lat. FIZYKA 3 MICHAŁ MARZANTOWICZ
Szkło Przechłodzona ciecz, w której ruchy uległy zamrożeniu Tzw. przejście szkliste: czas potrzebny na zmianę konfiguracji cząsteczek (czas relaksacji) jest rzędu minut lub dłuższy T g szkła używanego
Zaburzenia periodyczności sieci krystalicznej
Zaburzenia periodyczności sieci krystalicznej Defekty liniowe dyslokacja krawędziowa dyslokacja śrubowa dyslokacja mieszana Defekty punktowe obcy atom w węźle luka w sieci (defekt Schottky ego) obcy atom
Wykład 3. Diagramy fazowe P-v-T dla substancji czystych w trzech stanach. skupienia. skupienia
Wykład 3 Substancje proste i czyste Przemiany w systemie dwufazowym woda para wodna Diagram T-v dla przejścia fazowego woda para wodna Diagramy T-v i P-v dla wody Punkt krytyczny Temperatura nasycenia
Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego
Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego W5. Energia molekuł Przemieszczanie się całych molekuł w przestrzeni - Ruch translacyjny - Odbywa się w fazie gazowej i ciekłej, w fazie stałej
Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał
Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami
Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne
Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne Janusz Brzychczyk, Instytut Fizyki UJ Postulat Nernsta (1906):
KRYSTALIZACJA METALI I STOPÓW. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
KRYSTALIZACJA METALI I STOPÓW Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Krzepnięcie przemiana fazy ciekłej w fazę stałą Krystalizacja przemiana
Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne
Ciekłe kryształy. Wykład dla liceów Joanna Janik Uniwersytet Jagielloński
Ciekłe kryształy Wykład dla liceów 26.04.2006 Joanna Janik Uniwersytet Jagielloński Zmiany stanu skupienia czyli przejścia fazowe temperatura topnienia temperatura parowania ciało stałe ciecz para - gaz
POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY
POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY Techniki niskotemperaturowe w Inżynierii Mechaniczno Medycznej Zmiana własności ciał w temperaturach kriogenicznych Prowadzący: dr inż. Waldemar Targański Emilia
Milena Oziemczuk. Temperatura
Milena Oziemczuk Temperatura Informacje ogólne Temperatura jest jedną z podstawowych wielkości fizycznych w termodynamice i określa miarą stopnia nagrzania ciał. Temperaturę można ściśle zdefiniować tylko
DRUGA ZASADA TERMODYNAMIKI
DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy
ZAMRAŻANIE PODSTAWY CZ.1
METODY PRZECHOWYWANIA I UTRWALANIA BIOPRODUKTÓW ZAMRAŻANIE PODSTAWY CZ.1 Opracował: dr S. Wierzba Katedra Biotechnologii i Biologii Molekularnej Uniwersytetu Opolskiego Zamrażaniem produktów nazywamy proces
1,2 1,2. WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Brak
Zał. nr 4 do ZW 33/01 WYDZIAŁ Podstawowych Problemów Techniki KARTA PRZEDMIOTU Nazwa w języku polskim Podstawy Chemii Ogólnej Nazwa w języku angielskim General Chemistry Kierunek studiów (jeśli dotyczy):
Fizyka statystyczna Fenomenologia przejść fazowych. P. F. Góra
Fizyka statystyczna Fenomenologia przejść fazowych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Przejście fazowe transformacja układu termodynamicznego z jednej fazy (stanu materii) do innej, dokonywane
WYMAGANIA EDUKACYJNE Z FIZYKI
WYMAGANIA EDUKACYJNE Z FIZYKI KLASA I Budowa materii Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia. Uczeń: rozróżnia
Termodynamika materiałów
Termodynamika materiałów Plan wykładu 1. Funkcje termodynamiczne, pojemność cieplna. 2. Warunki równowagi termodynamicznej w układach jedno- i wieloskładnikowych, pojęcie potencjału chemicznego. 3. Modele
Kierunek i poziom studiów: Chemia budowlana, II stopień Sylabus modułu: Chemia ciała stałego 0310-CH-S2-B-065
