Zielona biotechnologia

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zielona biotechnologia"

Transkrypt

1 Zielona biotechnologia Anna Szpitter, Aleksandra Królicka Zakład Ochrony i Biotechnologii Roślin, Katedra Biotechnologii, Międzyuczelniany Wydział Biotechnologii UG i GUMed Uniwersytet Gdański Fenomen komórki roślinnej - totipotencja Uważa się, że początkiem rozwoju tzw. zielonej biotechnologii była teoria totipotencji zaproponowana w 1902 roku przez austriackiego uczonego Gottlieb a Haberlandt a. Według tej teorii każda żywa komórka roślinna odłączona od korelacyjnego wpływu innych komórek, na specjalnych pożywkach, posiada zdolność do odtworzenia dowolnej tkanki, organu czy kompletnego organizmu. Od tamtej pory stopniowo zaczęto doskonalić technikę hodowli roślin w warunkach in vitro (łac. w szkle), pozwalającą na kontrolowanie rozwoju rośliny poprzez dobór odpowiedniego składu pożywki, na której w warunkach aseptycznych prowadzona jest hodowla w fitotronie (Fot. 1). Fragmenty tkanek roślinnych (zwane eksplantatami) podatne są na działanie egzogennych regulatorów wzrostu jak auksyny czy cytokininy, które w znacznym stopniu decydują o kierunku rozwoju komórek roślinnych w hodowli in vitro. Tę właściwość wykorzystano w technologii mikrorozmnażania, polegającej na Fot. 2. Kultura in vitro Dionaea muscipula. Fot. 1. Fitotron pomieszczenie do hodowli roślin in vitro. 16 stymulowaniu rozwoju pąków czy pojedynczych komórek w kompletne rośliny (Fot. 2). Według teorii Haberlandt a każda żywa komórka roślinna posiada teoretycznie taką zdolność, więc łatwo sobie wyobrazić potencjał jaki drzemie w niewielkim fragmencie blaszki liściowej czy łodygi. Dodatkowo istnieje możliwość indukcji tworzenia tkanki przyrannej zwanej kalusem (Fig. 1), będącą niezorganizowaną masą komórek o wysokim tempie podziałów, która po odpowiedniej stymulacji regulatorami wzrostu może stać się źródłem zarodków, a następnie całych roślin. Mimo wysokich kosztów, technologia mikrorozmnażania posiada wiele zalet w porównaniu

2 z tradycyjnymi metodami propagacji roślin, pozwalając na otrzymanie niezależnie od warunków klimatycznych dużej liczby roślin jednorodnych genetycznie i wolnych od patogenów. Metoda mikropropagacji znalazła zastosowanie w rozmnażaniu wielu gatunków roślin, których tradycyjna produkcja jest niezwykle trudna. Przykładem są tutaj niektóre rośliny ozdobne np. storczyki oraz drzewa leśne, a także elitarne odmiany roślin użytkowych np. truskawki, maliny. Ponadto technika rozmnażania i hodowli in vitro z powodzeniem stosowana jest do namnażania i reintrodukcji do środowiska roślin zagrożonych wyginięciem z powodu nadmiernej eksploatacji przez człowieka (storczyki, rośliny owadożerne). Sztuczne nasiona Aby namnożony materiał roślinny wysokiej jakości można było w prosty sposób przechowywać oraz wprowadzać do tradycyjnej hodowli na polu stosuje się technikę tworzenia sztucznych nasion. Do tego celu najczęściej wykorzystuje się otrzymane w kulturach in vitro zarodki somatyczne, które zwykle poddaje się otoczkowaniu i suszeniu. Obecnie trwają badania nad udoskonaleniem metod tworzenia sztucznych nasion tak, aby ich odporność na przechowywanie i zdolność do rozwoju w prawidłowe rośliny była zbliżona do nasion naturalnych. W tym celu stosuje się m.in. otoczki wzbogacane w inhibitory kiełkowania, sole mineralne, pestycydy czy też korzystne dla rozwoju zarodka mikroorganizmy. Poza zastosowaniem w rolnictwie, odpowiednio przygotowane sztuczne nasiona roślin zagrożonych wyginięciem mogą być poddane krioprezerwacji (Fig. 1) i przechowywane przez długi czas w głębokim inicjacja kultur in vitro transformacja Agrobacterium rhizogenes kultury kalusa kultury zawiesinowe zarodki somatyczne kultury korzeni włośnikowatych sztuczne nasiona automatyzacja (bioreaktory) produkcja metabolitów lub biofarmaceutyków w korzeniach włośnikowatych krioprezerwacja Fig 1. Wykorzystanie zielonej biotechnologii. Fig 1. Wykorzystanie zielonej biotechnologii. 17

3 zamrożeniu w bankach germplazmy. Roślina jako fabryka cennych substancji Od starożytności człowiek skwapliwie wykorzystywał właściwości lecznicze roślin. Cenione właściwości roślin wynikają z obecności w ich tkankach związków zwanych metabolitami wtórnymi, które biorą udział w interakcji roślin ze środowiskiem. Produkowane są one przez rośliny w celu obrony przed promieniowaniem UV, patogenami, roślinożercami, czy umożliwiają konkurencję z innymi gatunkami roślin. Wiele z ponad do tej pory zidentyfikowanych roślinnych metabolitów wtórnych jest stosowanych w przemyśle farmaceutycznym czy kosmetycznym. Szacuje się, że 25% leków będących w użytku w krajach rozwiniętych stanowią związki pochodzenia roślinnego. Ponieważ synteza chemiczna wielu z metabolitów roślinnych jest niezwykle trudna i kosztowna, główną metodą ich otrzymywania pozostaje ekstrakcja tych związków z materiału roślinnego. Takie rozwiązanie niesie ze sobą szereg trudności, takich jak niska wydajność biosyntezy czy niewielkie stężenia pożądanych związków w tkance roślinnej. Dodatkowo wiele metabolitów wtórnych wykazujących aktywność biologiczną produkowanych jest przez gatunki zagrożone wyginięciem. W związku z tymi ograniczeniami tradycyjnego pozyskiwania materiału roślinnego atrakcyjną alternatywę stanowi produkcja z zastosowaniem roślinnych kultur komórkowych lub tkankowych. Jednym z pierwszych związków, który na skalę przemysłową otrzymano tą metodą był wykazujący działanie przeciwnowotworowe naftochinon szikonina. Związek ten pozyskiwany jest z komórek Lithospermum erythrorizon hodowanych w postaci zawiesiny w bioreaktorach o pojemności 750 litra. Innym przykładem jest paklitaksel, alkaloid o aktywności przeciwnowotworowej wyizolowany z kory Taxus brevifolia, który stosowany jest w leczeniu raka piersi, jajników czy mięsaka Kaposiego. Paklitaksel produkowany jest w roślinie w tak niewielkim stężeniu, że leczenie jednego pacjenta wymaga zniszczenia co najmniej sześciu 100-letnich drzew. Paklitaksel pozyskiwany był ze źródeł naturalnych od czasu odkrycia w 1967 aż do 1993 roku, kiedy to rozpoczęto alternatywną produkcję tego chemioterapeutyku w hodowli in vitro komórek T. brevifolia na skalę przemysłową. 18 Transformacja roślin przy użyciu bakterii Roślinne kultury zawiesinowe (Fig. 1) są stosowane często w produkcji metabolitów roślinnych na skalę przemysłową z powodu swej jednorodności oraz istnienia opracowanych metod hodowli w bioreaktorach o dużej pojemności. Problemem w przypadku tego typu kultur jest zwykle niestabilność genetyczna, niska wydajność produkcji, a także akumulacja wielu związków w wakuolach komórkowych, co sprawia że aby je wydobyć z komórek, konieczna jest likwidacja hodowli. Jedną z metod pozwalających na uzyskanie wyższego poziomu roślinnych metabolitów wtórnych w kulturach in vitro jest wykorzystanie bakterii z rodzaju Agrobacterium. Są to Gram ujemne patogeny wielu roślin dwuliściennych. W trakcie infekcji bakterie z rodzaju Agrobacterium wprowadzają do komórek rośliny (gospodarza) fragment DNA plazmidowego, który zawiera geny kodujące enzymy biorące udział w syntezie roślinnych regulatorów wzrostu oraz opin, stanowiących źródło węgla dla bakterii. W wyniku transformacji komórki roślinne w miejscu infekcji rosną i dzielą się intensywnie, co prowadzi do utworzenia narośli mającej postać guza lub brody korzeniowej, w zależności od gatunku infekującej bakterii (Fig. 2). O ile w rolnictwie czy sadownictwie choroby wywoływane przez Agrobacterium spp. są przyczyną wielu strat, to w roślinnych kulturach in vitro bakterie te stanowią bardzo użyteczne narzędzie w ręku biotechnologa. Przykładem może być wykorzystanie procesu transformacji roślin w kulturach in vitro do produkcji metabolitów wtórnych. W tym przypadku wykorzystuje się szczepy Agrobacterium rhizogenes. W wyniku procesu transformacji, w miejscu infekcji następuje intensywny wzrost licznych, drobnych korzeni zwanych korzeniami włośnikowatymi (Fig. 1, 2). Korzenie takie charakteryzuje niezwykle szybki i nieograniczony wzrost na pożywkach bez dodatku regulatorów wzrostu. Ponadto kultury korzeni włośnikowatych charakteryzuje znaczne zróżnicowanie komórek w porównaniu z hodowlą zawiesinową, co sprzyja zwiększonej produkcji niektórych metabolitów roślinnych. Dodatkowe podwyższenie poziomu produkowanych związków jest możliwe dzięki zastosowaniu transgenicznych szczepów A. rhizogenes, które w fragmencie wprowadzanym do komórki roślinnej posiadają gen/y kodujące enzymy biorące

