Fizjoterapia W3: Serce i płuca, biomechanika, fale. Hydro(hemo)dynamika. p = ρgh

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Fizjoterapia W3: Serce i płuca, biomechanika, fale. Hydro(hemo)dynamika. p = ρgh"

Transkrypt

1 Hydro(hemo)dynamika Ciśnienie hydrostatyczne: zależy od gęstości cieczy (ρ) oraz od głębokości zanurzenia pod powierzchnią cieczy (h): p ρgh Zgodnie z prawem Pascala ciśnienie wywierane z zewnątrz na ciecz jednorodną rozchodzi się równomiernie w całej jej objętości. Zatem ciśnienie w dowolnym miejscu cieczy jest sumą ciśnienia hydrostatycznego i zewnętrznego: p p z + ρgh Prawo ciągłości strugi: dla cieczy nieściśliwej przepływającej w zamkniętej rurce iloczyn prędkości cieczy i pola powierzchni przekroju rurki jest stały. S 1 v 1 S v const Prawo Bernoulliego: Dla dowolnego fragmentu przepływu cieczy nieściśliwej w zamkniętej rurce suma ciśnień: statycznego, dynamicznego oraz hydrostatycznego jest stała. ρv p + + ρgh const

2 Podstawowy wniosek: gdy przekrój rurki maleje to rośnie prędkość przepływu cieczy ale spada ciśnienie statyczne. W pewnych sytuacjach ciśnienie statyczne może być ujemne. Lepkość cieczy: oddziaływanie (tarcie wewnętrzne) pomiędzy sąsiadującymi warstwami cieczy. Wielkość siły oddziaływania pomiędzy warstwami cieczy opisywana jest prawem Newtona: v ηs x gdzie η jest współczynnikiem lepkości cieczy. Ciecze stosujące się do tego prawa nazywamy niutonowskimi, pozostałe to ciecze nieniutonowskie (np. takie w których występują duże cząsteczki). Współczynnik lepkości zależy do temperatury: Lepkość krwi zależy od hematokrytu. F η B e Przepływ laminarny: prędkości cieczy w sąsiednich warstwach są równoległe do siebie warstwy się nie mieszają. Przepływ burzliwy: prędkości cieczy w sąsiednich warstwach nie są równoległe do siebie warstwy się mieszają. E a kt laminarny burzliwy

3 Przepływ burzliwy występuje gdy prędkość cieczy przekroczy wartość krytyczną określoną przez liczbę Reynoldsa. gdzie: ρ gęstość cieczy, d średnica rurki, v prędkość cieczy, η lepkość. Gdy Re < 300 to przepływ jest laminarny, dla Re > 3000 przepływ jest burzliwy. Pomiędzy 300 < Re < 3000 mamy do czynienia ze stanem niestacjonarnym (niestabilnym). Prawo Hagena-Poiseuille a określa zależność pomiędzy strumieniem cieczy a jej lepkością, różnicą ciśnień napędzającą przepływ oraz rozmiarami naczynia. Jak widać strumień cieczy jest proporcjonalny do różnicy ciśnień a współczynnik 8ηl/πr 4 nazywamy oporem naczyniowym. Układ krwionośny Re V Φ t ρdv η πr 4 p 8ηl

4 Układ krwionośny człowieka składa się z dwóch obwodów: płucnego (małego) i obwodowego (dużego). Lewa komora serca zasila krążenie obwodowe, prawa krążenie płucne. Przepływ krwi napędzany jest różnicą ciśnień pomiędzy układem tętnic i żył. W dużym obwodzie ciśnienie tętnicze waha się pomiędzy mm Hg (średnio 100 mm Hg), ciśnienie żylne wynosi zaś 10 mm Hg. Ruch krwi napędzany jest więc różnicą ciśnień około 90 mm Hg.- Przyjmując, że na poziomie serca ciśnienie hydrostatyczne krwi wynosi zero otrzymamy 30 mm Hg w rejonie głowy i +100 mm Hg w rejonie stóp. Ten układ ci-śnień daje niedokrwienia (omdlenia) oraz żylaki. Ponieważ ciśnienie hydrostatyczne jest jednakowe w tętnicach i żyłach nie ma więc wpływu na krążenie. Charakter przepływu krwi zależy od rodzaju naczynia. W aorcie szybkość przepływu osiąga wartości do 140 cm/s (co daje przepływ burzliwy), im dalej od serca tym bardziej prędkość krwi spada. Spowodowane jest to zarówno oporem naczyniowym jak i tym, że ze względy na drzewiastą strukturę układu naczyń rośnie sumaryczny przekrój naczyń.

5 Prędkość przepływu krwi w naczyniach nie jest stała okresowo zmienia się na skutek zmian ciśnienia wywołanych pracą serca. Prędkość staje się stała dopiero w naczyniach włosowatych i części żylnej. Dlatego aortę, tętnice i tętniczki nazywamy tętniącą częścią układu krwionośnego. Serce pracuje jako pompa przetacza pewną ilość krwi ( V) i nadaje jej pewną prędkość wyrzutową (v). Mechaniczna praca wykonywana przez serce: ρv V W p V + Praca wykonywana przez komory jest różna: komora lewa 0.94 J/skurcz komora prawa J/skurcz Całkowita moc serca P 1.4 W. Naczynia krwionośne w części tętniącej charakteryzują się dużą sprężystością (dzięki właściwościom sprężystym ścian naczyń i obecności mięśni gładkich). Krew pompowana przez serce rozciąga ściany naczyń i energia kinetyczna krwi jest gromadzona w ten przez naczynia jako energia potencjalna sprężystości. Obecność włókien elastyny i kolagenu powoduje, że w sprężystości naczyń wyróżniamy dwa składniki: statyczny i dynamiczny. Dynamiczny moduł sprężystości silnie rośnie wraz ze wzrostem naprężenia ścian naczynia i dzięki temu tętnice zabezpieczone są przed nadmiernym rozszerzeniem. Odkształcenie naczyń rozchodzi się ze stałą prędkością wzdłuż ścian w postaci fali tętna. Szybkość fali tętna opisana jest wzorem: v ρr gdzie: E moduł Younga, h grubość ściany naczynia, ρ gęstość ściany, r promień przekroju naczynia. Eh Prędkość fali tętna wynosi 5 8 m/s i jest znacznie większa od prędkości przepływu krwi (0.5 m/s w tętnicy głównej). Długość fali tętna wynosi 4 m. Żyły łatwiej ulegają odkształceniu i dlatego pełnią rolę zbiornika pojemnościowego (gromadzą znaczną część krwi obwodowej ok. 70%).