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia budowlana, II stopień Sylabus modułu: Chemia ciała stałego 065 1. Informacje ogólne koordynator modułu rok akademicki 2014/2015
Budowa stopów. (układy równowagi fazowej)
Budowa stopów (układy równowagi fazowej) Równowaga termodynamiczna Stopy metali są trwałe w stanie równowagi termodynamicznej. Równowaga jest osiągnięta, gdy energia swobodna układu uzyska minimum lub
Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy)
Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Oddziaływanie elektronów ze stałą, krystaliczną próbką wstecznie rozproszone elektrony elektrony pierwotne
S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach. Dyfrakcja na kryształach
S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach Dyfrakcja na kryształach Warunki dyfrakcji źródło: Ch. Kittel Wstęp do fizyki..., rozdz. 2, rys. 6, str. 49 Konstrukcja Ewalda
dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG
3. POLIMERY AMORFICZNE dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG Politechnika Gdaoska, 2011 r. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego
DRUGA ZASADA TERMODYNAMIKI
DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy
SPEKTROSKOPIA NMR. No. 0
No. 0 Spektroskopia magnetycznego rezonansu jądrowego, spektroskopia MRJ, spektroskopia NMR jedna z najczęściej stosowanych obecnie technik spektroskopowych w chemii i medycynie. Spektroskopia ta polega
1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?
Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody
Materiały Reaktorowe. Efekty fizyczne uszkodzeń radiacyjnych c.d.
Materiały Reaktorowe Efekty fizyczne uszkodzeń radiacyjnych c.d. Luki (pory) i pęcherze Powstawanie i formowanie luk zostało zaobserwowane w 1967 r. Podczas formowania luk w materiale następuje jego puchnięcie
Program studiów II stopnia dla studentów kierunku chemia od roku akademickiego 2015/16
Program studiów II stopnia dla studentów kierunku chemia od roku akademickiego 2015/16 Semestr 1M Przedmioty minimum programowego na Wydziale Chemii UW L.p. Przedmiot Suma godzin Wykłady Ćwiczenia Prosem.
FIZYKA CIEPŁO PRZEMIAN FAZOWYCH
SCENARIUSZ LEKCJI PRZEDMIOT: FIZYKA TEMAT: CIEPŁO PRZEMIAN FAZOWYCH AUTOR SCENARIUSZA: mgr Krystyna Glanc OPRACOWANIE ELEKTRONICZNO GRAFICZNE : mgr Beata Rusin TEMAT LEKCJI Ciepło przemian fazowych Scenariusz
Inżynieria materiałowa: wykorzystywanie praw termodynamiki a czasem... walka z termodynamiką
Inżynieria materiałowa: wykorzystywanie praw termodynamiki a czasem... walka z termodynamiką Kilka definicji Faza Stan materii jednorodny wewnętrznie, nie tylko pod względem składu chemicznego, ale również
TERMODYNAMIKA I TERMOCHEMIA
TERMODYNAMIKA I TERMOCHEMIA Termodynamika - opisuje zmiany energii towarzyszące przemianom chemicznym; dział fizyki zajmujący się zjawiskami cieplnymi. Termochemia - dział chemii zajmujący się efektami
WYKONUJEMY POMIARY. Ocenę DOSTATECZNĄ otrzymuje uczeń, który :
WYKONUJEMY POMIARY Ocenę DOPUSZCZAJĄCĄ otrzymuje uczeń, który : wie, w jakich jednostkach mierzy się masę, długość, czas, temperaturę wie, do pomiaru jakich wielkości służy barometr, menzurka i siłomierz
DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia
ODDZIAŁYWANIA DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia 1. Organizacja pracy na lekcjach fizyki w klasie I- ej. Zapoznanie z wymaganiami na poszczególne oceny. Fizyka jako nauka przyrodnicza.
Szkła specjalne Wykład 6 Termiczne właściwości szkieł Część 1 - Wstęp i rozszerzalność termiczna
Szkła specjalne Wykład 6 Termiczne właściwości szkieł Część 1 - Wstęp i rozszerzalność termiczna Ryszard J. Barczyński, 2018 Materiały edukacyjne do użytku wewnętrznego Analiza termiczna Analiza termiczna
Techniki niskotemperaturowe w medycynie.