4 WARUNKI A. B. NATURALNE WARUNKI IN VITRO DNA genomowy Komórka roślinna nietransformowana Plazmid Ri/Ti z przenoszonym do komórki roślinnej fragmentem DNA Plazmid z przenoszonym do komórki roślinnej transgenem lub plazmid Ri Agrobacterium rhizogenes lub A. tumefaciens Broda korzeniowa Transformowana komórka roślinna Guz Transformowana komórka roślinna Tkanki transformowane fragmentem plazmidu Ri lub Ti Hodowla tumorowatej tkanki kalusa Tkanki transformowane transgenem lub fragmentem plazmidu Ri Hodowla korzeni włośnikowatych w pożywce płynnej Transformowana (transgeniczna) roślina zregenerowana z komórek kalusa Fig 2. Transformacja roślin w warunkach naturalnych przez bakterie z rodzaju Agrobacterium oraz zastosowanie tego procesu w kulturach in vitro. A. W warunkach naturalnych w wyniku infekcji przez Agrobacterium rhizogenes lub A. tumefaciens do genomu komórek roślinnych przenoszony jest odpowiednio - fragment plazmidu Ri lub Ti. W rezultacie tkanka ulega rozrostowi i tworzą się narośla w postaci brody korzeniowej lub tumorów. B. W kulturach in vitro fragmenty roślin transformowane są za pomocą dzikich szczepów A. rhizogenes lub zmodyfikowanych genetycznie szczepów obu gatunków, które posiadają transgen(y) we fragmencie plazmidu przenoszonym do komórki roślinnej. W wyniku transformacji otrzymuje się kultury korzeni włośnikowanych lub rośliny transgeniczne. 19

5 udział w szlakach metabolicznych wielu ważnych metabolitów wtórnych. Tą metodą dzięki wprowadzeniu genu 6-β-hydroksylazy pochodzącego z Hyoscymus muticus otrzymano kulturę korzeni włośnikowatych Atropa belladonna o wysokiej zawartości hioscyjaminy. W zastosowaniu korzeni włośnikowatych na skalę przemysłową problem jest technologia hodowli tych kultur. Prowadzone są prace nad zastosowaniem specjalnych bioreaktorów, w których korzenie umieszczone na specjalnych siatkach lub drutach, a pożywka dostarczana jest w postaci mgły. Podwyższanie poziomu metabolitów wtórnych w kulturach in vitro Wykorzystując fakt, że produkcja metabolitów wtórnych jest zwykle odpowiedzią rośliny na czynnik stresowy, do poprawienia produktywności kultur roślinnych stosuje się zabieg elicytacji. Polega on na traktowaniu kultur roślinnych elicytorami, czyli związkami lub czynnikami fizykochemicznymi takimi jak: metale ciężkie, promieniowanie UV, enzymy czy składniki ścian komórkowych bakterii i grzybów. W rezultacie w komórkach roślinnych indukowane są szlaki syntezy metabolitów wtórnych mających na celu neutralizację zewnętrznego zagrożenia. Przykładem skutecznego elicytora jest chitozan, pochodna chityny wchodząca w skład ścian komórkowych grzybów oraz kutikuli stawonogów. Poza stymulacją syntezy wielu metabolitów wtórnych należących do naftochinonów, alkaloidów czy terpenoidów posiada on własności polikationitu, przez co wpływa na przepuszczalność błon komórkowych, zwiększając wydzielanie produktów na zewnątrz komórek. Do innych zabiegów technologicznych pozwalających zwiększyć wydajność produkcji w kulturach in vitro należy metoda immobilizacji komórek. Unieruchomienie zawiesiny komórkowej na nośnikach takich jak alginian wapnia, wata szklana czy włókna bawełniane zwiększa zagęszczenie komórek, przez co imitowane są warunki panujące w tkance roślinnej. Komórki immobilizowane są dużo bardziej odporne na stres mechaniczny, dzięki czemu wydłuża się czas kultury i produkcji. Szlaki syntezy wielu ważnych metabolitów wtórnych są wieloetapowe, a biorące w nich udział enzymy katalizują reakcje z różną wydajnością. Wprowadzenie do pożywki hodowlanej prekursora 20 lub intermediatu szlaku metabolicznego, który wytwarzany jest w komórce na niskim poziomie może pozytywnie wpłynąć na zawartość produktu końcowego. Do często stosowanych prekursorów należą: L- fenyloalanina, kwas ferulowy i kwas cynamonowy, należące do szlaku syntezy fenylopropanoidów, który stanowi źródło szeregu roślinnych metabolitów wtórnych. Na wydajność poszczególnych etapów syntezy metabolitów wtórnych ma także wpływ gromadzenie w komórce produktu końcowego, bardzo często toksycznego w wysokich stężeniach. Podwyższony poziom metabolitów wtórnych hamuje ich syntezę w komórce na zasadzie sprzężenia zwrotnego lub stymuluje ich degradację enzymatyczną. Aby przeciwdziałać tym negatywnym efektom oraz ułatwić odzyskiwanie produktu z hodowli roślinnej dodaje się do pożywki żywice jonowymienne (np. Amberlite), na których powierzchni adsorbowane są metabolity wtórne uwolnione poza komórkę. Dzięki temu równowaga szlaków metabolicznych przesuwa się w kierunku syntezy, a jednocześnie produkt łatwo odzyskiwany z wymiennika, poddawany jest wstępnemu oczyszczeniu. Przykładem skutecznego zastosowania polimerowego adsorbentu w kulturach roślinnych jest użycie ciągłej recyrkulacji pożywki przez kolumnę wypełnioną żywicą jonowymienną w hodowli zawiesinowej komórek Duboisia leichardtii powodujące wzrost sekrecji oraz pięciokrotne zwiększenie produkcji alkaloidu - skopolaminy. Rośliny w kulturach in vitro posiadają zdolność do enzymatycznego przekształcania związków podanych egzogennie do podłoża hodowlanego. Umożliwia to otrzymanie z wysoką wydajnością wielu metabolitów występujących na bardzo niskim poziomie lub zupełnie nowych związków nie występujących w naturze. Zastosowanie komórek roślinnych umożliwia wieloetapowe przekształcenie substratów, a także gwarantuje regio- i stereo specyficzność przeprowadzanych reakcji. Kultury zawiesinowe Stewia rebaudiana i Digitalis purpurea są wykorzystywane do przekształcania diterpenu stewiolu do jego glukozydów stewiozydu i stewiobiozydu, związków 100-krotnie słodszych niż cukier trzcinowy. Niezróżnicowane komórki Digitalis lanata mogą przeprowadzać liczne reakcje modyfikacji egzogennych glikozydów kardenolidowych, mimo iż nie są one zdolne do produkcji żadnego z tych