6 Napięcie powierzchniowe oddychanie. Napięcie powierzchniowe: warstwa powierzchniowa cieczy jest napinana przez niezrównoważone oddziaływania międzycząsteczkowe. Praca potrzebna na powiększenie powierzchni cieczy jest proporcjonalna do przyrostu powierzchni: W σ S Współczynnik napięcia powierzchniowego σ zależy od rodzaju cieczy oraz temperatury, dla wody ma wartość 0.07 N/m., co jest wartością dużą (wiązania wodorowe w wodzie) w porównaniu do innych cieczy np. alkohol etylowy 0.0 N/m. Istnienie napięcia powierzchniowego powoduje, że pod zakrzywioną powierzchnią cieczy o promieniu r panuje ciśnienie: σ p r W płucach ciśnienie wewnątrzpłucnowe (p w ) jest niższe od atmosferycznego. Równowaga jest utrzymywana dzięki sprężystości pęcherzyków płucnych, które dają dodatkowe ciśnienie p s ). Podczas wdechu pęcherzyki ulegają rozciągnięciu bowiem ciśnienie pęcherzykowe maleje ponizej atmosferycznego. Przy wydechu sprężystość pęcherzyków powoduje ich kurczenie się. Właściwości sprężyste pęcherzyków uzupełniane są

7 przez działanie surfaktantu płucnego. Napięcie powierzchniowe surfaktantu zależy od grubości jego warstwy: dla warstw grubszych wynosi 0.05 N/m, natomiast dla warstw cienkich 0.5 N/m. Elementy biomechaniki Sprężystość: zdolność ciała do powrotu do pierwotnego kształtu po usunięciu siły odkształcającej. Prawo Hooke a: naprężenie pojawiające się w ciele odkształcanym (pf/s) jest proporcjonalne do względnego odkształcenia ciała ( l/l 0 ). p Moduł Younga (E) charakteryzuje właściwości sprężyste danego materiału i liczbowo odpowiada naprężeniu towarzyszącemu podwojeniu długości ciała ( ll 0 ). W postaci uproszczonej dany element sprężysty może być opisany przez współczynnik sprężystości (k) i wówczas odkształceniu (y) tego elementu towarzyszy pojawienie się siły sprężystej (F s ): F s ky Odkształcony element gromadzi energię nazywamy ją energią potencjalną sprężystości: E ps l E ky Moment siły: iloczyn wartości składowej siły prostopadłej do ramienia i długości ramienia działania siły. l 0 M rf rf sinα

8 Tkanka łączna: Tkanka ta wchodzi w skład prawie wszystkich narządów. Podstawowymi składnikami tkanki łącznej są: komórki, substancja podstawowa i składniki włókniste. Komórki odpowiedzialne są za powstawanie i odnowę tkanki łącznej. Występują również komórki związane z mechanizmami odpornościowymi (np. limfocyty). Substancja podstawowa wypełnia przestrzeń pomiędzy komórkami i składnikami włóknistymi. Podstawowymi składnikami substancji podstawowej są różnego typu pochodne cukrowców glikozoaminoglikany (GAG), proteogliokany, glikoproteidy, kwas hialuronowy. Wszystkie składniki substancji podstawowej są makrocząsteczkami w wielu przypadkach polimerami. Składniki włókniste to przede wszystkim kolagen, elastyna i włókna retikulinowe. Tkanka kostna: składa się z komórek kostnych (osteocytów), twardej substancji międzykomórkowej przesączonej nieorganicznymi solami wapnia (węglany i fosforany) oraz części elastycznej zawierającej głównie kolagen. Materia nieorganiczna kości formuje dwa podstawowe typy struktur: zbitą (korową, np. na powierzchni kości) oraz gąbczastą (lub beleczkową, trabekularną wewnątrz kości). Warstwę korową tworzą blaszki ułożone koncentrycznie wokół kanałów Haversa. Prawo Wolffa: struktura trabekularna tkanki kostnej w warunkach równowagi dostosowuje się do kierunków naprężeń głównych. Gęstość tkanki kostnej zmienia się wraz z obciążeniem. W miarę wzrostu naprężenia w kości ulega ona przebudowie. Z fizycznego punktu widzenia tkanka kostna jest materiałem kompozytowym, składającym się z faz stałych wypełnionych fazą ciekłą. Za kie-

9 runkowe efekty przebudowy kości odpowiedzialne są dwa efekty: chemiczny i piezoelektryczny. Efekt chemiczny polega na tym, że powtarzające się naprężenia powodują koncentrację wapnia i większą intensywność reakcji chemicznych. W efekcie piezoelektrycznym naprężenia w kości powodują pojawienie się ładunków, które przyciągają lub odpychają jony wapnia. Mięśnie poprzecznie prążkowane przystosowane są do wykonywania szybkich skurczów i sterowane są przez układ nerwowy. Mięśnie gładkie wykonują długotrwałe, powolne skurcze i nie podlegają kontroli ośrodkowego układu nerwowego. Niepobudzony mięsień wykazuje właściwości lepko-sprężyste: moduł Younga mięśnia zmienia się w zależności od jego długości. Dla mięśnia nie rozciągniętego E jest małe (mięsień jest lepki podatny na odkształcenie) i rośnie wraz ze wzrostem długości rozciąganego mięśnia. W przypadku mięśnia niepobudzonego występuje zjawisko relaksacji wydłużenia w wyniku obciążenia mięśnia jego długość zaczyna rosnąć aż do momentu, gdy siła sprężystości mięśnia nie zrównoważy siły obciążającej. Właściwości mięśnia pobudzonego jego zdolność do wywierania siły badane mogą być w warunkach skurczu auksotonicznego (przy

10 zmniejszającej się długości mięśnia, w warunkach dynamicznych) lub skurczu izometrycznego (przy stałej długości mięśnia, w warunkach statycznych). Skurcz mięśnia wywoływany jest przez pobudzenie elektryczne przechodzące od motoneuronów przez płytki ruchowe do włókien mięśniowych. Zakończenia pojedynczego neuronu dochodzą do pewnej ilości włókien mięśniowych, a cały mięsień jest pobudzany przez wiele neuronów. Grupę włókien pobudzanych przez ten sam neuron nazywamy jednostką ruchową. Włókna mięśni szkieletowych podzielić można na dwie grupy szybko i wolnokurczliwe (fast twich, slow twich). Włókna szybkokurczliwe w krótkim czasie reagują na pobudzenie i kurczą się z dużą siłą. Są aktywowane przy dużym jednokrotnym wysiłku. Szybko jednak ulegają zmęczeniu. Włókna wolnokurczliwe generują skurcz powolny ale nie męczą się, gdy pobudzane są do wielokrotnego skurczu. Włókna te są aktywowane przy długotrwałym wysiłku. W pojedynczym mięśniu występować mogą zarówno włókna wolno jak i szybkokurczliwe, zawsze jednak należą one do oddzielnych jednostek ruchowych. Wielkość siły jaką może wywrzeć mięsień zależy od objętości tkanki od pola przekroju oraz długości. Wielkością opisującą rozmiary mięśnia jest jego przekrój fizjologiczny (powierzchnia przekroju poprzeczna do wszystkich włókien). Wielkość siły jaka przypada na jednostkę przekroju fizjologicznego mięśnie nazywamy siłą właściwą. Dla wielu mięśni wartość siły właściwej jest stała i wynosi ok. 30 N/cm.