Techniki niskotemperaturowe w medycynie. Adiabatyczne rozmagnesowanie paramagnetyków jako metoda osiągania ekstremalnie niskich temperatur. Inżynieria Mechaniczno-Medyczna st. II Karolina Łysk Domowe lodówki
Przemiany energii w zjawiskach cieplnych. 1/18
Przemiany energii w zjawiskach cieplnych. 1/18 Średnia energia kinetyczna cząsteczek Średnia energia kinetyczna cząsteczek to suma energii kinetycznych wszystkich cząsteczek w danej chwili podzielona przez
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Brak
WYDZIAŁ Podstawowych Problemów Techniki KARTA PRZEDMIOTU Nazwa w języku polskim Podstawy chemii ogólnej Nazwa w języku angielskim General chemistry Język wykładowy polski Kierunek studiów Optyka Specjalność
I. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
Wydział Metalurgii i Inżynierii Materiałowej Akademia Górniczo-Hutnicza Kraków
24/42 Solidification of Metais and Alloys, Year 2000, Volume 2, Book No 42 Krzepnięcie Meta li i Stopów, Rok 2000, Rocznik 2, Nr 42 PAN- Katowice, PL ISSN 0208-9386 WPŁ YW OBRÓBKI LASEROWEJ NA MIKROSTRUKTURĘ
NADPRZEWODNIKI WYSOKOTEMPERATUROWE (NWT) W roku 1986 Alex Muller i Georg Bednorz odkryli. miedziowo-lantanowym, w którym niektóre atomy lantanu były
FIZYKA I TECHNIKA NISKICH TEMPERATUR NADPRZEWODNICTWO NADPRZEWODNIKI WYSOKOTEMPERATUROWE (NWT) W roku 1986 Alex Muller i Georg Bednorz odkryli nadprzewodnictwo w złożonym tlenku La 2 CuO 4 (tlenku miedziowo-lantanowym,
WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/ ) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych
WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/2018 I. Wymagania przekrojowe. Uczeń: 1) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych lub blokowych informacje kluczowe dla
Kaskadowe urządzenia do skraplania gazów
Kaskadowe urządzenia do skraplania gazów Damian Siupka-Mróz IMM sem.9 1. Kaskadowe skraplanie gazów: Metoda skraplania, wykorzystująca coraz niższe temperatury skraplania kolejnych gazów. Metodę tę stosuje
1. Kryształy jonowe omówić oddziaływania w kryształach jonowych oraz typy struktur jonowych.
Tematy opisowe 1. Kryształy jonowe omówić oddziaływania w kryształach jonowych oraz typy struktur jonowych. 2. Dlaczego do kadłubów statków, doków, falochronów i filarów mostów przymocowuje się płyty z
Różne dziwne przewodniki
Różne dziwne przewodniki czyli trzy po trzy o mechanizmach przewodzenia prądu elektrycznego Przewodniki elektronowe Metale Metale (zwane również przewodnikami) charakteryzują się tym, że elektrony ich
III. METODY OTRZYMYWANIA MATERIAŁÓW PÓŁPRZEWODNIKOWYCH Janusz Adamowski
III. METODY OTRZYMYWANIA MATERIAŁÓW PÓŁPRZEWODNIKOWYCH Janusz Adamowski 1 1 Wstęp Materiały półprzewodnikowe, otrzymywane obecnie w warunkach laboratoryjnych, charakteryzują się niezwykle wysoką czystością.
prof. dr hab. Małgorzata Jóźwiak
Czy równowaga w przyrodzie i w chemii jest korzystna? prof. dr hab. Małgorzata Jóźwiak 1 Pojęcie równowagi łańcuch pokarmowy równowagi fazowe równowaga ciało stałe - ciecz równowaga ciecz - gaz równowaga
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,
ZAMRAŻANIE PODSTAWY CZ.2
METODY PRZECHOWYWANIA I UTRWALANIA BIOPRODUKTÓW ZAMRAŻANIE PODSTAWY CZ.2 Opracował: dr S. Wierzba Katedra Biotechnologii i Biologii Molekularnej Uniwersytetu Opolskiego Odmienność procesów zamrażania produktów
KRYTERIA OCEN Z FIZYKI DLA KLASY II GIMNAZJUM. ENERGIA I. NIEDOSTATECZNY - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce.