6 związków. Przykładem jest hydroksylacja digitoksygeniny w hodowli zawiesinowej D. lanata, w wyniku której otrzymuje się digoksygeninę lek nasercowy o dużo niższej toksyczności niż substrat. Biofarmaceutyki Poza zainteresowaniem roślinnymi metabolitami wtórnymi jako źródłem leków, istnieje rosnące zapotrzebowanie na wysoko przetworzone produkty naturalne zwane biofarmaceutykami. Należą do nich preparaty stosowane do celów diagnostycznych, w lecznictwie (np. leki hormonalne) i profilaktyce (np. antygeny wirusowe wchodzące w skład szczepionek). Biofarmaceutyki, których większość stanowią białka, wykazują zwykle wysoką skuteczność w działaniu. Niestety preparaty takie produkowane w komórkach bakteryjnych są zwykle nieaktywne z powodu braku modyfikacji posttranslacyjnych charakterystycznych dla organizmów wyższych. Alternatywą jest wykorzystanie eukariotycznych systemów ekspresji w postaci hodowli komórek owadzich czy zwierzęcych, jak również transgenicznych zwierząt. Takie rozwiązania niosą jednak ze sobą bardzo wysokie koszty, a także, w przypadku modyfikowanych zwierząt, problemy natury etycznej i prawnej. Ponadto w systemach zwierzęcych istnieje ryzyko przeniesienia wraz z produktem białkowym groźnych dla ludzi patogenów jak wirus zapalenia wątroby typu C czy priony. Z tego względu zastosowanie transgenicznych roślin do produkcji biofarmaceutyków na dużą skalę wydaje się być obiecującym rozwiązaniem. W systemie tym produkcja biomasy jest bardzo ekonomiczna, a oczyszczanie produktu białkowego często może być ominięte, jak to ma miejsce w przypadku roślin jadalnych produkujących białka szczepionkowe. Rewolucję jakiej dokonało wprowadzenie roślinnych systemów ekspresyjnych do produkcji biofarmaceutyków obrazuje fakt, iż technologia ta spowodowała spadek ceny 1 kg przeciwciał monoklonalnych z 3 mln $ do około 100 $. Do tej pory uzyskano wiele roślin transgenicznych produkujących szereg białek ludzkich, antygenów wirusowych czy przeciwciał. Spośród tych produktów najbliższe wprowadzeniu na rynek jest produkowane w roślinach tytoniu przeciwciało skierowane przeciwko Streptococcus mutans bakterii powodującej próchnicę. Ponadto zaawansowane testy kliniczne prowadzone są na antygenach wirusa HBV oraz wścieklizny, wytwarzanych w roślinach ziemniaka i szpinaku w celu zastosowania ich jako szczepionek jadalnych. Jak ulepszyć pomidora i pozbyć się rtęci z gleby? Jedną z ważniejszych gałęzi zielonej biotechnologii jest ulepszanie właściwości odmian uprawnych. W przeciwieństwie do tradycyjnych metod hodowli wykorzystujących krzyżowanie roślin i selekcję, obecnie dysponujemy licznymi narzędziami umożliwiającymi usprawnienie oraz większą kontrolę tego procesu. Jedną z nich jest tworzenie odmian transgenicznych poprzez wprowadzenie genu z innego gatunku lub modyfikację stopnia ekspresji genu istniejącego. Do tej pory otrzymano liczne odmiany roślin użytkowych posiadające przewagę nad tradycyjnymi wariantami w zakresie odporności na patogeny, pestycydy, tolerancji na metale ciężkie czy jakości otrzymywanego produktu. Pierwszą zmodyfikowaną genetycznie rośliną, wprowadzoną na rynek w 1994 roku, była odmiana pomidora o nazwie Flavr-Savr, o obniżonej aktywności genu kodującego pektynazę, co skutkowało spowolnionym procesem dojrzewania owoców i umożliwiło wydłużenie okresu ich przechowywania. Obecnie większość areału upraw transgenicznych na świecie zajmują rośliny posiadające cechy odporności na herbicydy o sze- Reklama 21

7 rokim spektrum takie jak Roundoup (glifosat), a także, odporności na owady dzięki obecności genu kodującego toksyczne białko Cry pochodzącego z bakterii Bacillus thuringensis. Ponadto prowadzone są badania nad odmianami o zmodyfikowanej zawartości skrobi, mikroelementów, witamin, a także o obniżonej zawartości kofeiny czy białek alergennych. Transgeniczne rośliny tworzą również obiecującą perspektywę dla fitoremediacji, procesu polegającego na wykorzystaniu roślin do usuwaniu szkodliwych związków ze środowiska. Najczęściej stosowane są do tego celu geny pochodzące z mikroorganizmów, które są naturalnie zdolne do degradacji toksyn lub redukcji jonów metali ciężkich. Dzięki wprowadzeniu zmodyfikowanego genu MarA z Escherichia coli kodującego reduktazę rtęciową do genomu Arabidopsis thaliana oraz Populus sp., rośliny te uzyskały zdolność do redukcji jonów rtęci obecnych w glebie do rtęci metalicznej uwalnianej następnie do atmosfery. Ponieważ odporność roślin na abiotyczne czynniki stresowe takie jak susza czy zasolenie jest cechą warunkowaną przez liczne procesy metaboliczne, otrzymanie odmiany odpornej za pomocą modyfikacji pojedynczych genów jest niezwykle trudne. W tym celu można zastosować proces selekcji w roślinnych kulturach in vitro, a warunkiem jej skuteczności jest istnienie zmienności w obrębie puli testowanych genotypów. Roślinne kultury kalusa czy zawiesiny komórkowej charakteryzują się wysokim poziomem mutacji spontanicznych, niespotykanym w warunkach naturalnych w roślinach, wynikających głównie z szybkiego tempa podziałów komórkowych. Traktując kulturę kalusa Cuccumis sativus filtratem z kultury grzyba Fusarium oxysporum uzyskano odmianę odporną na tego patogena, natomiast hodowla kalusa Nicotiana tabacum na pożywce zawierającej wysokie stężenie NaCl umożliwiła wyselekcjonowanie roślin odpornych na zasolenie. Dodatkowo, aby zwiększyć zmienność w kulturze in vitro, a tym samym poprawić wydajność selekcji, stosuje się mutagenezę z użyciem czynników fizycznych (np. promieniowanie UV) lub chemicznych (np. nitrozo -guanidyna). Inną metodą pozwalającą na tworzenie nowych odmian roślin o unikatowych kombinacjach cech jest hybrydyzacja somatyczna. Technika ta polega na enzymatycznym usunięciu ścian komórkowych z komórek roślinnych, a w dalszym 22 etapie na fuzji tak wyizolowanych protoplastów z różnych odmian lub gatunków. W ten sposób otrzymywane są mieszańce posiadające nowe kombinacje genomów jądrowych oraz cytoplazmatycznych (chloroplastów i mitochondriów) np. nowe odmiany Brassica napus odporne na patogeny grzybowe czy nicienie, a powstałe w wyniku hybrydyzacji B. napus z protoplastami innych gatunków. Wszystkie wspomniane wyżej modyfikacje roślin w celu otrzymania odmian użytkowych czy też produkcji biofarmacetyków nie byłyby możliwe do osiągnięcia bez opracowania wydajnych metod modyfikacji genomu roślinnego. Jedną z często stosowanych technik jest wprowadzanie transgenów do komórek roślinnych z użyciem wspomnianych już bakterii z gatunku Agrobacterium jako wektorów. Szczepy wykorzystywane do transformacji posiadają zmodyfikowany plazmid Ti, w którym interesujący gen wraz z genem umożliwiającym selekcję umieszczone są w rejonie przenoszonym do komórki w trakcie infekcji. Innym wektorem do transformacji są zmodyfikowane wirusy roślinne np. wirus mozaiki tytoniu, stosowane do indukowania przejściowej ekspresji transgenu w rozwiniętych roślinach. Modyfikacji genomu roślinnego można także dokonać za pomocą metod bezwektorowych takich jak transformacja roślinnych protoplastów z użyciem elektroporacji czy glikolu polietylenowego, a także coraz powszechniej stosowane mikrowstrzeliwanie polegające na wprowadzaniu do komórek mikronośników opłaszczonych DNA. Zaletą techniki mikrowstrzeliwania jest możliwość wprowadzania transgenu do organelli komórkowych, a także stosowania jej praktycznie do wszystkich typów tkanek. Człowiek od wieków zależał od roślin, które stanowiły źródło pożywienia, budulec, a także źródło leków, natomiast dynamiczny przyrost liczby ludności oraz zmiany kulturowe wymusiły zmiany w podejściu do wykorzystania tej części zasobów naturalnych. Rozwój najnowszej biotechnologii umożliwia zmniejszenie negatywnego wpływu na środowisko pochodzącego z intensyfikacji produkcji rolnej wynikające z odpowiedniego kształtowania predyspozycji genetycznych hodowanych odmian. Osiągnięcia tej dziedziny pozwalają także na pełniejsze wykorzystanie potencjału roślin w takich gałęziach gospodarki jak przemysł farmaceutyczny czy kosmetyczny.