11 W mięśniu pierzastym siła działa pod pewnym kątem w stosunku do osi mięśnia a więc efektywna siła mięśnia jest mniejsza od maksymalnej działającej wzdłuż włókien. Siła wywierana przez pojedynczy sarkomer jest największa, gdy jego długość jest zbliżona do długości spoczynkowej (.5 µm). W miarę kurczenia lub rozciągania sarkomeru siła maleje. W modelu mięśnia oprócz elementów kurczliwych (sarkomerów) wyróżnić jeszcze należy elementy sprężyste równoległe i szeregowe. Elementami sprężystymi są ścięgna, powięzie (szeregowe) i inne tkanki łączne (równoległe). Całkowita siła wywierana przez mięsień jest sumą sił wywieranych przez elementy aktywne (kurczliwe) jak i bierne (sprężyste).

12 Siła wywierana przez mięsień wynika z jego elektrycznego pobudzenia i występuje z pewnym opóźnieniem w stosunku do momentu rozpoczęcia pobudzenia. Siła rozwijana przez mięsień nie osiąga od razu wartości maksymalnej w dochodzeniu do wartości maksymalnej siły wyróżnić można trzy fazy: faza powolnego wzrostu siły (1) wynika z niejednoczesnego pobudzenia wszystkich włókien biorących udział w danym skurczu. faza szybkiego wzrostu siły () charakteryzuje się największą szybkością narastania siły. faza stabilizacji wartości siły (3) Osiągnięcie maksymalnej wartości siły trwa s. Prędkość kurczenia się pojedynczego sarkomeru jest mniej więcej stała i wynosi 6 µm/s. Szybkość kurczenia się całego mięśnia jest różna i zależy od stosunku długości mięśnia do długości sarkomeru: v v m Ponieważ mięsień może osiągać określoną moc maksymalną więc maksymalna siła wywierana przez mięsień jest odwrotnie proporcjonalna do szybkości kurczenia się mięśnia: W warunkach statycznych moment siły mięśnia (M F ) równoważy moment siły obciążającej (M Q ), przy ruchu ramienia w górę M F > M Q. s l l m W F l P max t t s Fv

13 Szybkość ruchu ramienia jest znacznie większa od szybkości skurczu mięśnia bowiem przy jednakowej prędkości kątowej różne są odległości przyłożenia siły mięśnia (r 1 ) i końca ramienia (r ). ω v 1 r 1 v r Drgania i fale Drganie harmoniczne ruch opisany równaniem: y Asin( ω t + ϕ) A amplituda, ω częstość kołowa, ϕ faza początkowa. Drganie harmoniczne jest ruchem okresowym (periodycznym): po upływie czasu, który nazywamy okresem drgań (T), ciało znajduje się w tej samej fazie ruchu. Odwrotność okresu nazywa się częstotliwością (f).

14 T f π ω ω π Prędkość i przyspieszenie w ruchu harmonicznym są więc formalnie opisywane następującymi równaniami: dy v Aω cos( ωt + ϕ) dt dv a Aω sin( ωt + ϕ) ω y dt Dla masy m zawieszonej na końcu sprężyny o współczynniku sprężystości k wyrażenie na siłę daje następujące równania: skąd mamy: F a ma k m y ky

15 ω Jak widać częstość kołowa w tym ruchu zależy od właściwości układu (k, m). Częstość kołową opisaną powyższym równaniem nazywamy częstością własną układu, z taką częstością układ ten będzie drgał wychylony z położenia równowagi i pozostawiony sam sobie. Energia drgań układu mechanicznego jest sumą energii kinetycznej i potencjalnej: Energia drgań nie zależy od czasu i jest proporcjonalna do iloczynu kwadratów amplitudy i częstotliwości. W rzeczywistych układach drgających występuje tarcie, które poprzez rozpraszanie energii drgań powoduje stopniowy spadek amplitudy (zanikanie drgań). k m mv ma ω cos ωt Ek ky ka sin ωt ma ω sin E p ma ω E Ek + E p ωt Jeśli na układ działa siła o częstotliwości f w to wymusza ona drgania tego układu z taką właśnie częstotliwością. Amplituda drgań wymuszonych gwałtownie rośnie, gdy częstotliwość siły wymuszającej staje się równa (lub bliska) częstotliwości własnej układu. Przekazywanie energii drgań, gdy częstotliwość wymuszania jest równa częstotliwości własnej układu (f w f 0 ) nazywa się rezonansem.

16 Gdy drganie występuje nie w jednym miejscu ale rozchodzi się w przestrzeni to mamy do czynienia z falą. Rozchodzenie się fal polega na tym, że drganie w jednym miejscu pobudza do drgań punkty sąsiednie. Fala przenosi zatem energię bez udziału ruchu ośrodka. Ponieważ fala jest drganiem więc opisywana jest przez wielkości charakterystyczne dla ruchu drgającego. Wielkościami opisującymi wyłącznie falę są długość oraz prędkość fali. Prędkość fali w ośrodku jednorodnym jest stała i zależy wyłącznie od właściwości ośrodka w którym fala się rozchodzi. Prędkość fali mechanicznej w ośrodku sprężystym: v Prędkość fali elektromagnetycznej w próżni: B ρ c µε

17 Fale poprzeczne drganie odbywa się w kierunku prostopadłym do kierunku rozchodzenia się fali (jej prędkości). Przykładem fal poprzecznych są fale elektromagnetyczne. Fale podłużne drganie odbywa się w kierunku równoległym do kierunku rozchodzenia się fali (jej prędkości). Przykładem fal podłużnych są fale akustyczne. Równanie fali płaskiej: y t Asin π ( T x ) λ Ilość energii przenoszonej przez falę przez jednostkową powierzchnię (ustawioną prostopadle do kierunku rozchodzenia się fali) w jednostkowym czasie nazywa się natężeniem fali: I E J W St m s m Fale elektromagnetyczne polegają na rozchodzeniu się w przestrzeni drgania pola elektrycznego i magnetycznego. Zgodnie z prawami Maxwella drgania tych pól są do siebie wzajemnie prostopadłe, zachodzą również w płaszczyznach prostopadłych do kierunku rozchodzenia się fali. Fale e-m. są zatem falami poprzecznymi. Spektrum fal elektromagnetycznych