KRYTERIA OCEN Z FIZYKI DLA KLASY II GIMNAZJUM ENERGIA - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce. - Wie, kiedy jest wykonywana praca mechaniczna. - Wie, że każde urządzenie
Elektrolity polimerowe. 1. Modele transportu jonów 2. Rodzaje elektrolitów polimerowych 3. Zastosowania elektrolitów polimerowych
Elektrolity polimerowe 1. Modele transportu jonów 2. Rodzaje elektrolitów polimerowych 3. Zastosowania elektrolitów polimerowych Zalety - Giętkie, otrzymywane w postaci folii - Lekkie (wysoka gęstość energii/kg)
Wykład 6. Klasyfikacja przemian fazowych
Wykład 6 Klasyfikacja przemian fazowych JS Klasyfikacja Ehrenfesta Ehrenfest klasyfikuje przemiany fazowe w oparciu o potencjał chemiczny. nieciągłość Przemiany fazowe pierwszego rodzaju pochodne potencjału
SPIS TREŚCI ««*» ( # * *»»
««*» ( # * *»» CZĘŚĆ I. POJĘCIA PODSTAWOWE 1. Co to jest fizyka? 11 2. Wielkości fizyczne 11 3. Prawa fizyki 17 4. Teorie fizyki 19 5. Układ jednostek SI 20 6. Stałe fizyczne 20 CZĘŚĆ II. MECHANIKA 7.
Ciśnienie definiujemy jako stosunek siły parcia działającej na jednostkę powierzchni do wielkości tej powierzchni.
Ciśnienie i gęstość płynów Autorzy: Zbigniew Kąkol, Bartek Wiendlocha Powszechnie przyjęty jest podział materii na ciała stałe i płyny. Pod pojęciem substancji, która może płynąć rozumiemy zarówno ciecze
Podstawy fizyki wykład 6
Podstawy fizyki wykład 6 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Elementy termodynamiki Temperatura Rozszerzalność cieplna Ciepło Praca a ciepło Pierwsza zasada termodynamiki Gaz doskonały
Nadprzewodniki. W takich materiałach kiedy nastąpi przepływ prądu może on płynąć nawet bez przyłożonego napięcia przez długi czas! )Ba 2. Tl 0.2.
Nadprzewodniki Pewna klasa materiałów wykazuje prawie zerową oporność (R=0) poniżej pewnej temperatury zwanej temperaturą krytyczną T c Większość przewodników wykazuje nadprzewodnictwo dopiero w temperaturze
Czy równowaga jest procesem korzystnym? dr hab. prof. nadzw. Małgorzata Jóźwiak
Czy równowaga jest procesem korzystnym? dr hab. prof. nadzw. Małgorzata Jóźwiak 1 Pojęcie równowagi łańcuch pokarmowy równowagi fazowe równowaga ciało stałe - ciecz równowaga ciecz - gaz równowaga ciało
dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG
4. POLIMERY KRYSTALICZNE dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG Politechnika Gdaoska, 2011 r. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego
Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej
termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,
Spektroskopia modulacyjna
Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,
ciało stałe ciecz gaz
Trzy stany skupienia W przyrodzie substancje mogą występować w trzech stanach skupienia: stałym, ciekłym i gazowym. Ciała stałe mają własny określoną objętość i kształt, który trudno zmienić. Zmiana kształtu
ZASADY ZALICZENIA PRZEDMIOTU MBS
ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll
Właściwości kryształów
Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne
Badanie procesów dyfuzji i rozpuszczania się gazu ziemnego w strefie kontaktu z ropą naftową
NAFTA-GAZ luty 2011 ROK LXVII Jerzy Kuśnierczyk Instytut Nafty i Gazu, Oddział Krosno Badanie procesów dyfuzji i rozpuszczania się gazu ziemnego w strefie kontaktu z ropą naftową Wstęp Badania mieszanin
powierzchnia rozdziału - dwie fazy ciekłe - jedna faza gazowa - dwa składniki