Rośliny modyfikowane genetycznie (GMO)

Rośliny modyfikowane genetycznie (GMO) Rośliny modyfikowane genetycznie (GMO) Organizmy modyfikowane genetycznie Organizm zmodyfikowany genetycznie (międzynarodowy skrót: GMO Genetically Modified Organizm) to organizm o zmienionych cechach,

Bardziej szczegółowo

Klub Młodego Wynalazcy - Laboratoria i wyposażenie. Pracownia hodowli roślin i roślinnych kultur in vitro

Klub Młodego Wynalazcy - Laboratoria i wyposażenie. Pracownia hodowli roślin i roślinnych kultur in vitro Klub Młodego Wynalazcy - Laboratoria i wyposażenie Zadbaliśmy o to, żeby wyposażenie w Klubie Młodego Wynalazcy było w pełni profesjonalne. Ważne jest, aby dzieci i młodzież, wykonując doświadczenia korzystały

Bardziej szczegółowo

Sukces kultur in vitro oparty jest na zjawisku totipotencji, czyli nieograniczonej zdolności komórek do dzielenia się i odtwarzania całego organizmu

Sukces kultur in vitro oparty jest na zjawisku totipotencji, czyli nieograniczonej zdolności komórek do dzielenia się i odtwarzania całego organizmu Rośliny z probówki Kultury in vitro to uprawa części roślin, tkanek, pojedynczych komórek, a nawet protoplastów poza organizmem macierzystym, na sztucznych pożywkach w warunkach sterylnych Sukces kultur

Bardziej szczegółowo

Bloki licencjackie i studia magisterskie na Kierunkach: Biotechnologia, specjalność Biotechnologia roślinna oraz Genetyka

Bloki licencjackie i studia magisterskie na Kierunkach: Biotechnologia, specjalność Biotechnologia roślinna oraz Genetyka Bloki licencjackie i studia magisterskie na Kierunkach: Biotechnologia, specjalność Biotechnologia roślinna oraz Genetyka INSTYTUT BIOLOGII EKSPERYMENTALNEJ W Katedrze Genetyki Ogólnej, Biologii Molekularnej

Bardziej szczegółowo

Księgarnia PWN: Biotechnologia roślin, redakcja naukowa: Stefan Malepszy SPIS TREŚCI

Księgarnia PWN: Biotechnologia roślin, redakcja naukowa: Stefan Malepszy SPIS TREŚCI Księgarnia PWN: Biotechnologia roślin, redakcja naukowa: Stefan Malepszy SPIS TREŚCI 1 Wprowadzenie 15 2 Metoda kultury in vitro 19 2.1. Kultura komórek i tkanek............................... 19 2.1.1.

Bardziej szczegółowo

Organizmy Modyfikowane Genetycznie Rośliny transgeniczne

Organizmy Modyfikowane Genetycznie Rośliny transgeniczne Organizmy Modyfikowane Genetycznie Rośliny transgeniczne Co to GMO? GMO to organizmy, których genom został zmieniony metodami inżynierii genetycznej w celu uzyskania nowych cech fizjologicznych (lub zmiany

Bardziej szczegółowo

Rośliny Genetycznie Zmodyfikowane

Rośliny Genetycznie Zmodyfikowane Rośliny Genetycznie Zmodyfikowane Zastosowanie roślin uprawnych Człowiek od zawsze wykorzystywał rośliny jako poŝywienie A takŝe jako źródło: energii, leków i innych produktów przemysłowych Ludzie od dawna

Bardziej szczegółowo

- LC/MS typu Single Quad serii 6100 - LC/MS typu TOF serii 6200 - LC/MS/MS typu Triple Quad serii 6400 - LC/MS/MS typu Q-TOF serii 6500 - LC/MS/MS

- LC/MS typu Single Quad serii 6100 - LC/MS typu TOF serii 6200 - LC/MS/MS typu Triple Quad serii 6400 - LC/MS/MS typu Q-TOF serii 6500 - LC/MS/MS - LC/MS typu Single Quad serii 6100 - LC/MS typu TOF serii 6200 - LC/MS/MS typu Triple Quad serii 6400 - LC/MS/MS typu Q-TOF serii 6500 - LC/MS/MS typu Ion Trap serii MS 500 Spis treści Kiedy sukces naukowy

Bardziej szczegółowo

Perspektywy rozwoju biotechnologii w Polsce

Perspektywy rozwoju biotechnologii w Polsce Perspektywy rozwoju biotechnologii w Polsce dr Anna Czubacka Zakład ad Hodowli i Biotechnologii Roślin Instytut Uprawy Nawożenia i Gleboznawstwa - PIB Biotechnologia Zastosowanie systemów biologicznych,

Bardziej szczegółowo

Rośliny z probówki. Jak powstają? Alina Trejgell & Agata Stawicka, UMK

Rośliny z probówki. Jak powstają? Alina Trejgell & Agata Stawicka, UMK Rośliny z probówki Jak powstają? I. Dojrzałe i niedojrzałe nasiona szarotka (Leontopodium alpinum) II. Inne organy roślin wyka (Vicia sepium) zarodki zygotyczne pąki kwiatowe wilca (Pharbitis nil) korzeń

Bardziej szczegółowo

Inżynieria genetyczna- 6 ECTS. Inżynieria genetyczna. Podstawowe pojęcia Część II Klonowanie ekspresyjne Od genu do białka

Inżynieria genetyczna- 6 ECTS. Inżynieria genetyczna. Podstawowe pojęcia Część II Klonowanie ekspresyjne Od genu do białka Inżynieria genetyczna- 6 ECTS Część I Badanie ekspresji genów Podstawy klonowania i różnicowania transformantów Kolokwium (14pkt) Część II Klonowanie ekspresyjne Od genu do białka Kolokwium (26pkt) EGZAMIN

Bardziej szczegółowo

Roślinne kultury tkankowe in vitro hodowla roślin, części roślin, tkanek lub pojedynczych komórek na sztucznych pożywkach w sterylnych warunkach.

Roślinne kultury tkankowe in vitro hodowla roślin, części roślin, tkanek lub pojedynczych komórek na sztucznych pożywkach w sterylnych warunkach. Roślinne kultury tkankowe in vitro hodowla roślin, części roślin, tkanek lub pojedynczych komórek na sztucznych pożywkach w sterylnych warunkach. TOTIPOTENCJA Zdolności do odtworzenia poszczególnych organów,

Bardziej szczegółowo

Organizmy modyfikowane genetycznie

Organizmy modyfikowane genetycznie Organizmy modyfikowane genetycznie C o to jest G M O? Organizmy Modyfikowane Genetycznie GMO (z ang. Genetically Modified Organism) - Organizmy Transgeniczne - są to organizmy, które zawierają w swoim

Bardziej szczegółowo

Hormony roślinne ( i f t i o t h o or o m r on o y n )

Hormony roślinne ( i f t i o t h o or o m r on o y n ) Hormony roślinne (fitohormony) Hormony roślinne: To związki chemiczne syntetyzowane w pewnych częściach rośliny służące do "komunikacji" pomiędzy poszczególnymi jej częściami. Działają w bardzo małych

Bardziej szczegółowo

Hodowla roślin genetyka stosowana

Hodowla roślin genetyka stosowana Hodowla roślin genetyka stosowana Hodowla roślin jest świadomą działalnością człowieka zmierzającą do wytworzenia nowych, ulepszonych odmian oraz zachowania istniejących odmian na nie zmienionym poziomie.

Bardziej szczegółowo

Bezpośrednia embriogeneza somatyczna

Bezpośrednia embriogeneza somatyczna Bezpośrednia embriogeneza somatyczna Zarodki somatyczne formują się bezpośrednio tylko z tych komórek roślinnych, które są kompetentne już w momencie izolowania z rośliny macierzystej, czyli z proembriogenicznie

Bardziej szczegółowo

Od kapusty do mamuta wyzwania biotechnologii. Renata Szymańska

Od kapusty do mamuta wyzwania biotechnologii. Renata Szymańska Od kapusty do mamuta wyzwania biotechnologii Renata Szymańska Biotechnologia Biotechnologia świadczy dobra i usługi z wykorzystaniem metod biologicznych (definicja wg OECD) Towarzyszy człowiekowi od dawna

Bardziej szczegółowo

Laboratorium Pomorskiego Parku Naukowo-Technologicznego Gdynia.

Laboratorium Pomorskiego Parku Naukowo-Technologicznego Gdynia. Laboratorium Pomorskiego Parku Naukowo-Technologicznego Gdynia www.ppnt.pl/laboratorium Laboratorium jest częścią modułu biotechnologicznego Pomorskiego Parku Naukowo Technologicznego Gdynia. poprzez:

Bardziej szczegółowo

Biotechnologia jest dyscypliną nauk technicznych, która wykorzystuje procesy biologiczne na skalę przemysłową. Inaczej są to wszelkie działania na

Biotechnologia jest dyscypliną nauk technicznych, która wykorzystuje procesy biologiczne na skalę przemysłową. Inaczej są to wszelkie działania na Biotechnologia jest dyscypliną nauk technicznych, która wykorzystuje procesy biologiczne na skalę przemysłową. Inaczej są to wszelkie działania na żywych organizmach prowadzące do uzyskania konkretnych

Bardziej szczegółowo

Czy żywność GMO jest bezpieczna?

Czy żywność GMO jest bezpieczna? Instytut Żywności i Żywienia dr n. med. Lucjan Szponar Czy żywność GMO jest bezpieczna? Warszawa, 21 marca 2005 r. Od ponad połowy ubiegłego wieku, jedną z rozpoznanych tajemnic życia biologicznego wszystkich

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z BIOLOGII KLASA 5 DOBRY. DZIAŁ 1. Biologia jako nauka ( 4godzin)

WYMAGANIA EDUKACYJNE Z BIOLOGII KLASA 5 DOBRY. DZIAŁ 1. Biologia jako nauka ( 4godzin) WYMAGANIA EDUKACYJNE Z BIOLOGII KLASA 5 DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY CELUJĄCY DZIAŁ 1. Biologia jako nauka ( 4godzin) wskazuje biologię jako naukę o organizmach wymienia czynności życiowe

Bardziej szczegółowo

WYNALAZKI BIOTECHNOLOGICZNE W POLSCE. Ewa Waszkowska ekspert UPRP

WYNALAZKI BIOTECHNOLOGICZNE W POLSCE. Ewa Waszkowska ekspert UPRP WYNALAZKI BIOTECHNOLOGICZNE W POLSCE Ewa Waszkowska ekspert UPRP Źródła informacji w biotechnologii projekt SLING Warszawa, 9-10.12.2010 PLAN WYSTĄPIENIA Umocowania prawne Wynalazki biotechnologiczne Statystyka

Bardziej szczegółowo

Aneta Gerszberg i Andrzej K. Kononowicz. Zakład Cytogenetyki i Biologii Molekularnej Roślin Uniwersytet Łódzki

Aneta Gerszberg i Andrzej K. Kononowicz. Zakład Cytogenetyki i Biologii Molekularnej Roślin Uniwersytet Łódzki Aneta Gerszberg i Andrzej K. Kononowicz Zakład Cytogenetyki i Biologii Molekularnej Roślin Uniwersytet Łódzki Molekularna uprawa Termin molekularna uprawa (ang. molecular farming), odnosi się do produkcji

Bardziej szczegółowo

Zdobycze biotechnologii w medycynie i ochronie środowiska

Zdobycze biotechnologii w medycynie i ochronie środowiska Zdobycze biotechnologii w medycynie i ochronie środowiska InŜynieria genetyczna - badania biomedyczne Jednym z najbardziej obiecujących zastosowań nowych technologii opartych na przenoszeniu genów z jednego

Bardziej szczegółowo

Zakażenie pszczoły miodnej patogenem Nosema ceranae. Diagnostyka infekcji wirusowych pszczoły miodnej

Zakażenie pszczoły miodnej patogenem Nosema ceranae. Diagnostyka infekcji wirusowych pszczoły miodnej Zakażenie pszczoły miodnej patogenem Nosema ceranae Diagnostyka infekcji wirusowych pszczoły miodnej Plan 1. Znaczenie ekologiczne i gospodarcze pszczół 2. Choroby pszczół i ich diagnostyka 3. Podstawy

Bardziej szczegółowo

1. Biotechnologia i inżynieria genetyczna zagadnienia wstępne 13

1. Biotechnologia i inżynieria genetyczna zagadnienia wstępne 13 Spis treści Przedmowa 11 1. Biotechnologia i inżynieria genetyczna zagadnienia wstępne 13 1.1. Wprowadzenie 13 1.2. Biotechnologia żywności znaczenie gospodarcze i społeczne 13 1.3. Produkty modyfikowane

Bardziej szczegółowo

SPIS TREŚCI. Wprowadzenie 15. Metoda kultury in vitro 19

SPIS TREŚCI. Wprowadzenie 15. Metoda kultury in vitro 19 SPIS TREŚCI Wprowadzenie 15 Metoda kultury in vitro 19 2.1. Kultura komórek i tkanek... 19 2.1.1. Wyposażenie i prace techniczne w laboratorium... 19 2.1.1.1. Pomieszczenia... 19 2.1.1.2. Sprzęt laboratoryjny...

Bardziej szczegółowo

Pytania Egzamin magisterski

Pytania Egzamin magisterski Pytania Egzamin magisterski Międzyuczelniany Wydział Biotechnologii UG i GUMed 1. Krótko omów jakie informacje powinny być zawarte w typowych rozdziałach publikacji naukowej: Wstęp, Materiały i Metody,

Bardziej szczegółowo

Mikroorganizmy Zmodyfikowane Genetycznie

Mikroorganizmy Zmodyfikowane Genetycznie Mikroorganizmy Zmodyfikowane Genetycznie DEFINICJA Mikroorganizm (drobnoustrój) to organizm niewidoczny gołym okiem. Pojęcie to nie jest zbyt precyzyjne lecz z pewnością mikroorganizmami są: bakterie,

Bardziej szczegółowo

Spis treści. asf;mfzjf. (Jan Fiedurek)

Spis treści. asf;mfzjf. (Jan Fiedurek) asf;mfzjf Spis treści 1. Informacje wstępne 11 (Jan Fiedurek) 1.1. Biotechnologia w ujęciu historycznym i perspektywicznym... 12 1.2. Biotechnologia klasyczna i nowoczesna... 18 1.3. Rozwój biotechnologii:

Bardziej szczegółowo

"Dlaczego NIE dla GMO w środowisku rolniczym" Prof. zw. dr hab. inż. Magdalena Jaworska

Dlaczego NIE dla GMO w środowisku rolniczym Prof. zw. dr hab. inż. Magdalena Jaworska "Dlaczego NIE dla GMO w środowisku rolniczym" Prof. zw. dr hab. inż. Magdalena Jaworska Kierownik Katedry Ochrony Środowiska Rolniczego Uniwersytet Rolniczy w Krakowie Ekspert EU Biotechnology in Agriculture

Bardziej szczegółowo

gibereliny naturalna : GA 3 (kwas giberelowy)

gibereliny naturalna : GA 3 (kwas giberelowy) gibereliny naturalna : GA 3 (kwas giberelowy) Miejsce wytwarzania: w dojrzewających nasionach, owocach, zielonych częściach rośliny, w wierzchołkach wzrostu pędu, korzeniach i pręcikach. Biosynteza w plastydach

Bardziej szczegółowo

Spis treści Część I. Genetyczne podstawy hodowli roślin 1. Molekularne podstawy dziedziczenia cech Dariusz Crzebelus, Adeta Adamus, Maria Klein

Spis treści Część I. Genetyczne podstawy hodowli roślin 1. Molekularne podstawy dziedziczenia cech Dariusz Crzebelus, Adeta Adamus, Maria Klein Spis treści Część I. Genetyczne podstawy hodowli roślin 1. Molekularne podstawy dziedziczenia cech... 15 Dariusz Crzebelus, Adeta Adamus, Maria Klein 1.1. Budowa DNA i przepływ informacji genetycznej...

Bardziej szczegółowo

Nawożenie sadu w okresie pozbiorczym

Nawożenie sadu w okresie pozbiorczym Nawożenie sadu w okresie pozbiorczym Autor: Tomasz Kodłubański Data: 9 listopada 2017 Jak ważna jest ochrona drzew w okresie pozbiorczym mogli się przekonać ci sadownicy, którzy zaniedbali podawania drzewom

Bardziej szczegółowo

FITOREMEDIACJA. Jest to proces polegający na wprowadzeniu roślin do określonego ekosystemu w celu asymilacji zanieczyszczeń poprzez korzenie i liście.

FITOREMEDIACJA. Jest to proces polegający na wprowadzeniu roślin do określonego ekosystemu w celu asymilacji zanieczyszczeń poprzez korzenie i liście. FITOREMEDIACJA Jest to proces polegający na wprowadzeniu roślin do określonego ekosystemu w celu asymilacji zanieczyszczeń poprzez korzenie i liście. Proces ten jest wykorzystywany do usuwania takich ksenobiotyków

Bardziej szczegółowo

Przedmiot: Biologia (klasa piąta)

Przedmiot: Biologia (klasa piąta) Przedmiot: Biologia (klasa piąta) Wymagania programowe na poszczególne oceny przygotowane na podstawie treści zawartych w podstawie programowej, programie nauczania oraz podręczniku dla klasy piątej szkoły

Bardziej szczegółowo

LEKI CHEMICZNE A LEKI BIOLOGICZNE

LEKI CHEMICZNE A LEKI BIOLOGICZNE LEKI CHEMICZNE A LEKI BIOLOGICZNE PRODUKT LECZNICZY - DEFINICJA Art. 2 pkt.32 Ustawy - Prawo farmaceutyczne Substancja lub mieszanina substancji, przedstawiana jako posiadająca właściwości: zapobiegania

Bardziej szczegółowo

BIOSYNTEZA ACYLAZY PENICYLINOWEJ. Ćwiczenia z Mikrobiologii Przemysłowej 2011

BIOSYNTEZA ACYLAZY PENICYLINOWEJ. Ćwiczenia z Mikrobiologii Przemysłowej 2011 BIOSYNTEZA ACYLAZY PENICYLINOWEJ Ćwiczenia z Mikrobiologii Przemysłowej 2011 Acylaza penicylinowa Enzym hydrolizuje wiązanie amidowe w penicylinach Reakcja przebiega wg schematu: acylaza Reszta: fenyloacetylowa

Bardziej szczegółowo

Tematy- Biologia zakres rozszerzony, klasa 2TA,2TŻ-1, 2TŻ-2

Tematy- Biologia zakres rozszerzony, klasa 2TA,2TŻ-1, 2TŻ-2 Tematy- Biologia zakres rozszerzony, klasa 2TA,2TŻ-1, 2TŻ-2 Nr lekcji Temat Zakres treści 1 Zapoznanie z PSO, wymaganiami edukacyjnymi i podstawą programową PSO, wymagania edukacyjne i podstawa programowa

Bardziej szczegółowo

POZIOMY WYMAGAŃ EDUKACYJNYCH Z BIOLOGII KLASA V

POZIOMY WYMAGAŃ EDUKACYJNYCH Z BIOLOGII KLASA V POZIOMY WYMAGAŃ EDUKACYJNYCH Z BIOLOGII KLASA V Program PULS ŻYCIA autor: Anna Zdziennicka Podręcznik do biologii opracowany przez: Joanna Stawarz i Marian Sęktas NA ŚRÓDROCZNĄ OCENĘ KLASYFIKACYJNĄ ocena

Bardziej szczegółowo

INFORMACJE O ZASTOSOWANYCH PREPARATACH NOURIVIT I NOURIVIT PLUS

INFORMACJE O ZASTOSOWANYCH PREPARATACH NOURIVIT I NOURIVIT PLUS 1 INFORMACJE O ZASTOSOWANYCH PREPARATACH NOURIVIT I NOURIVIT PLUS Nourivit jest produkowany w kilku etapach z naturalnych składników mineralnych w kontrolowanym procesie kruszenia i sortowania bez użycia

Bardziej szczegółowo

Metody zwalczania chorób grzybowych w kukurydzy

Metody zwalczania chorób grzybowych w kukurydzy .pl https://www..pl Metody zwalczania chorób grzybowych w kukurydzy Autor: mgr inż. Kamil Młynarczyk Data: 26 czerwca 2018 Kukurydza może być atakowana przez ponad 400 różnych patogenów powodujących różne

Bardziej szczegółowo

Glebowe choroby grzybowe bez szans!

Glebowe choroby grzybowe bez szans! Glebowe choroby grzybowe bez szans! Zdrowy start rośliny ze zdrowym systemem korzeniowym Trianum jest nietoksycznym biologicznym produktem firmy Koppert, który chroni uprawy przed takimi glebowymi patogenami

Bardziej szczegółowo

BIOTECHNOLOGIA OGÓLNA

BIOTECHNOLOGIA OGÓLNA BIOTECHNOLOGIA OGÓLNA 1. Wprowadzenie do biotechnologii. Rys historyczny. Zakres i znaczenie nowoczesnej biotechnologii. Opracowanie procesu biotechnologicznego. 7. Produkcja biomasy. Białko mikrobiologiczne.

Bardziej szczegółowo

Silny rozwój korzeni rzepaku nawet w trudnych warunkach! Jest sposób!

Silny rozwój korzeni rzepaku nawet w trudnych warunkach! Jest sposób! https://www. Silny rozwój korzeni rzepaku nawet w trudnych warunkach! Jest sposób! Autor: Małgorzata Srebro Data: 24 września 2018 Zapewnienie prawidłowego wzrostu i rozwoju systemu korzeniowego rzepakowi

Bardziej szczegółowo

BIOLOGIA DLA KASY V. Poziom wymagań. ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca

BIOLOGIA DLA KASY V. Poziom wymagań. ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca BIOLOGIA DLA KASY V 1. Biologia jako nauka Uczeń: wskazuje biologię jako naukę o organizmach wymienia czynności życiowe dziedzin biologii Uczeń: określa przedmiot badań biologii jako nauki opisuje wskazane

Bardziej szczegółowo

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej 1. Biologia jako nauka wskazuje biologię jako naukę o organizmach

Bardziej szczegółowo

Wymagania edukacyjne z biologii w kl. V

Wymagania edukacyjne z biologii w kl. V Wymagania edukacyjne z biologii w kl. V Dział /tematyka Poziom wymagań ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca (1) (1+2) (1+2+3) (1+2+3+4) (1+2+3+4+5) I Biologia

Bardziej szczegółowo

Żywność ekologiczna najlepsza żywność funkcjonalna

Żywność ekologiczna najlepsza żywność funkcjonalna Żywność ekologiczna najlepsza żywność funkcjonalna Prof. Dr hab. Ewa Solarska Pracownia Żywności Ekologicznej Wydział Nauk o Żywności i Biotechnologii Uniwersytet Przyrodniczy w Lublinie Konferencja naukowa

Bardziej szczegółowo

Transformacja pośrednia składa się z trzech etapów:

Transformacja pośrednia składa się z trzech etapów: Transformacja pośrednia składa się z trzech etapów: 1. Otrzymanie pożądanego odcinka DNA z materiału genetycznego dawcy 2. Wprowadzenie obcego DNA do wektora 3. Wprowadzenie wektora, niosącego w sobie

Bardziej szczegółowo

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia.

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia. I. Biologia jako nauka Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia. 1. Biologia jako nauka wskazuje biologię jako naukę o organizmach

Bardziej szczegółowo

Zawartość. Wstęp 1. Historia wirusologii. 2. Klasyfikacja wirusów

Zawartość. Wstęp 1. Historia wirusologii. 2. Klasyfikacja wirusów Zawartość 139585 Wstęp 1. Historia wirusologii 2. Klasyfikacja wirusów 3. Struktura cząstek wirusowych 3.1. Metody określania struktury cząstek wirusowych 3.2. Budowa cząstek wirusowych o strukturze helikalnej

Bardziej szczegółowo

Pasze GMO: diabeł tak straszny jak go malują?

Pasze GMO: diabeł tak straszny jak go malują? https://www. Pasze GMO: diabeł tak straszny jak go malują? Autor: agrofakt.pl Data: 3 marca 2017 Genetycznie modyfikowana żywność budzi w ostatnich latach wiele kontrowersji. Przemysł paszowy wykorzystuje

Bardziej szczegółowo

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej wskazuje biologię jako naukę o organizmach wymienia czynności

Bardziej szczegółowo

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej Dział I. Biologia jako nauka 1. Biologia jako nauka Uczeń: wskazuje biologię jako naukę o organizmach wymienia czynności życiowe dziedzin

Bardziej szczegółowo

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia 1. Biologia jako nauka wskazuje biologię jako naukę o organizmach wymienia czynności życiowe

Bardziej szczegółowo

SPIS TREŚCI WYKAZ SKRÓTÓW WSTĘP... 15

SPIS TREŚCI WYKAZ SKRÓTÓW WSTĘP... 15 SPIS TREŚCI WYKAZ SKRÓTÓW... 11 WSTĘP... 15 CZĘŚĆ I. BIOPROCESY W PRODUKCJI BIOFARMACEUTYKÓW I BIOKOSMECEUTYKÓW: SYSTEMY BIOLOGICZNE I WYBRANE PROCESY UPSTREAM... 17 1. TECHNOLOGICZNE PODSTAWY HODOWLI

Bardziej szczegółowo

Probiotyki, prebiotyki i synbiotyki w żywieniu zwierząt

Probiotyki, prebiotyki i synbiotyki w żywieniu zwierząt .pl Probiotyki, prebiotyki i synbiotyki w żywieniu zwierząt Autor: dr inż. Barbara Król Data: 2 stycznia 2016 W ostatnich latach obserwuje się wzmożone zainteresowanie probiotykami i prebiotykami zarówno

Bardziej szczegółowo

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej Dział I. Biologia nauka o życiu Temat 1. Biologia jako nauka 2. Jak poznawać biologię? 3. Obserwacje mikroskopowe Poziom wymagań ocena dopuszczająca

Bardziej szczegółowo

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej I. Biologia jako nauka Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej 1. Biologia jako nauka wskazuje biologię

Bardziej szczegółowo

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej 1. Biologia jako nauka wskazuje biologię jako naukę o organizmach

Bardziej szczegółowo

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej 1. Biologia jako nauka wskazuje biologię jako naukę o organizmach

Bardziej szczegółowo

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej I. Biologia jako nauka 1. Biologia jako nauka wskazuje biologię

Bardziej szczegółowo

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej I. Biologia jako nauka Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej 1. Biologia jako nauka wskazuje biologię

Bardziej szczegółowo

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej I. Biologia jako nauka 1. Biologia jako nauka wskazuje biologię

Bardziej szczegółowo

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej I. Biologia jako nauka Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej 1. Biologia jako nauka wskazuje biologię

Bardziej szczegółowo

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej I. Biologia jako nauka Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej 1. Biologia jako nauka wskazuje biologię

Bardziej szczegółowo

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej I. Biologia jako nauka Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej 1. Biologia jako nauka wskazuje biologię

Bardziej szczegółowo

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej wskazuje biologię jako naukę o organizmach wymienia czynności

Bardziej szczegółowo

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej wskazuje biologię jako naukę o organizmach wymienia czynności

Bardziej szczegółowo

Poziom wymagań. ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca

Poziom wymagań. ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca I. Biologia jako nauka Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej w roku szkolnym 2018/2019 oparte są na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej / 1. Biologia

Bardziej szczegółowo

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej I. Biologia jako nauka Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej 1. Biologia jako nauka wskazuje biologię

Bardziej szczegółowo

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej I. Biologia jako nauka Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej 1. Biologia jako nauka wskazuje biologię

Bardziej szczegółowo

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej I. Biologia jako nauka Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej 1. Biologia jako nauka wskazuje biologię

Bardziej szczegółowo

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej I. Biologia jako nauka Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej 1. Biologia jako nauka wskazuje biologię

Bardziej szczegółowo

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej 1. Biologia jako nauka wskazuje biologię jako naukę o organizmach

Bardziej szczegółowo

Fizyczne działanie kwasów humusowych: poprawa napowietrzenia (rozluźnienia) gleby. poprawa struktury gleby (gruzełkowatość) zwiększona pojemność wodna

Fizyczne działanie kwasów humusowych: poprawa napowietrzenia (rozluźnienia) gleby. poprawa struktury gleby (gruzełkowatość) zwiększona pojemność wodna Szkolenie Ogrodnicze ProCam Polska Fizyczne działanie kwasów humusowych: poprawa napowietrzenia (rozluźnienia) gleby poprawa struktury gleby (gruzełkowatość) zwiększona pojemność wodna zapobieganie erozji

Bardziej szczegółowo

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej I. Biologia jako nauka Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej 1. Biologia jako nauka Uczeń: wskazuje

Bardziej szczegółowo

I PÓŁROCZE. Poziom wymagań. ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca

I PÓŁROCZE. Poziom wymagań. ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej obowiązujące w SP 340, oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej I PÓŁROCZE I. Biologia jako nauka 1.

Bardziej szczegółowo

Rozmnażanie i wzrost komórek sąściśle kontrolowane. Genetyczne podłoże nowotworzenia

Rozmnażanie i wzrost komórek sąściśle kontrolowane. Genetyczne podłoże nowotworzenia Rozmnażanie i wzrost komórek sąściśle kontrolowane Genetyczne podłoże nowotworzenia Rozmnażanie i wzrost komórek sąściśle kontrolowane Rozmnażanie i wzrost komórek sąściśle kontrolowane Połączenia komórek

Bardziej szczegółowo

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej Dział I. Biologia jako nauka 1. Biologia jako nauka wskazuje

Bardziej szczegółowo

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej Dział I. Biologia jako nauka 1. Biologia jako nauka wskazuje

Bardziej szczegółowo

Biotechnologia i inżynieria genetyczna

Biotechnologia i inżynieria genetyczna Wersja A Test podsumowujący rozdział II i inżynieria genetyczna..................................... Imię i nazwisko.............................. Data Klasa oniższy test składa się z 16 zadań. rzy każdym

Bardziej szczegółowo

Roman Marecik, Paweł Cyplik

Roman Marecik, Paweł Cyplik PROGRAM STRATEGICZNY ZAAWANSOWANE TECHNOLOGIE POZYSKIWANIA ENERGII ZADANIE NR 4 Opracowanie zintegrowanych technologii wytwarzania paliw i energii z biomasy, odpadów rolniczych i innych Roman Marecik,

Bardziej szczegółowo

Poziom wymagań. ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca

Poziom wymagań. ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca I. Biologia jako nauka Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej. Rok szkolny 2018/2019 Nauczyciel prowadzący

Bardziej szczegółowo

1.8. Funkcje biologiczne wody wynikają z jej właściwości fizycznych i chemicznych. Oceń

1.8. Funkcje biologiczne wody wynikają z jej właściwości fizycznych i chemicznych. Oceń 1 1.8. Funkcje biologiczne wody wynikają z jej właściwości fizycznych i chemicznych. Oceń każdą podaną w tabeli informację, wybierając Prawdę, jeśli jest ona prawdziwa, lub, jeśli jest fałszywa. 1) Ilość

Bardziej szczegółowo

Uczeń: określa przedmiot badań biologii jako nauki opisuje wskazane cechy organizmów wyjaśnia, czym zajmuje się wskazana dziedzina biologii

Uczeń: określa przedmiot badań biologii jako nauki opisuje wskazane cechy organizmów wyjaśnia, czym zajmuje się wskazana dziedzina biologii Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej- rok szkolny 2018/2019 I. Biologia jako nauka 1. Biologia jako

Bardziej szczegółowo

Granudacyn. Nowoczesne i bezpieczne przemywanie, płukanie i nawilżanie ran.

Granudacyn. Nowoczesne i bezpieczne przemywanie, płukanie i nawilżanie ran. Granudacyn Nowoczesne i bezpieczne przemywanie, płukanie i nawilżanie ran. Granudacyn to roztwór do szybkiego czyszczenia, nawilżania i płukania ostrych, przewlekłych i zanieczyszczonych ran oraz oparzeń

Bardziej szczegółowo

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej Poziom wymagań ocena dopuszczająca ocena dostateczna ocena

Bardziej szczegółowo

BIOTECHNOLOGIA OGÓLNA

BIOTECHNOLOGIA OGÓLNA BIOTECHNOLOGIA OGÓLNA 1. Wprowadzenie do biotechnologii. Rys historyczny. Zakres i znaczenie nowoczesnej biotechnologii. Opracowanie procesu biotechnologicznego. 7. Produkcja biomasy. Białko mikrobiologiczne.

Bardziej szczegółowo

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej 1. Biologia jako nauka Uczeń: wskazuje biologię jako naukę

Bardziej szczegółowo

Znaczenie genetyki. Opracował A. Podgórski

Znaczenie genetyki. Opracował A. Podgórski Znaczenie genetyki Opracował A. Podgórski InŜynieria genetyczna InŜynieria genetyczna ingerencja w materiał genetyczny organizmów, w celu zmiany ich właściwości dziedzicznych. Istota inŝynierii genetycznej

Bardziej szczegółowo

KRYTERIA NA OCENY BIOLOGIA KLASA

KRYTERIA NA OCENY BIOLOGIA KLASA KRYTERIA NA OCENY BIOLOGIA KLASA Dział I. Biologia nauka o życiu Temat 1. Biologia jako nauka 2. Jak poznawać biologię? 3. Obserwacje mikroskopowe Poziom wymagań ocena dopuszczająca ocena dostateczna ocena

Bardziej szczegółowo

Specjalność (studia II stopnia) Oczyszczanie i analiza produktów biotechnologicznych

Specjalność (studia II stopnia) Oczyszczanie i analiza produktów biotechnologicznych Specjalność (studia II stopnia) Oczyszczanie i analiza produktów biotechnologicznych Studia magisterskie przedmioty specjalizacyjne Bioinformatyka w analizie genomu Diagnostyka molekularna Elementy biosyntezy

Bardziej szczegółowo

Biotechnologia interdyscyplinarna dziedzina nauki i techniki, zajmująca się zmianą materii żywej i poprzez wykorzystanie

Biotechnologia interdyscyplinarna dziedzina nauki i techniki, zajmująca się zmianą materii żywej i poprzez wykorzystanie Biotechnologia interdyscyplinarna dziedzina nauki i techniki, zajmująca się zmianą materii żywej i poprzez wykorzystanie organizmów żywych, ich części, bądź pochodzących od nich produktów, a także modeli

Bardziej szczegółowo

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej Temat 1. Biologia jako nauka Uczeń: wskazuje biologię jako

Bardziej szczegółowo

Nowoczesne systemy ekspresji genów

Nowoczesne systemy ekspresji genów Nowoczesne systemy ekspresji genów Ekspresja genów w organizmach żywych GEN - pojęcia podstawowe promotor sekwencja kodująca RNA terminator gen Gen - odcinek DNA zawierający zakodowaną informację wystarczającą

Bardziej szczegółowo

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej Dział I. Biologia nauka o życiu Temat 1. Biologia jako nauka

Bardziej szczegółowo

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej

Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej Wymagania edukacyjne z biologii dla klasy 5 szkoły podstawowej oparte na Programie nauczania biologii Puls życia autorstwa Anny Zdziennickiej Dział I. Biologia nauka o życiu Temat 1. Biologia jako nauka

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGO LNYCH S RO DROCZNYCH I ROCZNYCH OCEN Z BIOLOGII W KLASIE V

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGO LNYCH S RO DROCZNYCH I ROCZNYCH OCEN Z BIOLOGII W KLASIE V 24 WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGO LNYCH S RO DROCZNYCH I ROCZNYCH OCEN Z BIOLOGII W KLASIE V Dział I. Biologia nauka o życiu Temat 1. Biologia jako nauka 2. Jak poznawać biologię?

Bardziej szczegółowo