18 Mikrofale niosą ze sobą energię od do ev, co odpowiada zakresowi energii potrzebnych do wzbudzenia ruchów rotacyjnych i skręcających w molekułach. Z tego względu absorpcja promieniowania mikrofalowego przez materiały nie będące przewodnikami prowadzi do wydzielania ciepła w tych materiałach. W zakresie fal radiowych ciepło wydziela się głównie na skutek strat związanych z przewodzeniem ładunków elektrycznych. Reakcję cząsteczek (środowiska) na obecność pola elektrycznego w ogólny sposób przedstawia przenikalność dielektryczna ε r, składająca się z dwóch członów: stałej dielektrycznej oraz strat dielektrycznych. Oba składniki zależą od częstotliwości pola elektrycznego. Wydzielanie się ciepła pod wpływem działania fal elektromagnetycznych o wysokiej częstotliwości wykorzystywane jest w diatermii. Tego typu leczenie stosowane jest w przewlekłych stanach zapalnych mięśni, tkanki łącznej, stawów oraz nerwów. Zabiegi diatermiczne powodują rozszerzenie naczyń krwionośnych, zmniejszenie pobudliwości nerwowomięśniowej, zmniejszenie napięcia mięśni, przyspieszenie procesów wchłaniania tkankowego, działanie przeciwbólowe. Należy pamiętać, że istnieje szereg schorzeń w których nie wolno stosować diatermii.

Układ krążenia krwi. Bogdan Walkowiak. Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka. 2014-11-18 Biofizyka 1

Układ krążenia krwi. Bogdan Walkowiak. Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka. 2014-11-18 Biofizyka 1 Wykład 7 Układ krążenia krwi Bogdan Walkowiak Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka 2014-11-18 Biofizyka 1 Układ krążenia krwi Source: INTERNET 2014-11-18 Biofizyka 2 Co

Bardziej szczegółowo

MECHANIKA PŁYNÓW Płyn

MECHANIKA PŁYNÓW Płyn MECHANIKA PŁYNÓW Płyn - Każda substancja, która może płynąć, tj. pod wpływem znikomo małych sił dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje, oraz może swobodnie się przemieszczać

Bardziej szczegółowo

Fal podłużna. Polaryzacja fali podłużnej

Fal podłużna. Polaryzacja fali podłużnej Fala dźwiękowa Podział fal Fala oznacza energię wypełniającą pewien obszar w przestrzeni. Wyróżniamy trzy główne rodzaje fal: Mechaniczne najbardziej znane, typowe przykłady to fale na wodzie czy fale

Bardziej szczegółowo

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne

Bardziej szczegółowo

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami

Bardziej szczegółowo

Pomiar ciśnienia krwi metodą osłuchową Korotkowa

Pomiar ciśnienia krwi metodą osłuchową Korotkowa Ćw. M 11 Pomiar ciśnienia krwi metodą osłuchową Korotkowa Zagadnienia: Oddziaływania międzycząsteczkowe. Siły Van der Waalsa. Zjawisko lepkości. Równanie Newtona dla płynięcia cieczy. Współczynniki lepkości;

Bardziej szczegółowo

5.1. Powstawanie i rozchodzenie się fal mechanicznych.

5.1. Powstawanie i rozchodzenie się fal mechanicznych. 5. Fale mechaniczne 5.1. Powstawanie i rozchodzenie się fal mechanicznych. Ruch falowy jest zjawiskiem bardzo rozpowszechnionym w przyrodzie. Spotkałeś się z pewnością w życiu codziennym z takimi pojęciami

Bardziej szczegółowo

Wykład FIZYKA I. 11. Fale mechaniczne. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 11. Fale mechaniczne.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 11. Fale mechaniczne Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html FALA Falą nazywamy każde rozprzestrzeniające

Bardziej szczegółowo

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:

Bardziej szczegółowo

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH

Bardziej szczegółowo

Dźwięk. Cechy dźwięku, natura światła

Dźwięk. Cechy dźwięku, natura światła Dźwięk. Cechy dźwięku, natura światła Fale dźwiękowe (akustyczne) - podłużne fale mechaniczne rozchodzące się w ciałach stałych, cieczach i gazach. Zakres słyszalnej częstotliwości f: 20 Hz < f < 20 000

Bardziej szczegółowo

CIĘŻAR. gdzie: F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg

CIĘŻAR. gdzie: F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg WZORY CIĘŻAR F = m g F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg 1N = kg m s 2 GĘSTOŚĆ ρ = m V ρ gęstość substancji, z jakiej zbudowane jest ciało [ kg m 3] m- masa [kg] V objętość [m

Bardziej szczegółowo

Gęstość i ciśnienie. Gęstość płynu jest równa. Gęstość jest wielkością skalarną; jej jednostką w układzie SI jest [kg/m 3 ]

Gęstość i ciśnienie. Gęstość płynu jest równa. Gęstość jest wielkością skalarną; jej jednostką w układzie SI jest [kg/m 3 ] Mechanika płynów Płyn każda substancja, która może płynąć, tj. dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje oraz może swobodnie się przemieszczać (przepływać), np. przepompowywana

Bardziej szczegółowo

Szczegółowy rozkład materiału z fizyki dla klasy II gimnazjum zgodny z nową podstawą programową.

Szczegółowy rozkład materiału z fizyki dla klasy II gimnazjum zgodny z nową podstawą programową. Szczegółowy rozkład materiału z fizyki dla klasy gimnazjum zgodny z nową podstawą programową. Lekcja organizacyjna. Omówienie programu nauczania i przypomnienie wymagań przedmiotowych Tytuł rozdziału w

Bardziej szczegółowo

PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły.

PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły. PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły. Pracę oznaczamy literą W Pracę obliczamy ze wzoru: W = F s W praca;

Bardziej szczegółowo

SIŁA 2015-04-15. Rodzaje skurczów mięśni: SKURCZ IZOTONICZNY ZDOLNOŚĆ KONDYCYJNA

SIŁA 2015-04-15. Rodzaje skurczów mięśni: SKURCZ IZOTONICZNY ZDOLNOŚĆ KONDYCYJNA SIŁA ZDOLNOŚĆ KONDYCYJNA Rodzaje skurczów mięśni: skurcz izotoniczny wiąże się ze zmianą długości mięśnia przy stałym poziomie napięcia mięśniowego. Występuje gdy mięsień może się skracać, ale nie generuje

Bardziej szczegółowo

Testy Która kombinacja jednostek odpowiada paskalowi? N/m, N/m s 2, kg/m s 2,N/s, kg m/s 2

Testy Która kombinacja jednostek odpowiada paskalowi? N/m, N/m s 2, kg/m s 2,N/s, kg m/s 2 Testy 3 40. Która kombinacja jednostek odpowiada paskalowi? N/m, N/m s 2, kg/m s 2,N/s, kg m/s 2 41. Balonik o masie 10 g spada ze stałą prędkością w powietrzu. Jaka jest siła wyporu? Jaka jest średnica

Bardziej szczegółowo

DRGANIA ELEMENTÓW KONSTRUKCJI

DRGANIA ELEMENTÓW KONSTRUKCJI DRGANIA ELEMENTÓW KONSTRUKCJI (Wprowadzenie) Drgania elementów konstrukcji (prętów, wałów, belek) jak i całych konstrukcji należą do ważnych zagadnień dynamiki konstrukcji Przyczyna: nawet niewielkie drgania

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Praca, moc, energia Energia Energia jest to wielkość skalarna, charakteryzująca stan, w jakim znajduje się jedno lub wiele ciał. Energia jest miarą różnych

Bardziej szczegółowo

Ćw. M 12 Pomiar współczynnika lepkości cieczy metodą Stokesa i za pomocą wiskozymetru Ostwalda.

Ćw. M 12 Pomiar współczynnika lepkości cieczy metodą Stokesa i za pomocą wiskozymetru Ostwalda. Ćw. M 12 Pomiar współczynnika lepkości cieczy metodą Stokesa i za pomocą wiskozymetru Ostwalda. Zagadnienia: Oddziaływania międzycząsteczkowe. Ciecze idealne i rzeczywiste. Zjawisko lepkości. Równanie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI KLASA I Budowa materii Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia. Uczeń: rozróżnia

Bardziej szczegółowo

Wielkością i kształtem przypomina dłoń zaciśniętą w pięść. Położone jest w klatce piersiowej tuż za mostkiem. Otoczone jest mocnym, łącznotkankowym

Wielkością i kształtem przypomina dłoń zaciśniętą w pięść. Położone jest w klatce piersiowej tuż za mostkiem. Otoczone jest mocnym, łącznotkankowym Wielkością i kształtem przypomina dłoń zaciśniętą w pięść. Położone jest w klatce piersiowej tuż za mostkiem. Otoczone jest mocnym, łącznotkankowym workiem zwanym osierdziem. Wewnętrzna powierzchnia osierdzia

Bardziej szczegółowo

dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B

dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A, p 2, S E C B, p 1, S C [W] wydajność pompowania C= d ( pv ) = d dt dt (nrt )= kt dn dt dn / dt - ilość cząstek przepływających w ciągu

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Ruch drgający

Podstawy fizyki sezon 1 VII. Ruch drgający Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania

Bardziej szczegółowo

Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis

Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis Nauka o Materiałach Wykład VIII Odkształcenie materiałów właściwości sprężyste Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Klasyfikacja reologiczna odkształcenia

Bardziej szczegółowo

Prędkości cieczy w rurce są odwrotnie proporcjonalne do powierzchni przekrojów rurki.

Prędkości cieczy w rurce są odwrotnie proporcjonalne do powierzchni przekrojów rurki. Spis treści 1 Podstawowe definicje 11 Równanie ciągłości 12 Równanie Bernoulliego 13 Lepkość 131 Definicje 2 Roztwory wodne makrocząsteczek biologicznych 3 Rodzaje przepływów 4 Wyznaczania lepkości i oznaczanie

Bardziej szczegółowo

MIĘŚNIE Czynności i fizjologia mięśni

MIĘŚNIE Czynności i fizjologia mięśni Biomechanika sportu MIĘŚNIE Czynności i fizjologia mięśni CZYNNOŚCI MIĘŚNIA W opisie czynności mięśnia i siły przez niego wyzwolonej odwołujemy się do towarzyszącej temu zmianie jego długości. Zmiana długości

Bardziej szczegółowo

Drgania i fale sprężyste. 1/24

Drgania i fale sprężyste. 1/24 Drgania i fale sprężyste. 1/24 Ruch drgający Każdy z tych ruchów: - Zachodzi tam i z powrotem po tym samym torze. - Powtarza się w równych odstępach czasu. 2/24 Ruch drgający W rzeczywistości: - Jest coraz

Bardziej szczegółowo

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa Kinematyka 1. Podstawowe własności wektorów 5 1.1 Dodawanie (składanie) wektorów 7 1.2 Odejmowanie wektorów 7 1.3 Mnożenie wektorów przez liczbę 7 1.4 Wersor 9 1.5 Rzut wektora 9 1.6 Iloczyn skalarny wektorów

Bardziej szczegółowo

k + l 0 + k 2 k 2m 1 . (3) ) 2 v 1 = 2g (h h 0 ). (5) v 1 = m 1 m 1 + m 2 2g (h h0 ). (6) . (7) (m 1 + m 2 ) 2 h m ( 2 h h 0 k (m 1 + m 2 ) ω =

k + l 0 + k 2 k 2m 1 . (3) ) 2 v 1 = 2g (h h 0 ). (5) v 1 = m 1 m 1 + m 2 2g (h h0 ). (6) . (7) (m 1 + m 2 ) 2 h m ( 2 h h 0 k (m 1 + m 2 ) ω = Rozwiazanie zadania 1 1. Dolna płyta podskoczy, jeśli działająca na nią siła naciągu sprężyny będzie większa od siły ciężkości. W chwili oderwania oznacza to, że k(z 0 l 0 ) = m g, (1) gdzie z 0 jest wysokością

Bardziej szczegółowo

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)

Bardziej szczegółowo

Aerodynamika i mechanika lotu

Aerodynamika i mechanika lotu Prędkość określana względem najbliższej ścianki nazywana jest prędkością względną (płynu) w. Jeśli najbliższa ścianka porusza się względem ciał bardziej oddalonych, to prędkość tego ruchu nazywana jest

Bardziej szczegółowo

Fale mechaniczne i akustyka

Fale mechaniczne i akustyka Fale mechaniczne i akustyka Wstęp: siła jako element decydujący o rodzaju ruchu Na pierwszym wykładzie, dynamiki Newtona omawiając II zasadę dr d r F r,, t = m dt dt powiedzieliśmy, że o tym, jakim ruchem

Bardziej szczegółowo

Podstawy fizyki wykład 5

Podstawy fizyki wykład 5 Podstawy fizyki wykład 5 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Grawitacja Pole grawitacyjne Prawo powszechnego ciążenia Pole sił zachowawczych Prawa Keplera Prędkości kosmiczne Czarne

Bardziej szczegółowo

wymiana energii ciepła

wymiana energii ciepła wymiana energii ciepła Karolina Kurtz-Orecka dr inż., arch. Wydział Budownictwa i Architektury Katedra Dróg, Mostów i Materiałów Budowlanych 1 rodzaje energii magnetyczna kinetyczna cieplna światło dźwięk

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub

Bardziej szczegółowo

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis Nauka o Materiałach Wykład XI Właściwości cieplne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Stabilność termiczna materiałów 2. Pełzanie wysokotemperaturowe 3. Przewodnictwo cieplne 4. Rozszerzalność

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z izyki -Zestaw 13 -eoria Drgania i ale. Ruch drgający harmoniczny, równanie ali płaskiej, eekt Dopplera, ale stojące. Siła harmoniczna, ruch drgający harmoniczny Siłą harmoniczną (sprężystości)

Bardziej szczegółowo

Fale akustyczne. Jako lokalne zaburzenie gęstości lub ciśnienia w ośrodkach posiadających gęstość i sprężystość. ciśnienie atmosferyczne

Fale akustyczne. Jako lokalne zaburzenie gęstości lub ciśnienia w ośrodkach posiadających gęstość i sprężystość. ciśnienie atmosferyczne Fale akustyczne Jako lokalne zaburzenie gęstości lub ciśnienia w ośrodkach posiadających gęstość i sprężystość ciśnienie atmosferyczne Fale podłużne poprzeczne długość fali λ = v T T = 1/ f okres fali

Bardziej szczegółowo

Fizyczne właściwości materiałów rolniczych

Fizyczne właściwości materiałów rolniczych Fizyczne właściwości materiałów rolniczych Właściwości mechaniczne TRiL 1 rok Stefan Cenkowski (UoM Canada) Marek Markowski Katedra Inżynierii Systemów WNT UWM Podstawowe koncepcje reologii Reologia nauka

Bardziej szczegółowo

Widmo fal elektromagnetycznych

Widmo fal elektromagnetycznych Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą

Bardziej szczegółowo

Drgania. W Y K Ł A D X Ruch harmoniczny prosty. k m

Drgania. W Y K Ł A D X Ruch harmoniczny prosty. k m Wykład z fizyki Piotr Posmykiewicz 119 W Y K Ł A D X Drgania. Drgania pojawiają się wtedy, gdy układ zostanie wytrącony ze stanu równowagi stabilnej. MoŜna przytoczyć szereg znanych przykładów: kołysząca

Bardziej szczegółowo

POWTÓRKA PRZED KONKURSEM CZĘŚĆ 3

POWTÓRKA PRZED KONKURSEM CZĘŚĆ 3 DO ZDOBYCIA 44 PUNKTY POWTÓRKA PRZED KONKURSEM CZĘŚĆ 3 Jest to powtórka przed etapem szkolnym, na którym określono wymagania: ETAP SZKOLNY 1) Ruch prostoliniowy i siły. 2) Energia. 3) Właściwości materii.

Bardziej szczegółowo

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym). Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo

Bardziej szczegółowo

Teoria sprężystości F Z - F Z

Teoria sprężystości F Z - F Z Teoria sprężystości Ciało sprężyste bryła, która pod wpływem działających sił zewnętrznych ulega deformacji zmienia swój kształt i/lub objętość i wraca do pierwotnej postaci po ustaniu działania tych sił.

Bardziej szczegółowo

Ruch drgający i falowy

Ruch drgający i falowy Ruch drgający i falowy 1. Ruch harmoniczny 1.1. Pojęcie ruchu harmonicznego Jednym z najbardziej rozpowszechnionych ruchów w mechanice jest ruch ciała drgającego. Przykładem takiego ruchu może być ruch

Bardziej szczegółowo

Ćwiczenie 9. Podstawy fizjologii wysiłku fizycznego

Ćwiczenie 9. Podstawy fizjologii wysiłku fizycznego Ćwiczenie 9 Podstawy fizjologii wysiłku fizycznego Zagadnienia teoretyczne 1. Kryteria oceny wydolności fizycznej organizmu. 2. Bezpośredni pomiar pochłoniętego tlenu - spirometr Krogha. 3. Pułap tlenowy

Bardziej szczegółowo

Płyny newtonowskie (1.1.1) RYS. 1.1

Płyny newtonowskie (1.1.1) RYS. 1.1 Miniskrypt: Płyny newtonowskie Analizujemy cienką warstwę płynu zawartą pomiędzy dwoma równoległymi płaszczyznami, które są odległe o siebie o Y (rys. 1.1). W warunkach ustalonych następuje ścinanie w

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów Fizyka dla Informatyków Wykład 8 Katedra Informatyki Stosowanej PJWSTK 2008 Spis treści Spis treści 1 Podstawowe równania hydrodynamiki 2 3 Równanie Bernoulliego 4 Spis treści Spis treści 1 Podstawowe

Bardziej szczegółowo

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące: Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Świat fizyki Gimnazjum Rozkład materiału - WYMAGANIA KLASA II

Świat fizyki Gimnazjum Rozkład materiału - WYMAGANIA KLASA II Świat fizyki Gimnazjum Rozkład materiału - WYMAGANIA KLASA II Lp. Temat lekcji Wymagania konieczne i podstawowe Uczeń: Wymagania rozszerzone i dopełniające Uczeń: Wymagania z podstawy/ Uwagi 5. Siły w

Bardziej szczegółowo

Drgania - zadanka. (b) wyznacz maksymalne położenie, prędkość i przyspieszenie ciała,

Drgania - zadanka. (b) wyznacz maksymalne położenie, prędkość i przyspieszenie ciała, Zadania do przeliczenia na lekcji. Drgania - zadanka 1. Ciało o masie m = 0.5kg zawieszono na nieważkiej nitce o długości l = 1m a następne wychylono o 2cm z położenia równowagi (g = 10 m s 2), (a) oblicz

Bardziej szczegółowo

Materiały Reaktorowe. Właściwości mechaniczne

Materiały Reaktorowe. Właściwości mechaniczne Materiały Reaktorowe Właściwości mechaniczne Naprężenie i odkształcenie F A 0 l i l 0 l 0 l l 0 a. naprężenie rozciągające b. naprężenie ściskające c. naprężenie ścinające d. Naprężenie torsyjne Naprężenie

Bardziej szczegółowo

Zestaw ćwiczeń laboratoryjnych z Biofizyki dla kierunku Fizjoterapia

Zestaw ćwiczeń laboratoryjnych z Biofizyki dla kierunku Fizjoterapia Zestaw ćwiczeń laboratoryjnych z Biofizyki dla kierunku Fizjoterapia 1. Ćwiczenie wprowadzające: Wielkości fizyczne i błędy pomiarowe. Pomiar wielkości fizjologicznych 2. Prąd elektryczny: Pomiar oporu

Bardziej szczegółowo

dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG

dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG 7.WŁAŚCIWOŚCI LEPKOSPRĘŻYSTE POLIMERÓW dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG Politechnika Gdaoska, 2011 r. Publikacja współfinansowana ze środków Unii Europejskiej

Bardziej szczegółowo

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane

Bardziej szczegółowo

Fizjologia czlowieka seminarium + laboratorium. M.Eng. Michal Adam Michalowski

Fizjologia czlowieka seminarium + laboratorium. M.Eng. Michal Adam Michalowski Fizjologia czlowieka seminarium + laboratorium M.Eng. Michal Adam Michalowski michal.michalowski@uwr.edu.pl michaladamichalowski@gmail.com michal.michalowski@uwr.edu.pl https://mmichalowskiuwr.wordpress.com/

Bardziej szczegółowo

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m. Segment B.XIV Prądy zmienne Przygotowała: dr Anna Zawadzka Zad. 1 Obwód drgający składa się z pojemności C = 4 nf oraz samoindukcji L = 90 µh. Jaki jest okres, częstotliwość, częstość kątowa drgań oraz

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA Miejsce na identyfikację szkoły AKUSZ PÓBNEJ MATUY Z OPEONEM FIZYKA I ASTONOMIA POZIOM PODSTAWOWY LISTOPAD 2012 Czas pracy: 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

Imię i nazwisko ucznia Data... Klasa...

Imię i nazwisko ucznia Data... Klasa... Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Częstotliwość

Bardziej szczegółowo

Ciśnienie definiujemy jako stosunek siły parcia działającej na jednostkę powierzchni do wielkości tej powierzchni.

Ciśnienie definiujemy jako stosunek siły parcia działającej na jednostkę powierzchni do wielkości tej powierzchni. Ciśnienie i gęstość płynów Autorzy: Zbigniew Kąkol, Bartek Wiendlocha Powszechnie przyjęty jest podział materii na ciała stałe i płyny. Pod pojęciem substancji, która może płynąć rozumiemy zarówno ciecze

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

STATYKA I DYNAMIKA PŁYNÓW (CIECZE I GAZY)

STATYKA I DYNAMIKA PŁYNÓW (CIECZE I GAZY) STTYK I DYNMIK PŁYNÓW (CIECZE I GZY) Ciecz idealna: brak sprężystości postaci (czyli brak naprężeń ścinających) Ciecz rzeczywista małe naprężenia ścinające - lepkość F s F n Nawet najmniejsza siła F s

Bardziej szczegółowo

1. Jeśli częstotliwość drgań ciała wynosi 10 Hz, to jego okres jest równy: 20 s, 10 s, 5 s, 0,1 s.

1. Jeśli częstotliwość drgań ciała wynosi 10 Hz, to jego okres jest równy: 20 s, 10 s, 5 s, 0,1 s. 1. Jeśli częstotliwość drgań ciała wynosi 10 Hz, to jego okres jest równy: 20 s, 10 s, 5 s, 0,1 s. 2. Dwie kulki, zawieszone na niciach o jednakowej długości, wychylono o niewielkie kąty tak, jak pokazuje

Bardziej szczegółowo

1. Po upływie jakiego czasu ciało drgające ruchem harmonicznym o okresie T = 8 s przebędzie drogę równą: a) całej amplitudzie b) czterem amplitudom?

1. Po upływie jakiego czasu ciało drgające ruchem harmonicznym o okresie T = 8 s przebędzie drogę równą: a) całej amplitudzie b) czterem amplitudom? 1. Po upływie jakiego czasu ciało drgające ruchem harmonicznym o okresie T = 8 s przebędzie drogę równą: a) całej amplitudzie b) czterem amplitudom? 2. Ciało wykonujące drgania harmoniczne o amplitudzie

Bardziej szczegółowo

ĆWICZENIE I POMIAR STRUMIENIA OBJĘTOŚCI POWIETRZA. OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH

ĆWICZENIE I POMIAR STRUMIENIA OBJĘTOŚCI POWIETRZA. OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH ĆWICZENIE I POMIAR STRUMIENIA OBJĘTOŚCI POWIETRZA. OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z metodą pomiaru strumienia objętości powietrza przy pomocy

Bardziej szczegółowo

DRGANIA OSCYLATOR HARMONICZNY

DRGANIA OSCYLATOR HARMONICZNY DRGANIA OSCYLATOR HARMONICZNY wyklad8 2012/2013, zima 1 Własności sprężyste ciał stałych naprężenie rozciągające naprężenie ścinające naprężenie objętościowe Względne odkształcenie ciała zależy od naprężenia

Bardziej szczegółowo

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w

Bardziej szczegółowo

PRACA. MOC. ENERGIA. 1/20

PRACA. MOC. ENERGIA. 1/20 PRACA. MOC. ENERGIA. 1/20 Czym jest energia? Większość zjawisk w przyrodzie związana jest z przemianami energii. Energia może zostać przekazana od jednego ciała do drugiego lub ulec przemianie z jednej

Bardziej szczegółowo

DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia

DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia ODDZIAŁYWANIA DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia 1. Organizacja pracy na lekcjach fizyki w klasie I- ej. Zapoznanie z wymaganiami na poszczególne oceny. Fizyka jako nauka przyrodnicza.

Bardziej szczegółowo

Wykład FIZYKA I. 12. Mechanika płynów. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 12. Mechanika płynów.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 12. Mechanika płynów Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html MECHANIKA PŁYNÓW Płyn pod tą nazwą rozumiemy

Bardziej szczegółowo

TEORIA DRGAŃ Program wykładu 2016

TEORIA DRGAŃ Program wykładu 2016 TEORIA DRGAŃ Program wykładu 2016 I. KINEMATYKA RUCHU POSTE POWEGO 1. Ruch jednowymiarowy 1.1. Prędkość (a) Prędkość średnia (b) Prędkość chwilowa (prędkość) 1.2. Przyspieszenie (a) Przyspieszenie średnie

Bardziej szczegółowo

Fala EM w izotropowym ośrodku absorbującym

Fala EM w izotropowym ośrodku absorbującym Fala EM w izotropowym ośrodku absorbującym Fala EM powoduje generację zmienne pole elektryczne E Zmienne co do kierunku i natężenia, Pole E Nie wywołuje w ośrodku prądu elektrycznego Powoduje ruch elektronów

Bardziej szczegółowo

KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM

KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM WŁASNOŚCI MATERII - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce. - Wie, że substancja występuje w trzech stanach skupienia. - Wie,

Bardziej szczegółowo

Fale dźwiękowe. Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski

Fale dźwiękowe. Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski Fale dźwiękowe Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski Podstawowe cechy dźwięku Ze wzrostem częstotliwości rośnie wysokość dźwięku Dźwięk o barwie złożonej składa się

Bardziej szczegółowo

Opracował: Arkadiusz Podgórski

Opracował: Arkadiusz Podgórski Opracował: Arkadiusz Podgórski Serce to pompa ssąco-tłocząca, połoŝona w klatce piersiowej. Z zewnątrz otoczone jest workiem zwanym osierdziem. Serce jest zbudowane z tkanki mięśniowej porzecznie prąŝkowanej

Bardziej szczegółowo

Anna Nagórna Wrocław, r. nauczycielka chemii i fizyki. Plan pracy dydaktycznej na fizyce w klasach drugich w roku szkolnym 2015/2016

Anna Nagórna Wrocław, r. nauczycielka chemii i fizyki. Plan pracy dydaktycznej na fizyce w klasach drugich w roku szkolnym 2015/2016 Anna Nagórna Wrocław,.09.015 r. nauczycielka chemii i fizyki Plan pracy dydaktycznej na fizyce w klasach drugich w roku szkolnym 015/016 na podstawie Programu nauczania fizyki w gimnazjum autorstwa Barbary

Bardziej szczegółowo

- podaje warunki konieczne do tego, by w sensie fizycznym była wykonywana praca

- podaje warunki konieczne do tego, by w sensie fizycznym była wykonywana praca Fizyka, klasa II Podręcznik: Świat fizyki, cz.2 pod red. Barbary Sagnowskiej 6. Praca. Moc. Energia. Lp. Temat lekcji Wymagania konieczne i podstawowe 1 Praca mechaniczna - podaje przykłady wykonania pracy

Bardziej szczegółowo

Zasada zachowania energii

Zasada zachowania energii Zasada zachowania energii Fizyka I (B+C) Wykład XIV: Praca, siły zachowawcze i energia potencjalna Energia kinetyczna i zasada zachowania energii Zderzenia elastyczne dr P F n Θ F F t Praca i energia Praca

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład XII: Siły sprężyste Opory ruchu Tarcie Lepkość Ruch w ośrodku Siła sprężysta Prawo Hooke a Opisuje zależność siły sprężystej od odkształcenia ciała: L Prawo

Bardziej szczegółowo

Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej rok szkolny 2015/2016

Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej rok szkolny 2015/2016 Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej rok szkolny 2015/2016 Warszawa, 31 sierpnia 2015r. Zespół Przedmiotowy z chemii i fizyki Temat

Bardziej szczegółowo

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Drgania w obwodzie L Autorzy: Zbigniew Kąkol Kamil Kutorasiński 016 Drgania w obwodzie L Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Rozpatrzmy obwód złożony z szeregowo połączonych indukcyjności L (cewki)

Bardziej szczegółowo

1. Odpowiedź c) 2. Odpowiedź d) Przysłaniając połowę soczewki zmniejszamy strumień światła, który przez nią przechodzi. 3.

1. Odpowiedź c) 2. Odpowiedź d) Przysłaniając połowę soczewki zmniejszamy strumień światła, który przez nią przechodzi. 3. 1. Odpowiedź c) Obraz soczewki będzie zielony. Każdy punkt obrazu powstaje przez poprowadzenie promieni przechodzących przez wszystkie części soczewki. Suma czerwonego i zielonego odbierana jest jako kolor

Bardziej szczegółowo

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)185 4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu

Bardziej szczegółowo

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,

Bardziej szczegółowo

podać przykład wielkości fizycznej, która jest iloczynem wektorowym dwóch wektorów.

podać przykład wielkości fizycznej, która jest iloczynem wektorowym dwóch wektorów. PLAN WYNIKOWY FIZYKA - KLASA TRZECIA TECHNIKUM 1. Ruch postępowy i obrotowy bryły sztywnej Lp. Temat lekcji Treści podstawowe 1 Iloczyn wektorowy dwóch wektorów podać przykład wielkości fizycznej, która

Bardziej szczegółowo

Test sprawdzający wiedzę z fizyki z zakresu gimnazjum autor: Dorota Jeziorek-Knioła

Test sprawdzający wiedzę z fizyki z zakresu gimnazjum autor: Dorota Jeziorek-Knioła Test 2 1. (4 p.) Wskaż zdania prawdziwe i zdania fałszywe, wstawiając w odpowiednich miejscach znak. I. Zmniejszenie liczby żarówek połączonych równolegle powoduje wzrost natężenia II. III. IV. prądu w

Bardziej szczegółowo

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Świat fizyki

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Świat fizyki Klasa II Wymagania na poszczególne oceny przy realizacji i podręcznika Świat fizyki 6. Praca. Moc. Energia 6.1. Praca mechaniczna podaje przykłady wykonania pracy w sensie fizycznym podaje jednostkę pracy

Bardziej szczegółowo

Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła :

Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : Zestaw zadań na I etap konkursu fizycznego Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : A) 5m/s B) 10m/s C) 20m/s D) 40m/s. Zad.2 Samochód o masie 1 tony poruszał

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą

Bardziej szczegółowo

obszary o większej wartości zaburzenia mają ciemny odcień, a

obszary o większej wartości zaburzenia mają ciemny odcień, a Co to jest fala? Falę stanowi rozchodzące się w ośrodku zaburzenie, zmiany jakiejś wielkości (powtarzające się wielokrotnie i cyklicznie zmieniające swoje wychylenie). Fala pojawia się w ośrodkach, których

Bardziej szczegółowo

Klucz odpowiedzi. Konkurs Fizyczny Etap Rejonowy

Klucz odpowiedzi. Konkurs Fizyczny Etap Rejonowy Klucz odpowiedzi Konkurs Fizyczny Etap Rejonowy Zadania za 1 p. TEST JEDNOKROTNEGO WYBORU (łącznie 20 p.) Nr zadania 1 2 3 4 5 6 7 8 9 10 Odpowiedź B C C B B D C A D B Zadania za 2 p. Nr zadania 11 12

Bardziej szczegółowo

Pytania do ćwiczeń na I-szej Pracowni Fizyki

Pytania do ćwiczeń na I-szej Pracowni Fizyki Ćw. nr 5 Oscylator harmoniczny. 1. Ruch harmoniczny prosty. Pojęcia: okres, wychylenie, amplituda. 2. Jaka siła powoduje ruch harmoniczny spręŝyny i ciała do niej zawieszonego? 3. Wzór na okres (Studenci

Bardziej szczegółowo