Przejścia fazowe. powierzchnia rozdziału - skokowa zmiana niektórych parametrów na granicy faz. kropeki wody w atmosferze - dwie fazy ciekłe - jedna faza gazowa - dwa składniki Przykłady przejść fazowych:
Praca objętościowa - pv (wymiana energii na sposób pracy) Ciepło reakcji Q (wymiana energii na sposób ciepła) Energia wewnętrzna
Energia - zdolność danego układu do wykonania dowolnej pracy. Potencjalna praca, którą układ może w przyszłości wykonać. Praca wykonana przez układ jak i przeniesienie energii może manifestować się na
Instytut Chemii Fizycznej Polskiej Akademii Nauk
Instytut Chemii Fizycznej Polskiej Akademii Nauk Prof. dr hab. M. Tkacz ul. Kasprzaka 44/52, 01-224 Warszawa Tel. +(48 22) 343 3224 +(48 22) 343 20 00 Fax +(48 22) 343 33 33 +(48 22) 632 52 76 E-mail:
Materiałoznawstwo optyczne CERAMIKA OPTYCZNA
Materiałoznawstwo optyczne CERAMIKA OPTYCZNA Szkło optyczne i fotoniczne, A. Szwedowski, R. Romaniuk, WNT, 2009 POLIKRYSZTAŁY - ciała stałe o drobnoziarnistej strukturze, które są złożone z wielkiej liczby
dr hab. inż. Katarzyna Jaszcz Gliwice Katedra Fizykochemii i Technologii Polimerów Wydział Chemiczny, Politechnika Śląska
P O L I T E C H N I K A Ś L Ą S K A WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW ul. ks. M. Strzody 9 44-100 GLIWICE tel.: +48 32 237-1509 faks: +48 32 237-1509 e-mail: rch4@polsl.pl
i elementy z półprzewodników homogenicznych część II
Półprzewodniki i elementy z półprzewodników homogenicznych część II Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego
Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne
Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub
Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej.
1 Ciepło jest sposobem przekazywania energii z jednego ciała do drugiego. Ciepło przepływa pod wpływem różnicy temperatur. Jeżeli ciepło nie przepływa mówimy o stanie równowagi termicznej. Zerowa zasada
WYZNACZANIE ROZMIARÓW
POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 6 WYZNACZANIE ROZMIARÓW MAKROCZĄSTECZEK I. WSTĘP TEORETYCZNY Procesy zachodzące między atomami lub cząsteczkami w skali molekularnej
TEORIA PASMOWA CIAŁ STAŁYCH
TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s
Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis
Nauka o Materiałach Wykład XI Właściwości cieplne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Stabilność termiczna materiałów 2. Pełzanie wysokotemperaturowe 3. Przewodnictwo cieplne 4. Rozszerzalność
Termochemia elementy termodynamiki
Termochemia elementy termodynamiki Termochemia nauka zajmująca się badaniem efektów cieplnych reakcji chemicznych Zasada zachowania energii Energia całkowita jest sumą energii kinetycznej i potencjalnej.
Moduły kształcenia. Efekty kształcenia dla programu kształcenia (kierunku) MK_06 Krystalochemia. MK_01 Chemia fizyczna i jądrowa
Matryca efektów kształcenia określa relacje między efektami kształcenia zdefiniowanymi dla programu kształcenia (efektami kierunkowymi) i efektami kształcenia zdefiniowanymi dla poszczególnych modułów
ZAKŁADANE EFEKTY KSZTAŁCENIA Kierunek: Inżynieria Materiałowa Studia I stopnia
ZAKŁADANE EFEKTY KSZTAŁCENIA Kierunek: Inżynieria Materiałowa Studia I stopnia Tabela odniesień efektów kierunkowych do efektów obszarowych Odniesienie do Symbol Kierunkowe efekty kształcenia efektów kształcenia
Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).
Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo