DESTYLACJA MEMBRANOWA PODSTAWY I MOŻLIWOŚCI JEJ PRAKTYCZNEGO ZASTOSOWANIA
|
|
- Kamila Pluta
- 9 lat temu
- Przeglądów:
Transkrypt
1 Destylacja membranowa MEMBRANY TEORIA I PRAKTYKA ZESZYT IV WYKŁADY MONOGRA- FICZNE I SPECJALISTYCZNE TORUŃ DESTYLACJA MEMBRANOWA PODSTAWY I MOŻLIWOŚCI JEJ PRAKTYCZNEGO ZASTOSOWANIA Maria TOMASZEWSKA Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, Wydział Technologii i Inżynierii Chemicznej, Instytut Technologii Chemicznej Nieorganicznej i Inżynierii Środowiska, maria.tomaszewska@zut.edu.pl 1. WSTĘP Duża rozmaitość struktur i właściwości membran sprawia, że techniki membranowe coraz szerzej wykorzystywane są na skalę przemysłową. Stosunkowo niskie zapotrzebowanie energii, jak też możliwość odzyskiwania cennych lub usuwania uciążliwych składników z rozcieńczonych roztworów powoduje, że techniki membranowe stają się interesującą alternatywą konwencjonalnych metod rozdziału mieszanin. Destylację membranową (MD) zalicza się do nowych procesów membranowych. Pierwsze prace dotyczące rozdziału metodą MD opublikowano w latach 1963 i 1967 [1-3]. Postęp w produkcji membran i konstrukcji modułów membranowych sprawił, że od 1980 r. zainteresowanie tą techniką wciąż rośnie. Destylację membranową uważa się za bardzo atrakcyjną technikę rozdziału. Do najważniejszych zalet MD zalicza się [4-10]: % - ową (teoretycznie) retencję nielotnych substancji rozpuszczonych, niezależnie od ich stężenia w nadawie i wysoką czystość permeatu, - znacznie niższe ciśnienie niezbędne do prowadzenia procesu separacji w porównaniu z innymi technikami membranowymi, - temperaturę nadawy znacznie niższą od temperatury wrzenia, co stwarza możliwość wykorzystania odpadowej energii cieplnej, energii i
2 M. Tomaszewska słonecznej lub geotermalnej, - wysoką odporność chemiczną i stabilność termiczną membran, - niewielką przestrzeń w jakiej znajduje się para przed skropleniem (praktycznie grubość membrany) w porównaniu z destylacją konwencjonalną, - zwartość instalacji, - budowę modułową, - łatwość integracji z innymi procesami jednostkowymi. Jednak do tej pory technika ta nie została wykorzystana na skalę przemysłową. Główną przyczyną jest wciąż nierozwiązany problem niezwilżalności membran w przypadku długoterminowej eksploatacji w warunkach MD. Strumień permeatu w MD jest stosunkowo niski w porównaniu, np. z odwróconą osmozą. Ponadto, na strumień permeatu duży wpływ ma polaryzacja temperaturowa. Dla jej ograniczenia, prowadzone są prace nad odpowiednią konstrukcją modułów do destylacji membranowej. W destylacji membranowej niezbędne jest również dostarczenie energii na odparowanie wody. Zalety i możliwości wykorzystania różnych wariantów tej techniki powodują, że wciąż prowadzone są prace zmierzające do rozwiązania problemu niezwilżalności membran, prace wykazujące szczególne możliwości separacji składników mieszanin, które konkurują z innymi technikami rozdziału. Szczególnie korzystne są rozwiązania łączące MD z innymi technikami rozdziału, konwencjonalnymi lub membranowymi lub wykorzystujące MD w reaktorach i bioreaktorach membranowych. 2. ZASADA DESTYLACJI MEMBRANOWEJ MD jest procesem odparowania składników roztworów przez porowatą, hydrofobową membranę [4-10]. Roztwór zasilający znajduje się w bezpośrednim kontakcie z powierzchnią membrany. Natura membrany zapobiega wnikaniu roztworu w jej pory. Siły napięcia powierzchniowego powodują, że na wejściu do porów membrany tworzy się granica faz ciecz/para. Woda z ciepłej nadawy odparowuje na granicy faz: ciepła nadawa/gaz w porach membrany. Cząsteczki pary dyfundują przez pory membrany hydrofobowej, a następnie w zależności od konfiguracji następuje kondensacja pary po drugiej (zimnej) stronie membrany lub permeat w formie pary odprowadzany jest na zewnątrz modułu, gdzie następuje kondensacja. Siłą napędową procesu, powodującą transport masy przez pory membrany hydrofobowej, jest różnica potencjału chemicznego składników, która sprowadza się do różnicy prężności par lotnych składników po obu stronach membrany. W bezpośredniej kontaktowej destylacji membranowej (ang. direct contact membrane distillation, DCMD) kondensacja permeatu zachodzi bezpośrednio w zimnym strumieniu omywającym membranę, rys. 1, wewnątrz modułu. Różnica temperatury i składu roztworów po obu stronach ii
3 Destylacja membranowa membrany hydrofobowej powoduje różnicę prężności par, będącej siłą napędową transportu masy. Ze względu na prostotę konstrukcji jest to najczęściej stosowana konfiguracja. T N Q J Destylat T 1 T 2 Nadawa c N c 1 c 2 p N p D Membrana c D T D Rys. 1. Zasada bezpośredniej kontaktowej destylacji membranowej; Q energia cieplna, J strumień permeatu, T temperatura, c stężenie, p prężność pary wodnej, indeksy: N nadawy, D destylatu, 1 i 2 w warstwie przymembranowej, odpowiednio po stronie nadawy i destylatu W destylacji membranowej ze szczeliną gazową (ang. gas-gap MD) cząsteczki pary dyfundują przez pory membrany i szczelinę gazową (najczęściej powietrzną), a następnie kondensują na płycie chłodzonej wodą, wewnątrz modułu, jak przedstawiono na rys. 2B. Szczelinę najczęściej wypełnia powietrze, stąd technika nazywana jest często destylacją membranową ze szczeliną powietrzną (ang. air gap MD, AGMD). W takim rozwiązaniu znacznie ograniczone są straty ciepła przez membranę. Ponieważ skraplający się permeat, w postaci ciekłej, nie ma bezpośredniego kontaktu z membraną, konfigurację tę można zastosować, gdy nadawa zawiera lotne składniki przenoszone z parą wodną przez membranę. Unika się wówczas niebezpieczeństwa zwilżenia membrany roztworem wzbogaconym w składniki lotne. iii
4 Nadawa Permeat Nadawa Nadawa próżnia Nadawa Nadawa Roztwór osmotyczny M. Tomaszewska A) B) Płyta C) D) E) chłodząca Permeat Permeat-para Permeat-para Rys.2. Rodzaje destylacji membranowej: A) bezpośrednia kontaktowa MD, B) MD ze szczeliną gazową, C) próżniowa MD, D) MD z gazem odbierającym, E) osmotyczna MD. W próżniowej MD (ang. vaccum MD,VMD ) i w MD z gazem odbierającym (ang. sweeping gas MD, SGMD) kondensacja pary przechodzącej przez pory membrany następuje poza modułem, rys. 2.C i 2.D. W próżniowej MD obniżone ciśnienie po stronie permeatu (używa się pompy próżniowej) powoduje dyfuzję lotnych składników roztworu zasilającego przez pory membrany. W MD z gazem odbierającym, zimny obojętny gaz odbiera lotne składniki przechodzące przez membranę. W osmotycznej destylacji membranowej (OMD) transport masy przez membranę jest spowodowany różnicą prężności par, wynikającą ze składu roztworów przymembranowych. W technice tej w komorze permeatu przepływa nasycony roztwór soli lub innych związków (nie powodujących zwilżenia membrany), np. glikoli, gliceryny. Ciśnienie cząstkowe pary wody nad roztworem nasyconym jest obniżone, co w efekcie zwiększa siłę napędową procesu [11, 12]. 3. SELEKTYWNOŚĆ PROCESU DESTYLACJI MEMBRANOWEJ W destylacji membranowej w porach hydrofobowej membrany jest zachowana faza gazowa. Membrana w tym przypadku nie powoduje selektywnego rozdzielania składników nadawy, jedynie zapobiega zetknięciu się roztworów znajdujących się po obu jej stronach. Traktuje się ją niekiedy jako membranę gazową. Mechanizm rozdzielania składników roztworu zasilającego w MD wynika głównie z równowagi: roztwór zasilający/faza gazowa w porach membrany [4-10]. Skład permeatu, a stąd selektywność MD, zależy od prężności pary poszczególnych składników roztworu zasilającego. Stwierdzono jednak, że selektywność wynika również z różnicy szybkości dyfuzji lotnych składników przez warstwę powietrza, szczególnie w konfiguracjach AGMD i SGMD. Istotny zatem jest skład, stężenie i temperatura roztworu zasilającego [5,6]. Składnik nadawy o wyższym ciśnieniu iv
5 Destylacja membranowa parcjalnym będzie szybciej dyfundował przez pory hydrofobowej membrany i stężenie tego składnika w permeacie będzie rosło. Dla wodnych roztworów substancji nielotnych proces MD jest selektywny, ich stopień zatrzymania wynosi praktycznie 100 % i jest niezależny od ich stężenia w nadawie. Retencję rozpuszczonych substancji można obliczyć z następującego wzoru: cp R 1, (1) cn gdzie c p i c N są stężeniami substancji w permeacie i w nadawie. Jeżeli w roztworze zasilającym obecne są substancje lotne, to będą one przenoszone przez membranę równocześnie z parą wodną, a ich współczynnik separacji (S) można obliczyć następująco: S x v, P w, P, (2) x v, N / x / x w, N gdzie: x v,p, x w,p, x v,n i x w,n są udziałami molowymi lotnych składników (v) i wody (w) w permeacie (P) i nadawie (N). Stwierdzono, że w przypadku separacji wodnych roztworów kwasu mrówkowego, octowego, solnego techniką MD stężenie tych substancji w permeacie przekraczało stężenie równowagowe. Można zatem rozdzielić mieszaniny azeotropowe, szczególnie metodą destylacji membranowej ze szczeliną gazową, gdzie składniki nadawy dyfundują z różną szybkością przez gaz wypełniający pory membrany i przez szczelinę gazową. 4. MEMBRANY I MODUŁY STOSOWANE W DESTYLACJI MEMBRANOWEJ Warunkiem podstawowym MD jest zachowanie fazy gazowej w porach membrany. Stąd niezwilżalność membran, tzn. hydrofobowość membran, ma zasadnicze znaczenie. Miarą hydrofobowości materiału jest wartość kąta zwilżania, rys. 3. Kąt zwilżania ( ) jest wypadkową sił przylegania wyrażonych przez napięcia powierzchniowe ( ) trzech graniczących ze sobą powierzchni: cieczy z gazem ( LG ), gazu z ciałem stałym (( SG ) i cieczy z ciałem stałym ( LS ). Jeżeli wartość kąta zwilżania będzie większa niż 90 o, ciecz nie będzie zwilżała powierzchni. v
6 M. Tomaszewska SG LG LS Rys. 3. Oddziaływanie materiału polimerowego i kropli wody. Membrany wykonane z materiałów silnie hydrofobowych, o niskim napięciu powierzchniowym, nie powinny ulec zwilżeniu, gdy stykają się z cieczą o wysokim napięciu powierzchniowym, tzn. wodą ( L =72,8x10-3 N/m) i roztworami wodnymi. Obecność związków organicznych obniża napięcie powierzchniowe roztworu i sprzyja zwilżeniu membrany [13]. Ważnym parametrem membran stosowanych w MD jest wartość ciśnienia, przy którym nastąpi penetracja wody w pory membrany hydrofobowej (ang. liquid entry pressure of water - LEP W ) [4-10]. Ciśnienie to można opisać równaniem Laplace'a: 2 L P B r maks vi cos, (3) gdzie: B współczynnik geometryczny, zależny od kształtu porów membrany (B = 1 dla porów o kształcie cylindrycznym), r maks maksymalny promieniem porów, L napięcie powierzchniowe cieczy, kąt zwilżania. O zwilżeniu membrany, oprócz napięcia powierzchniowego materiału polimerowego i napięcia powierzchniowego cieczy, decyduje zatem również rozmiar porów. Zbyt duże pory mogą spowodować zwilżenie membrany już przy ciśnieniu zbliżonym do normalnego. Równanie (3) wyznacza więc maksymalne ciśnienie, jakie może panować w module. Maksymalny promień porów, zapewniający niezwilżalność membrany nie powinien przekraczać 0,5-0,6 m. W przypadku VMD, wobec większej łatwości zwilżenia membrany, promień porów powinien być mniejszy. Wartość ciśnienia, przy którym nastąpi penetracja wody w pory membrany dla komercyjnych membran stosowanych w MD, mieści się w granicach kpa [10]. Dla uzyskania znaczącego strumienia permeatu, porowatość membran stosowanych w MD powinna przekraczać 70%. Stwierdzono, że porowatość, rozmiar porów i obecność materiałów zwiększających ich wytrzymałość ma istotny wpływ na strumień permeatu. Wyższy strumień permeatu i mniejszy wpływ polaryzacji temperaturowej uzyskiwano w przypadku membran cienkich, charakteryzujących się dużym rozmiarem porów, wyso-
7 Destylacja membranowa ką porowatością i małą krętością porów [13]. Membrany do MD powinny charakteryzować się również niskim przewodzeniem ciepła dla ograniczenia jego strat oraz dużą odpornością chemiczną i stabilnością termiczną. W destylacji membranowej stosowane są membrany formowane najczęściej z politetrafluoroetylenu (PTFE), poli(fluorku winylidenu) (PVDF) i polipropylenu (PP). Kąt zwilżania (kropla wody) powierzchni PTFE zawiera się w granicach o, dla PVDF wynosi 107 o [14,15] a dla PP 120 [14]. Korzystnym rozwiązaniem jest stosowanie membran asymetrycznych [13,16] lub kompozytowych z gęstą warstwą naskórkową [17]. Mniejsze pory w tej warstwie zmniejszają niebezpieczeństwo zwilżenia porów membrany. W ostatnim okresie pojawiło się wiele prac opisujących formowanie membran specjalnie na potrzeby destylacji membranowej [18-26]. Membrany nowej generacji MD charakteryzują się większą przepuszczalnością (strumieniem permeatu) i pozwalają na minimalizowanie strat ciepła spowodowanych przewodzeniem przez matrycę polimerową. Do nowych membran MD należą kompozytowe, porowate membrany hydrofobowo/hydrofilowe. Strumień permeatu przez te membrany w procesie MD jest wyższy ze względu na cieńszą warstwę hydrofobową i mniejsze opory przepływu (krótsza droga dyfuzji). Warstwa hydrofilowa (grubsza), której pory wypełnione są wodą, ogranicza straty ciepła przez membranę [19-21]. Duże nadzieje wiąże się z membranami ceramicznymi z powłoką hydrofobową, utworzoną przez szczepienie, np. perfluoroalkilosilanami (FAS) [22], trichlorometylosilanem lub perfluorodecylotrietoksysilanem [23]. Kąt zwilżania membrany ceramicznej wodą, szczepionej fluoroalkilosilanami wynosił 160 o [22] i o [24]. Membrany ceramiczne mają jednak wyższe współczynniki przewodzenia ciepła, obserwuje się wyższy wpływ polaryzacji temperaturowej i w efekcie mniejszy strumień permeatu w porównaniu z membraną polimerową [23]. Moduły stosowane obecnie w destylacji membranowej są modułami przeznaczonymi do innych procesów, głównie mikrofiltracji. Wykorzystywane są moduły kapilarne [25], płaskie (płytowo-ramowe) i spiralne [26]. Moduły płytowo-ramowe charakteryzują się niskim upakowaniem membran. Stosowane są one głównie w badaniach laboratoryjnych, ze względu na łatwość mycia powierzchni membrany lub jej wymiany. Niezbędne są moduły zaprojektowane dla procesu MD o odpowiedniej konstrukcji, uwzględniające specyfikę MD - jednoczesnego transportu masy i przenoszenia ciepła przez membranę. Konstrukcja powinna zapewniać odpowiednią dynamikę przepływu strumieni w module i duży strumień permeatu dzięki zmniejszonej grubości warstw przymembranowych, powodujących opór transportu masy i ciepła [7]. Zużycie energii w instalacji można ograniczyć odzyskując ciepło kondensacji pary wodnej i wykorzystując je do wstępnego ogrzania roztworu zasilającego. Przykłady takich rozwiązań przedstawiono w pracach [25,27]. Ważny jest również taki spo- vii
8 M. Tomaszewska sób eksploatacji modułów, który zapewni niezwilżalność membran podczas ich długotrwałej pracy. 5. PODSTAWY TEORII PROCESUDESTYLACJI MEMBRANOWEJ 5.1. TRANSPORT MASY Podobnie, jak w innych technikach membranowych, siłą napędową przenoszenia składnika roztworu zasilającego przez membranę w destylacji membranowej jest różnica potencjału chemicznego składnika po obu stronach membrany (Δμ i ), która zależy od temperatury i stężenia roztworu [11]: Δμ i = RT (ln a p,i ln a 0 p,i) = RT ln a i, (4) gdzie: a p,i i a i są aktywnością składnika i w fazie gazowej i ciekłej, a 0 p,i jest aktywnością pary nasyconej nad czystym składnikiem (gdy ciśnienie ogólne jest równe prężności pary nasyconej). W destylacji membranowej, niezależnie od konfiguracji, przez membranę hydrofobową przenoszone są lotne składniki nadawy. Strumień permeatu (J), biorąc pod uwagę właściwości membrany, jest proporcjonalny do różnicy prężności par składników lotnych ( p) po obu stronach membrany [28]: 0 0 J i Lm pi Lm ( pn, ian, i pp, iap, i ), (5) gdzie L m jest przepuszczalnością membrany, zależną od rodzaju materiału, geometrii porów, porowatości, grubości, ciśnienia gazu w membranie i właściwości przepływającego gazu, p N,i prężnością składnika lotnego po stronie nadawy i p P,i prężnością składnika lotnego po stronie permeatu. Równanie (5) można uprościć, zależnie od rozpatrywanej konfiguracji destylacji membranowej. Opis transportu masy przez membrany w MD wynika z kinetycznej teorii gazów [28]. Transport gazu (pary) przez membranę porowatą może mieć charakter dyfuzyjny lub konwekcyjny. Podstawą do rozważania modelu transportu gazu przez membranę jest najczęściej porównanie średniej drogi swobodnej cząsteczek gazu i średniego rozmiaru porów membrany. Gdy średnia droga swobodna cząsteczek gazu przepływającego przez membranę jest znacznie większa od rozmiaru porów membrany, cząsteczki gazu znacznie częściej zderzają się ze ściankami porów niż ze sobą. Wówczas dominującym mechanizmem w DCMD jest dyfuzja Knudsena [5,6]: J K D M d p K 8M p p L s RT 3 s RT m m mk p, (6) viii
9 Destylacja membranowa gdzie poszczególne symbole oznaczają: D K współczynnik dyfuzji Knudsena, porowatość membrany, krętość porów, s grubość membrany, d p średnica porów, T m średnia temperatura, R stała gazowa, M masa molowa, L mk przepuszczalność membrany w warunkach dyfuzji Knudsena. Lepkościowy przepływ Poiseuille'a staje się dominującym mechanizmem transportu, gdy średnia droga swobodna cząsteczek gazu płynącego przez membranę jest znacznie mniejsza od rozmiaru porów i cząsteczki zderzają się ze sobą. Model Poiseuille'a zakłada laminarny przepływ gazu przez cylindryczne kapilary, prostopadłe do powierzchni membrany. W takim przypadku strumień permeatu opisuje równanie (7): J P 2 d p 1 MP 2 s RT ix m m P L mp P, (7) gdzie: lepkość, L mp przepuszczalność membrany w warunkach przepływu Poiseuille'a. Rzeczywisty kształt porów membrany jest jednak często daleki od modelu równoległych kapilar. Ponieważ w układzie DCMD roztwór zasilający i destylat znajdują się w bezpośrednim kontakcie z membraną i pod ciśnieniem atmosferycznym, to ciśnienie całkowite wynosi ok. 1 MPa i przepływ lepkościowy Poiseuille a jest zaniedbywalny. Większość instalacji do bezpośredniej kontaktowej destylacji membranowej pracuje pod normalnym ciśnieniem. W porach membrany hydrofobowej obecne jest wówczas powietrze, przez które w warunkach ustalonych następuje dyfuzja pary wodnej. Strumień permeatu (J Dyf ) jest określony wówczas równaniem (8) [5,6]: J Dyf s M RT m P p DPln P p AD AN L mdyf p, (8) gdzie: porowatość membrany, s grubość membrany, krętość porów, r p promień porów, T m średnia temperatura, R stała gazowa, M masa molowa, L mdyf przepuszczalność przez membranę w warunkach dyfuzji pary wodnej przez warstwę powietrza, p AN i p AD ciśnienia cząstkowe pary wodnej po stronie nadawy i destylatu. W destylacji membranowej stosowane są membrany o średnim rozmiarze porów w zakresie od 0,1 do 1 m. Średnia droga swobodna cząsteczek nasyconej pary wodnej w temperaturze 50 o C wynosi 0,14 m [28]. W przypadku membran o rozmiarze porów w zakresie 0,2 1 m przenoszenie masy w DCMD rozważa się zgodnie z modelem łączącym dyfuzję Knudsena z dyfuzją cząsteczkową [28]. W modelowaniu MD niektórzy autorzy biorą również pod uwagę rozkład porów. Wszystkie te mechanizmy przenoszenia masy przez membranę łączy model zapylonego gazu (dusty gas model), wywodzący się z teorii kine-
10 M. Tomaszewska tycznej gazów i analizy wieloskładnikowej dyfuzji przez membranę porowatą [4, 29, 30]. Pełna postać tego modelu upraszcza się w zależności od warunków i konfiguracji MD. W próżniowej MD obniżenie ciśnienia po stronie permeatu powoduje usunięcie gazu (powietrza) z porów membrany i dyfuzja cząsteczkowa praktycznie nie zachodzi. Rozważany jest natomiast transport zgodnie z dyfuzją Knudsena, przepływ lepkościowy Poiseuille a oraz model łączący oba te mechanizmy [10]. Khayet opisuje transport masy w VMD biorąc pod uwagę dyfuzję Knudsena, przepływ Poiseuille a oraz mechanizm rozpuszczania i dyfuzji składników przez matrycę polimerową membrany [28]. Transport masy w destylacji membranowej z gazem odbierającym opisywany jest tymi samymi modelami jak w przypadku DCMD, głównie modelem łączącym dyfuzję Knudsena z dyfuzją cząsteczkową. W przypadku destylacji membranowej ze szczeliną gazową, szerokość szczeliny jest znacznie większa od grubości membrany. W tej konfiguracji transport pary wodnej oraz innych lotnych substancji przez membranę opisywany jest głównie modelem dyfuzji cząsteczkowej [28]. Modele MD wskazują na zależność strumienia permeatu od różnicy prężności pary na granicy nadawa/membrana, membrana/destylat. Różnicy prężności pary w membranie nie można zmierzyć bezpośrednio, dlatego często do opisu zależności strumienia permeatu od temperatury stosuje się uproszczone równanie Clausiusa-Clapeyrona. Z uwagi na polaryzację temperaturową występującą w module MD, temperatura nadawy i destylatu w masie (wielkości mierzalne) różni się od temperatury w warstwach granicznych (wielkości niemierzalne). Korzystając z odpowiednich równań, temperatury powierzchni membrany można zastąpić temperaturami nadawy (T N ) i destylatu (T D ) w całej masie [5,6] TRANSPORT ENERGII CIEPLNEJ Podczas destylacji membranowej następuje jednoczesne przenoszenie masy i energii cieplnej przez membranę. Energia ta jest sumą energii cieplnej przewodzonej przez membranę (Q m ) oraz przenoszonej ze strumieniem permeatu (Q p ). W konfiguracjach DCMD i SGMD przenoszoną energię cieplną można przedstawić następująco [28]: Q Qm Qp km T1 T2 k p T1 T, (9) 2 gdzie k m jest współczynnikiem przenoszenia ciepła przez membranę wypełnioną powietrzem, k p jest współczynnikiem transportu ciepła ze strumieniem pary, a T 1 i T 2 oznaczają temperaturę warstwy przymembranowej, po stronie nadawy i permeatu (rys. 1). Współczynnik przewodzenia ciepła przez membranę wypełnioną powietrzem ( m ) można obliczyć na podsta- x
11 nadawa zimny destylat Destylacja membranowa wie współczynników przewodzenia gazu ( g ) i przewodzenia materiału polimerowego membrany ( p ) [4-10]: m g p( 1 ) (10) W zależności od konfiguracji MD warstwa przymembranowa po stronie permeatu może powodować dodatkowy opór przy przenoszeniu ciepła. Największy opór występuje w DCMD, gdzie kondensacja następuje bezpośrednio w destylacie omywającym powierzchnię membrany. W VMD obniżone ciśnienie po stronie permeatu zapobiega stratom ciepła przez przewodzenie i opór granicznej warstwy przymembranowej po stronie permeatu jest pomijany. W AGMD powietrze wypełniające pory membrany i szczelina gazowa również znacznie zmniejszają straty energii cieplnej. W SGMD inertny gaz odbierający permeat również ogranicza straty ciepła spowodowane przewodzeniem przez membranę. Uważa się, że 50 80% energii cieplnej jest zużyte na odparowanie i wytworzenie permeatu, a % [10, 28] traci się przez przewodzenie. Ciepło przewodzone przez membranę w MD prowadzi do obniżenia strumienia permeatu. Ograniczenie strat ciepła uzyskuje się również przez zwiększenie grubości membrany. Rozwiązanie to jednak wydłuża drogę dyfuzji pary i zmniejsza strumień permeatu. Korzystniejszym rozwiązaniem jest odpowietrzenie membrany POLARYZACJA TEMPERATUROWA Odparowanie wody na granicy warstwa przymembranowa/membrana wymaga energii i powoduje obniżenie temperatury warstwy granicznej po stronie nadawy. Membrana T N T 1 ciepło, przewodzenie T 2 T D ciepło z parą warstwa graniczna Rys.4. Polaryzacja temperaturowa w bezpośredniej kontaktowej destylacji membranowej; T N - temperatura nadawy, T D temperatura destylatu, T 1 i T 2 temperatura warstwy przymembranowej, odpowiednio po stronie nadawy i permeatu Zjawisko to występuje we wszystkich konfiguracjach MD, natomiast różny jest efekt przenoszenia ciepła w warstwie przymembranowej od strony permeatu. xi
12 M. Tomaszewska Miarą polaryzacji temperaturowej jest udział warstw przymembranowych w przenoszeniu ciepła w układzie. Gdy opór warstw przymembranowych jest minimalny, temperatura cieczy w warstwach przymembranowych i w rdzeniu jest zbliżona. Natomiast duży opór warstw granicznych powoduje różnicę temperatury cieczy w warstwach przymembranowych i w rdzeniu, czyli polaryzację temperaturową. W DCMD wydzielone ciepło kondensacji pary powoduje wzrost temperatury warstwy przymembranowej po stronie permeatu. Różnica temperatur warstw granicznych, wpływająca na wielkość siły napędowej procesu, jest mniejsza od różnicy temperatur nadawy i destylatu w środku masy, rys.4. Stąd zjawisko polaryzacji temperaturowej zmniejsza efektywność transportu masy przez membranę. Efekt ten pogłębia się dodatkowo w wyniku przewodzenia ciepła przez membranę. Temperatur warstw granicznych T 1 i T 2 nie można zmierzyć bezpośrednio, ale można je obliczyć na podstawie odpowiednich równań [5,6]. Współczynnik polaryzacji temperaturowej wskazujący na udział oporu warstw granicznych w całkowitym oporze przenoszenia ciepła; oblicza się następująco: T1 T2. (11) T N T D Wartość współczynnika polaryzacji waha się pomiędzy 0 a 1. Jego wartość zmienia się w zależności od konfiguracji membrany, charakterystyki przepływu cieczy w module i temperatury układu. Warunki, w których wartości współczynników wnikania rosną, sprzyjają ograniczeniu wpływu polaryzacji temperaturowej, na przykład przy większej szybkości strumieni w module. Korzystne warunki hydrodynamiczne, intensywne mieszanie, zamontowanie promotorów burzliwego przepływu w modułach wyraźnie ogranicza wpływ polaryzacji temperaturowej. Wówczas wartość może wzrosnąć nawet do 0,85 0,9. W modułach DCMD współczynnik osiąga wartość w granicach 0,4 0,7 [28] POLARYZACJA STĘŻENIOWA Transport rozpuszczalnika przez membranę powoduje, że stężenie roztworu w warstwie przymembranowej różni się od stężenia w rdzeniu roztworu (rys.1), co określa się mianem polaryzacji stężeniowej. W procesie MD wpływ polaryzacji stężeniowej polega na obniżeniu aktywności wody, czyli obniżeniu prężności pary wodnej. Zmiany te jednak nie są duże i znaczenie polaryzacji stężeniowej jest znacznie mniejsze niż w technikach ciśnieniowych. Przy zatężaniu roztworów o wyższych stężeniach wpływ tego zjawiska rośnie. Polaryzacja stężeniowa ma duże znaczenie dla pojawiania się foulingu (zjawisko osadzania się na powierzchni membrany substancji obecnych w nadawie i blokowania porów membrany) i scalingu. Nagroma- xii
13 Destylacja membranowa dzenie osadów na membranie zmniejsza transport wody i może prowadzić do jej zwilżenia. Z kolei, nadmierny wzrost stężenia soli w warstwie przymembranowej, może prowadzić do ich krystalizacji na powierzchni membrany w wyniku przekroczenia iloczynu rozpuszczalności (zjawisko scalingu), a nawet wrastania kryształów soli w pory membrany, co w efekcie prowadzi do uszkodzenia jej struktury [31]. 6. MOŻLIWOŚCI ZASTOSOWANIA DESTYLACJI MEMBRANOWEJ Właściwości MD sprawiają, że proces ten z powodzeniem może być wykorzystany w inżynierii środowiska i technologii chemicznej [4-10, 32]. Badania aplikacyjne prowadzone są w trzech zasadniczych kierunkach, takich jak: - odsalanie wody, - zatężanie roztworów do stanu bliskiego nasyceniu, - wydzielanie lotnych składników z roztworów. Można je realizować stosując każdą z konfiguracji MD, jednak najlepiej dobrać odpowiednią konfigurację do rozwiązania danego zadania. Najczęściej badaną konfiguracją jest DCMD, ponieważ kondensacja permeatu zachodzi w tym przypadku bezpośrednio w module membranowym, co znacznie upraszcza budowę instalacji. Jednak ciepło przenoszone przez membranę (uważane jako straty ciepła) jest najwyższe w porównaniu z innymi konfiguracjami MD. W AGMD obecność szczeliny gazowej zmniejsza straty ciepła przez membranę. Płyta chłodząca, na której skrapla się permeat, może być chłodzona nadawą, co pozwala odzyskać ciepło kondensacji. Jednak szczelina gazowa między membraną a płytą chłodzącą stanowi dodatkowy opór (oprócz membrany) dla transportu masy i wydłuża drogę dyfuzji, co skutkuje niższym strumieniem permeatu. Konstrukcja modułu membranowego do AGMD jest skomplikowana, stąd technika ta jest rzadziej obiektem badań. AGMD może być stosowana w przypadku, gdy DCMD napotyka pewne ograniczenia, szczególnie wówczas gdy mogłoby nastąpić zwilżenie membrany permeatem zawierającym lotne związki organiczne. Konfiguracja SGMD jest badana najrzadziej, z uwagi na bardziej złożony układ. Permeat, odbierany przepływającym gazem, jest nim bardzo rozcieńczany, co utrudnia późniejszą separację w zewnętrznym odbieralniku. Jest bardziej korzystna niż DCMD w procesach usuwania lotnych związków organicznych z wody, ponieważ nie występuje ryzyko zwilżenia membrany po stronie permeatu. Technikę tę uważa się za technikę przyszłości, ponieważ łączy stosunkowo niskie straty ciepła przez membranę z wysokimi współczynnikami przenoszenia masy, co pozwala uzyskiwać wysoki strumień permeatu. xiii
14 M. Tomaszewska W konfiguracji VMD podobnie jak w SGMD głównymi zaletami są bardzo niskie straty energii cieplnej przez membranę (przez przewodzenie) i mały opór dla przenoszenia masy. Uzyskiwany strumień permeatu jest najwyższy w porównaniu z innymi konfiguracjami MD. Stwierdzono, że w przypadku stosowania takiej samej membrany i takiego samego roztworu zasilającego, strumień permeatu w VMD był 1,4 większy niż w SGMD i ok. 3 krotnie większy niż w DCMD [9, 28]. Jednak membrany stosowane w VDM powinny mieć mniejsze pory, z uwagi na zwiększone niebezpieczeństwo zwilżenia roztworem zasilającym. Nie występuje natomiast niebezpieczeństwo zwilżenia membrany permeatem. Układ VMD jest skomplikowany, ponieważ niezbędny jest zewnętrzny układ do kondensacji pary, co bardzo podnosi koszty całego procesu. Główne potencjalne wykorzystanie VMD upatruje się w usuwaniu/odzyskiwaniu lotnych związków organicznych z wody i ścieków. Osmotyczna destylacja membranowa zasadniczo prowadzona jest w temperaturze otoczenia. Jest szczególnie atrakcyjna w przypadku zatężania substancji wrażliwych na temperaturę, szczególnie soków owocowych i warzywnych, w przemyśle farmaceutycznym (zatężanie antybiotyków, hormonów), zatężania substancji zapachowych. Jest to technika, w której podobnie jak w DCMD dużą rolę odgrywa polaryzacja temperaturowa PRZYKŁADY POTENCJALNEGO ZASTOSOWANIA MD Główne zastosowanie MD to odsalanie wody morskiej i słonawej w celu uzyskania wody do picia i na potrzeby gospodarcze. Wszystkie konfiguracje MD mogą być wykorzystane w tym celu. Przez pory membrany następuje przenoszenie jedynie pary wodnej i retencja soli niezależnie od jej stężenia w nadawie wynosi ok. 100%. Stąd permeat stanowi czystą wodę; jej przewodnictwo może wynosić 0,2 2,5 S/cm [9]. Wysoka czystość otrzymanej wody pozwala na wykorzystanie w farmacji, do celów medycznych, przy produkcji półprzewodników. Dodatkowo, stosunkowo niska temperatura nadawy pozwala na wykorzystanie odpadowej energii cieplnej, energii słonecznej, geotermalnej, co wyraźnie redukuje koszty. Odsalanie wody w układzie: mikrofiltracja (MF) i odwrócona osmoza (RO) w połączeniu z DCMD pozwala na wyższy stopień odzyskiwania wody. Włączenie do takiego układu krystalizatora membranowego, nie tylko zwiększa stopień odzyskiwania wody, ale również pozwala na produkcję soli z zatężonego retentatu. W ten sposób można rozwiązać problem zagospodarowania zatężonego retentatu (ochrona środowiska) [33], a nawet obniżyć koszty produkcji wody. Interesującym rozwiązaniem jest wykorzystanie energii słonecznej i wiatrowej do odsalania wody w rejonach suchych [8]. Z powodzeniem wykorzystano moduły spiralne do odsalania techniką AGMD [34]. W Jordanii zbudowano instalacje pilotowe (konfiguracja AGMD) do produkcji xiv
15 Destylacja membranowa wody z wody słonej (1 m 3 /dzień) i słonawej (100 dm 3 /dzień), z wykorzystaniem energii słonecznej [35]. Obecnie, dla uzyskania zamierzonego celu, często łączy się, np. technikę konwencjonalną z membranową lub różne techniki membranowe. Przykładem jest wspomniany już układ MF/RO/DCMD zastosowany do odsalania wody [33]. Zaplanowano wstępne odsolenie wody morskiej techniką RO, odzyskując 40 % wody. Wskutek wzrostu stężenia soli w retentacie, dalsze odsalanie odwróconą osmozą wymagałoby wyższego ciśnienia (wobec wyższego ciśnienia osmotycznego roztworu) dla utrzymania znaczącego strumienia permeatu. Ponieważ MD jest techniką mniej wrażliwą na wyższe stężenia soli, retentat po RO był dalej odsalany techniką DCMD. Sumaryczny odzysk wody (RO/DCMD) wyniósł 87,6%, przy czym koszt odsolonej wody był niższy w przypadku układu zintegrowanego niż w przypadku zastosowania jedynie RO [33]. Przeprowadzono również odsalanie łącząc jednostopniową wyparkę słoneczną z DCMD. Produkcja wody była znacznie większa w układzie zintegrowanym niż w samej wyparce [36]. Podczas MD wody zawierającej wodorowęglany i węglany wapnia, występuje niebezpieczeństwo scalingu. Podczas ogrzewania nadawy następuje naruszenie równowagi węglanowej i na powierzchni membrany może wytrącić się CaCO 3. Dla uniknięcia scalingu należy okresowo płukać komorę nadawy kwasem solnym, lub zakwasić wodę w celu zamiany twardości węglanowej w niewęglanową [37]. MD może być stosowana przy zagospodarowywaniu wodnych ścieków nieorganicznych, szczególnie przy ich zatężaniu, co pozwoliłoby odzyskiwać czystą wodę oraz składniki wartościowe i/lub stanowiące zagrożenie dla środowiska. Z drugiej strony zastosowanie MD, szczególnie wariantów SGMD i VMD, pozwala na usuwanie/odzyskiwanie lotnych składników z bardzo rozcieńczonych roztworów, z wód procesowych i ścieków, co jest istotne z punktu widzenia ochrony środowiska. DCMD z powodzeniem wykorzystano do oczyszczania ścieków radioaktywnych o niskim i średnim poziomie aktywności [38]. Podczas demineralizacji wody w elektrowniach i elekrociepłowniach stosowana jest metoda jonitowa. Ścieki powstające po regeneracji jonitów można z powodzeniem oczyszczać metodą destylacji membranowej [39]. Otrzymuje się przy tym wodę wysokiej czystości, która może być wykorzystana do uzupełnienia produkowanej wody zdemineralizowanej. Interesującym kierunkiem badań jest zatężanie soków owocowych głównie metodą SGMD, VMD i OMD. Zastosowanie technik membranowych, w tym również MD, staje się alternatywą do zagęszczania soków naturalnych metodą termiczną, wymagającą wyższych nakładów energii. Dzięki niskiej temperaturze procesu soki zachowują naturalny smak i aromat [40]. Obiecujące rezultaty otrzymano stosując układy łączące ultrafiltrację, odwróconą osmozę i osmotyczną destylację membranową lub DCMD [41]. xv
16 M. Tomaszewska Wykorzystanie SGMD i VMD pozwala na odzyskiwanie aromatów soków owocowych, na zatężanie soku z zachowaniem antocyjanin i polifenoli [42]. Odporność chemiczna membran do destylacji membranowej oraz obudowy stosowanych modułów pozwala zatężać roztwory substancji agresywnych. Zatężanie metodą MD roztworów po ekstrakcji fosfogipsu apatytowego kwasem siarkowym(vi), w celu pozyskiwania lantanowców, stanowi alternatywne rozwiązanie do wyparek [31]. Temperatura roztworu po ługowaniu fosfogipsu była wystarczająca do prowadzenia MD, tj. należało dostarczyć tylko energię na utrzymanie tej temperatury. Podczas trawienia elementów w galwanizerniach powstają ścieki zawierające nieprzereagowany kwas i sole. Wykazano, że metodą destylacji membranowej można z powodzeniem odzyskiwać kwas solny [43-45]. Obecność soli w ściekach obok kwasu solnego obniża rozpuszczalność gazowego HCl i sprzyja jego desorpcji (efekt wysalania). Ponadto, w takich warunkach, desorpcja HCl zachodzi przy znacznie niższych stężeniach kwasu w roztworze. Podczas prowadzenia DCMD sole zostają po stronie nadawy, a przez pory membrany przenoszona jest para wodna i gazowy HCl. Można nawet praktycznie całkowicie odzyskać kwas solny z roztworu i zawrócić go do procesu trawienia. Na podstawie przeprowadzonych badań zaproponowano schemat technologiczny, w którym zastosowanie MD pozwala zamknąć obieg kwasu i wody [45]. Zarówno VMD jak SGMD może być zastosowana z powodzeniem do usuwania lotnych substancji organicznych z wody, takich jak estry, etery, chlorowane węglowodory, związki aromatyczne, co wskazuje na potencjalne wykorzystanie w przemyśle petrochemicznym [9,46]. W przemyśle włókienniczym jednym z rodzajów ścieków są ścieki barwiarskie. Zastosowanie destylacji membranowej do ich oczyszczania pozwala odzyskiwać roztwór barwników, który można zawrócić do kąpieli barwiącej. Jeżeli skład retentatu nie pozwala na ponowne wykorzystanie, może być spalany, stając się źródłem energii [47]. Uzyskany permeat może być wykorzystany do płukania tkanin. W ostatnim okresie dużym zainteresowaniem cieszą się reaktory i bioreaktory membranowe. Przeprowadzone badania wykazały, że zastosowanie MD do ciągłego odprowadzania lotnych produktów fermentacji z bioreaktora znacznie zwiększyło wydajność produkcji etanolu [48], co wskazuje na potencjalne wykorzystanie bioreaktora membranowego do produkcji bioetanolu. W bioreaktorze sprzężonym z MD (BRMD) oczyszczano ścieki zawierające związki organiczne, które były rozkładane przy udziale bakterii termofilowych [49]. Następowało zatem równoczesne biologiczne oczyszczanie ścieków i oddzielanie wody przez membrany w procesie MD. Do zalet bioreaktora należało osiąganie wysokiej czystości otrzymywanej wody, niezależnie od aktywności biologicznej organizmów w reaktorze. Po- xvi
17 Destylacja membranowa nadto, dłuższy czas przebywania rozkładanych związków w bioreaktorze pozwala na rozkład nawet substancji trudno biodegradowalnych, rys. 5. Ścieki BRMD permeat, J = 1,84 dm 3 /m 2 h OWO =2603 ppm T=58,5 o C OWO = 1-1,7 ppm T = 45 o C Rys. 5. Uproszczony schemat oczyszczania ścieków w bioreaktorze sprzężonym z MD (na podstawie [49]). OWO ogólny węgiel organiczny W badanym BRMD wykorzystano ciepło permeatu do wstępnego podgrzania ścieków. Jak podkreślają autorzy, proces można prowadzić przy niewielkim zapotrzebowaniu energii, wykorzystując ciepło niskiej jakości. Dodatkową zaletą takiego rozwiązania jest potencjalna możliwość jednostopniowego oczyszczenia ścieków[49]. Serwatka zawiera wiele cennych składników, z drugiej strony stanowi uciążliwy ściek. Można ją zagospodarować metodą hybrydową, łączącą UF/DCMD/bioreaktor/DCMD [50]. Np. serwatkę po odbiałczeniu techniką UF z membranami ceramicznymi zatężono metodą DCMD, a następnie poddano ją fermentacji w bioreaktorze membranowym. Etanol powstający z laktozy (po hydrolizie enzymatycznej) usuwano z brzeczki fermentacyjnej w sposób ciągły metodą bezpośredniej kontaktowej destylacji membranowej z membranami zanurzonymi. Interesującym przykładem zastosowania MD jest oczyszczanie ścieków z farbiarni w układzie łączącym fotokatalizę z DCMD (fotokatalityczny reaktor membranowy), rys. 6 [51, 52]. Barwniki zawarte w rozcieńczonych ściekach ulegają rozkładowi pod wpływem promieniowania UV przy udziale katalizatora jakim jest TiO 2. Fotokatalizator może być oddzielany od oczyszczanego roztworu techniką membranową. Zaletą zastosowania destylacji membranowej w tym przypadku jest nie tylko zatrzymanie barwnika i katalizatora, ale również produktów rozpadu związków organicznych w nadawie. max = 365 nm h ścieki Fotokataliza, TiO 2 MD woda TiO 2 Rys. 6. Schemat oczyszczania ścieków w fotokatalitycznym reaktorze membranowym, sprzężonym z DCMD (na podstawie [51, 52]) xvii
18 M. Tomaszewska Rys. 7 przedstawia schemat nowego rozwiązania, w którym zaproponowano przeprowadzenie pierwszego etapu produkcji siarczanu(vi) potasu w reaktorze membranowym sprzężonym z DCMD [53,56]. Podczas konwersji KCl do KHSO 4 w reaktorze membranowym następuje ciągła separacja chlorowodoru ze środowiska reakcji przez membranę, co pozwala na przesuwanie równowagi reakcji i efektywne wykorzystanie surowca. Jednoczesne odparowanie roztworu pozwala na wykorzystanie rozcieńczonych roztworów w procesie konwersji. roztwór KCl kwas siarkowy(iv) Reaktor KCl+H 2SO 4 KHSO 4 +HCl HCl para wodna membrana MD KHSO 4 Rys.7. Schemat konwersji KCl do KHSO 4 w reaktorze membranowym sprzężonym z DCMD (na podstawie [53,54]) 7. KOSZTY PRODUKCJI WODY W wielu pracach przeprowadzono analizę kosztów odsalania techniką MD [7, 10, 57-59]. W destylacji membranowej należy dostarczyć energii na podgrzanie nadawy i chłodzenie permeatu. Ponadto energia niezbędna jest do zasilania pomp cyrkulacyjnych, pompy próżniowej (w VMD). Uważa się, że ok. 90 % całkowitej energii jest wykorzystane w postaci energii cieplnej. Zużycie energii cieplnej w dużym stopniu zależy od temperatury roztworu zasilającego [10, 58]. W celu obniżenia kosztów produkcji wody należy bezwzględnie odzyskiwać ciepło kondensacji permeatu. Niezbędna jest też optymalizacja modułu, doboru właściwości membrany (grubości, porowatości, rozmiarów porów). Niezmiernie ważne jest zrozumienie zależności strumienia permeatu, kosztów produkcji wody od zastosowanego rozwiązania, parametrów operacyjnych modułu membranowego (powierzchni membrany, temperatury nadawy, prędkości przepływu nadawy i permeatu) parametrów operacyjnych i rozmiarów wymienników ciepła [58, 59]. Koszt uzyskania 1 m 3 wody techniką MD może obniżyć się do 0,26-0,56 $ [57]. Analiza kosztów produkcji wody wskazuje, że zintegrowany układ RO/MD może być atrakcyjną alternatywą w stosunku do RO, szczególnie gdy można wykorzystać tanią energię cieplną [57, 59]. Również, gdy skład wody utrudnia zastosowanie odwróconej osmozy RO, destylacja membranowa może być konkurencyjna w stosunku do RO. xviii
19 Destylacja membranowa 8. LITERATURA [1] Bodell B. R., Silicone rubber vapor diffusion in saline water distillation, United States Patent, 1963, S 285,032. [2] Weyl P. K., Recovery of demineralized water from saline waters,. United States Patent, 1967, [3] Findley M. E., Vaporization through porous membranes, Ind. Eng. Chem. Process Des. Dev., 6 (1967) [4] Lawson K. W., Lloyd D. R., Membrane distillation, J. Membr. Sci., 124 (1997) [5] Tomaszewska M., Destylacja membranowa, Prace Naukowe Politechniki Szczecińskiej, nr. 531, Szczecin [6] Gryta M., Rozdzielanie składników roztworów techniką destylacji membranowej, Prace Naukowe Politechniki Szczecińskiej nr. 577, Szczecin [7] El-Bourawi M. S., Ding Z., Ma R., Khayet M., A framework for better understanding membrane distillation separation process, J. Membr. Sci., 285 (2006) [8] Susanto H., Towards practical implementations of membrane distillation, Chem. Eng. Process., 50 (2011) [9] Khayet M., Matsuura T., Membrane Distillation. Principles and Applications, Elsevier, Amsterdam [10] Alkhudhiri A., Darwish N., Hilal N., Membrane distillation: A comprehensive review, Desalination, 287 (2012) [11] Gryta M., Osmotic MD and other membrane distillation variants, J. Membr. Sci., 246 (2005) [12] Franken A. C. M., Nolten J. A. M., Mulder M. H. V., Bargeman D., Smolders C.A., Wetting criteria for the applicability of membrane distillation, J. Membr. Sci., 33 (1987) [13] Adnan S., Hoang M., Wang H., Xie Z., Commercial PTFE membranes for membrane distillation application: Effect of microstructure and support material, Desalination, 284 (2012) [14] Curcio E., Drioli E., Membrane distillation and related operations a review, Sep. Purif. Rev., 34 (2005) [15] Tomaszewska M., Preparation and properties of flat-sheet membranes from poli(vinylidene fluoride) for membrane distillation, Desalination, 104 (1996) [16] Khayet M., Cojocaru C., García-Payo M. C., Experimental design and optimization of asymmetric flat-sheet membranes prepared for direct contact membrane distillation, J. Membr. Sci., 351 (2010) [17] Feng C., Shi B., Li G., Wu Y., Preparation and properties of microporous membrane from poly(vinylidene fluoride-co-tetrafluoroethylene) (F2.4) for membrane distillation, J. Membr. Sci., 237 (2004) [18] Su M., Teoh M. M., Wang K. Y., Su J., Chung T.-S., Effect of inner-layer thermal conductivity on flux enhancement of dual-layer hollow fiber membranes in direct contact membrane distillation, J. Membr. Sci., 364 (2010) [19] Suk D. E, Matsuura T., Park H. B., Lee Y. M., Development of novel surface modified phase inversion membranes having hydrophobic surface-modifying macromolecule (nsmm) for vacuum membrane distillation, Desalination, 261 xix
20 M. Tomaszewska (2010) [20] Qtaishat M., Khayet M., Matsuura T., Novel porous composite hydrophobic/hydrophilic polysulfone membranes for desalination by direct contact membrane distillation, J. Membr. Sci., 341 (2009) [21] Qtaishata M., Khayet M., Matsuura T., Guidelines for preparation of higher flux hydrophobic/hydrophilic composite membranes for membrane distillation, J. Membr. Sci., 329 (2009) [22] Cerneaux S., Strużyńska I., Kujawski W., Persin M., Larbot A., Comparison of various membrane distillation methods for desalination using hydrophobic ceramic membranes, J. Membr. Sci., 337 (2009) [23] Hendren Z. D, Brant J., Wiesner M. R., Surface modification of nanostructured ceramic membranes for direct contact membrane distillation, J. Membr. Sci., 331 (2009) [24] Khemakhem S., Amar R. B., Grafting of fluoroalkylsilanes on microfiltration Tunisian clay membrane, Ceram. Int., 37 (2011) [25] Gryta M., Tomaszewska M., Morawski A. W., A capillary module for membrane distillation process, Chem. Papers, 54 (6a) (2000) [26] Winter D., Koschikowski J., Wieghaus M., Desalination using membrane distillation: Experimental studies on full scale spiral wound modules, J. Membr. Sci., 375 (2011) [27] Gryta M., Tomaszewska M., Kapilarny moduł MD z wewnętrznym wymiennikiem ciepła, Inżynieria Chemiczna i Procesowa, 20 (1999) [28] Khayet M., Membranes and theoretical modeling of membrane distillation: A review, Adv. Colloid Interface Sci., 164 (2011) [29] Laganà F, Barbieri G, Drioli E., Direct contact membrane distillation: modelling and concentration experiments, J. Membr. Sci., 166 (2000)1 11. [30] Fernandez-Pineda C., Izquierdo-Gil M. A., Garcia-Payo M. C., Gas permeation and direct contact membrane distillation experiments and their analysis using different models, J. Membr. Sci., 198 (2002) [31] Tomaszewska M., Concentration of the extraction fluid from sulfuric acid treatment of phosphogypsum by membrane distillation, J. Membr. Sci., 78 (1993) [32] Tomaszewska M., Studies on application of membrane technology in chemical industry, Pol. J. Chem. Technol., 7 (2005) [33] Di Profio G, Curcio E., Drioli E., Membrane Crystallization Technology, w: Comprehensive Membrane Science and Engineering, vol. 4, Drioli E., Giorno L. (Eds), Academic Press, Elsevier, Oxford 2010, s [34] Winter D., Koschikowski J., Wieghaus M., Desalination using membrane distillation: Experimental studies on full scale spiral wound modules, J. Membr. Sci., 375 (2011) [35] Qtaishat M. R., Banat F., Desalination by solar powdered membrane distillation systems, Desalination, 308 (2013) [36] Banat F., Jumah R., Garaibeh G., Exploitation of solar energy collected by solar stills for desalination by membrane distillation, Renew. Energy, 25 (2002) [37] Gryta M., Tomaszewska M., Morawski W., Oczyszczanie wód techniką destylacji membranowej, Inżynieria Chemiczna i Procesowa, 22 (2001) [38] Zakrzewska-Trznadel G., Harasimowicz M., Chmielewski A. G., Concentration of radioactive components in liquid low-level radioactive waste by mem- xx
21 Destylacja membranowa brane distillation, J. Membr. Sci., 163 (1999) [39] Gryta M., Tomaszewska M., Karakulski K., Wastewater treatment by membrane distillation, Desalination, 198 (2006) [40] Jiao B., Cassano A., Drioli E., Recent advances on membrane processes for the concentration of fruit juices: a review, J. Food Eng., 63 (2004) [41] Alves V. D., Coelhoso I. M., Orange juice concentration by osmotic evaporation and membrane distillation: A comparative study, J. Food Eng., 74 (2006) [42] Bagger-Jørgensen R., Meyer A. S., Pinelo M., Varming C., Jonsson G., Recovery of volatile fruit juice aroma compounds by membrane technology: Sweeping gas versus vacuum membrane distillation, Innovative Food Science and Emerging Technologies, 12 (2011) [43] Tomaszewska M., Gryta M., Morawski A. W., Mass transfer of HCl and H 2 O across the hydrophobic membrane during membrane distillation, J. Membr. Sci., 166 (2000) [44] Tomaszewska M., Gryta M., Morawski A. W., The influence of salt in solutions on hydrochloric acid recovery by membrane distillation, Sep. Purif. Technol., 14 (1998) [45] Tomaszewska M., Gryta M., Morawski A. W., Recovery of hydrochloric acid from metal pickling solutions by membrane distillation, Sep. Purif. Technol., (2001) [46] Urtiaga A. M., Gorri E. D., Ruiz G., Ortiz I., Parallelism and differences of pervaporation and vacuum membrane distillation in the removal of VOCs from aqueous streams, Sep. Purif. Technol., (2001) [47] Van der Bruggen B., Curcio E., Drioli E., Process intensification in the textile industry: the role of membrane technology, J. Environ. Manage., 73 (2004) [48] Gryta M., Morawski A. W., Tomaszewska M., Ethanol production in membrane distillation bioreactor, Catal. Today, 56 (2000) [49] Phattaranawik J., Fane A. G., Pasquier A. C. S., Bing W., A novel membrane bioreactor based on membrane distillation, Desalination, 223 (2008) [50] Tomaszewska M., Białończyk L., Production of ethanol from lactose in a bioreactor integrated with membrane distillation, Desalination, [51] Mozia S., Tomaszewska M., Morawski A. W., Removal of azo-dye Acid Red 18 in two hybrid membrane systems employing a photodegradation process, Desalination, 198 (2006) [52] Mozia S., Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review, Sep. Purif. Technol., 73 (2010) [53] Tomaszewska M., Preliminary studies on conversion of potassium chloride into potassium sulfate using membrane reactor, J. Membr. Sci., 317 (2008) [54] Tomaszewska M., Łapin A., Wytwarzanie bezchlorkowej soli potasowej z konwersją chlorku potasu do wodorosiarczanu potasu w reaktorze membranowym, Przemysł Chemiczny, 89 (2010) [55] The influence of feed temperature and composition on the conversion of KCl into KHSO 4 in a membrane reactor combined with direct contact membrane distillation, Sep. Purif. Technol., 100 (2012) [56] Tomaszewska M., Łapin A., Conversion of KCl into KHSO 4 in a membrane xxi
22 M. Tomaszewska reactor: long-term experiments, Desalination, 245 (2009) Al- Obaidani S., Curcio E., Macedonio F., Di Profio G., Al-Hinai H., Drioli E., Potential of membrane distillation in seawater desalination: Thermal efficiency, sensitivity study and cost estimation, J. Membr. Sci., 323 (2008) [58] Criscuoli A., Carnevale M. C., Drioli E., Evaluation of energy requirements in membrane distillation, Chem. Eng. Process., 47 (2008) [59] Zuo G., Wang R., Field R., Fane A. G., Energy efficiency evaluation and economic analyses of direct contact membrane distillation system using Aspen Plus, Desalination, 283 (2011) xxii
POLITECHNIKA GDAŃSKA
POLITECHNIKA GDAŃSKA WYDZIAŁ CHEMICZNY KATEDRA INŻYNIERII PROCESOWEJ I TECHNOLOGII CHEMICZNEJ TECHNOLOGIA CHEMICZNA Zasada najlepszego wykorzystania potencjału: ocena siły napędowej i wpływu zwilżania
(13) B1 (12) OPIS PATENTOWY (19) PL (11) PL B1 B01D 63/00
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 175490 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 306490 (22) Data zgłoszenia: 21.12.1994 (51) IntCl6: B01D 61/36 B01D
Klasyfikacja procesów membranowych. Magdalena Bielecka Agnieszka Janus
Klasyfikacja procesów membranowych Magdalena Bielecka Agnieszka Janus 1 Co to jest membrana Jest granica pozwalająca na kontrolowany transport jednego lub wielu składników z mieszanin ciał stałych, ciekłych
ODWRÓCONA OSMOZA. Separacja laktozy z permeatu mikrofiltracyjnego serwatki
Wrocław, 01.12.16 ODWRÓCONA OSMOZA Separacja laktozy z permeatu mikrofiltracyjnego serwatki 1. OPIS PROCESU Podstawowym elementem odróżniającym procesy osmozy od ultrafiltracji są znacznie mniejsze rozmiary
Wykład 1. Wprowadzenie do metod membranowych
Wykład 1 Wprowadzenie do metod membranowych Cele metod rozdzielania: 1) 2) 3) zatężania oczyszczanie frakcjonowanie Historia 1855 A. Fick membrany kolodionowe 1866 T. Graham membrany kauczukowe 1950/1960
ODWRÓCONA OSMOZA ODSALANIE SOLANKI
Wrocław, 24.11.15 ODWRÓCONA OSMOZA ODSALANIE SOLANKI 1. OPIS PROCESU Podstawowym elementem odróżniającym procesy osmozy od ultrafiltracji są znacznie mniejsze rozmiary cząstek substancji rozpuszczonych
Wykład 2. Anna Ptaszek. 7 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 2. Anna Ptaszek 1 / 1
Wykład 2 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 7 października 2015 1 / 1 Zjawiska koligatywne Rozpuszczenie w wodzie substancji nielotnej powoduje obniżenie prężności pary nasyconej P woda
(12) OPIS PATENTOWY (19) PL (11)
RZECZPOSPOLITA POLSKA Urząd Patentowy Rzeczypospolitej Polskiej (12) OPIS PATENTOWY (19) PL (11) 185682 (2 1) Numer zgłoszenia: 317784 (22) Data zgłoszenia: 30.12.1996 (13) B1 (51) IntCl7 C02F 1/44 B01D
Wykład 2. Wprowadzenie do metod membranowych (część 2)
Wykład 2 Wprowadzenie do metod membranowych (część 2) Mechanizmy filtracji membranowej Model kapilarny Model dyfuzyjny Model dyfuzyjny Rozpuszczalność i szybkość dyfuzji Selektywność J k D( c c ) / l n
WZBOGACANIE BIOGAZU W METAN W KASKADZIE MODUŁÓW MEMBRANOWYCH
biogaz, wzbogacanie biogazu separacja membranowa Andrzej G. CHMIELEWSKI *, Marian HARASIMOWICZ *, Jacek PALIGE *, Agata URBANIAK **, Otton ROUBINEK *, Katarzyna WAWRYNIUK *, Michał ZALEWSKI * WZBOGACANIE
Mikrofiltracja, ultrafiltracja i nanofiltracja. Katarzyna Trzos Klaudia Zięba Dominika Stachnik
Mikrofiltracja, ultrafiltracja i nanofiltracja. Katarzyna Trzos Klaudia Zięba Dominika Stachnik Procesy membranowe Procesy separacji przebiegające dzięki obecności membrany Zasadą technik mikrofiltracji,
Sonochemia. Schemat 1. Strefy reakcji. Rodzaje efektów sonochemicznych. Oscylujący pęcherzyk gazu. Woda w stanie nadkrytycznym?
Schemat 1 Strefy reakcji Rodzaje efektów sonochemicznych Oscylujący pęcherzyk gazu Woda w stanie nadkrytycznym? Roztwór Znaczne gradienty ciśnienia Duże siły hydrodynamiczne Efekty mechanochemiczne Reakcje
(54) Sposób przerobu zasolonych wód odpadowych z procesu syntezy tlenku etylenu
RZECZPOSPOLITA POLSKA Urząd Patentowy Rzeczypospolitej Polskiej (12) OPIS PATENTOWY (19) PL (11) 186722 (21) Numer zgłoszenia: 327212 (22) Data zgłoszenia: 03.07.1998 (13) B1 (51) IntCl7 C07C 31/20 C07C
Przegląd technologii produkcji tlenu dla bloku węglowego typu oxy
Przegląd technologii produkcji tlenu dla bloku węglowego typu oxy Metody zmniejszenia emisji CO 2 - technologia oxy-spalania Metoda ta polega na spalaniu paliwa w atmosferze o zwiększonej koncentracji
Odwrócona osmoza (RO) PATRYCJA WĄTROBA
Odwrócona osmoza (RO) PATRYCJA WĄTROBA DOMINIKA SZREDER ANGELIKA WALKOWICZ 30B1 PODSTAWA PROCESU Zjawisko osmozy naturalnej, które polega na samorzutnym przenikaniu rozpuszczalnika przez membranę półprzepuszczalną
KONGRES SEROWARSKI ŁOCHÓW 2018
KONGRES SEROWARSKI ŁOCHÓW 2018 WYBRANE ZASTOSOWANIA TECHNOLOGII MEMBRANOWYCH W PROCESACH OCZYSZCZANIA WODY I ŚCIEKÓW Dr inż. Janusz Kroll PROCESY FILTRACJI MEMBRANOWYCH Mikrofiltracja - MF 0.1 do2.0 µm
Skraplanie czynnika chłodniczego R404A w obecności gazu inertnego. Autor: Tadeusz BOHDAL, Henryk CHARUN, Robert MATYSKO Środa, 06 Czerwiec :42
Przeprowadzono badania eksperymentalne procesu skraplania czynnika chłodniczego R404A w kanale rurowym w obecności gazu inertnego powietrza. Wykazano negatywny wpływ zawartości powietrza w skraplaczu na
Ciśnieniowe techniki membranowe (część 2)
Wykład 5 Ciśnieniowe techniki membranowe (część 2) Opracowała dr Elżbieta Megiel Nanofiltracja (ang. Nanofiltration) NF GMM 200 Da rozmiar molekuły 1 nm, TMM 5 30 atm Membrany jonoselektywne Stopień zatrzymywania:
Wykład 7: Metody permeacyjne - wiadomości wstępne
Wykład 7: Metody permeacyjne - wiadomości wstępne Zastrzeżenie Niektóre materiały graficzne zamieszczone w tym dokumencie oraz w łączach zewnętrznych mogą być chronione prawem autorskim i jako takie są
Operacje wymiany masy oraz wymiany ciepła i masy
Operacje wymiany masy oraz wymiany ciepła i masy WPROWADZENIE + Destylacja - różniczkowa / równowagowa / z parą wodną prof. M. Kamioski Gdaosk, 2017 INŻYNIERIA CHEMICZNA i BIO-PROCESOWA OPERACJE WYMIANY
PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 01/12
PL 217131 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 217131 (13) B1 (21) Numer zgłoszenia: 391688 (51) Int.Cl. B01D 53/22 (2006.01) B01D 53/14 (2006.01) Urząd Patentowy Rzeczypospolitej
chemia wykład 3 Przemiany fazowe
Przemiany fazowe Przemiany fazowe substancji czystych Wrzenie, krzepnięcie, przemiana grafitu w diament stanowią przykłady przemian fazowych, które zachodzą bez zmiany składu chemicznego. Diagramy fazowe
Inżynieria procesów przetwórstwa węgla, zima 15/16
Inżynieria procesów przetwórstwa węgla, zima 15/16 Ćwiczenia 1 7.10.2015 1. Załóżmy, że balon ma kształt sfery o promieniu 3m. a. Jaka ilość wodoru potrzebna jest do jego wypełnienia, aby na poziomie morza
Destylacja z parą wodną
Destylacja z parą wodną 1. prowadzenie iele związków chemicznych podczas destylacji przy ciśnieniu normalnym ulega rozkładowi lub polimeryzacji. by możliwe było ich oddestylowanie należy wykonywać ten
APV Hybrydowe Spawane Płytowe Wymienniki Ciepła
APV Hybrydowe Spawane Płytowe Wymienniki Ciepła Technologia Hybrydowe Wymienniki Ciepła APV są szeroko wykorzystywane w przemyśle od 98 roku. Szeroki zakres możliwych tworzonych konstrukcji w systemach
Występują dwa zasadnicze rodzaje skraplania: skraplanie kroplowe oraz skraplanie błonkowe.
Wymiana ciepła podczas skraplania (kondensacji) 1. Wstęp Do skraplania dochodzi wtedy, gdy para zostaje ochłodzona do temperatury niższej od temperatury nasycenia (skraplania, wrzenia). Ma to najczęściej
Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36
Wykład 1 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 5 października 2015 1 / 36 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną
Wykład 7. Anna Ptaszek. 13 września Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Fizykochemia biopolimerów - wykład 7.
Wykład 7 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 13 września 2016 1 / 27 Układ wieloskładnikowy dwufazowy P woda 1 atm lód woda ciek a woda + substancja nielotna para wodna 0 0 100 T 2 / 27
tel: 56.611.43.15 fax: 56.654.24.77 Recenzja
Uniwersytet Mikołaja Kopernika, Wydział Chemii Katedra Chemii Fizycznej i Fizykochemii Polimerów Zespół Membran i Membranowych Procesów Rozdzielczych ul. Gagarina 7; 87-100 Toruń / Poland tel: 56.611.43.15
Ćwiczenie 2: Właściwości osmotyczne koloidalnych roztworów biopolimerów.
1. Część teoretyczna Właściwości koligatywne Zjawiska osmotyczne związane są z równowagą w układach dwu- lub więcej składnikowych, przy czym dotyczy roztworów substancji nielotnych (soli, polisacharydów,
WYKŁAD 7. Diagramy fazowe Dwuskładnikowe układy doskonałe
WYKŁAD 7 Diagramy fazowe Dwuskładnikowe układy doskonałe JS Reguła Gibssa. Układy dwuskładnikowe Reguła faz Gibbsa określa liczbę stopni swobody układu w równowadze termodynamicznej: układy dwuskładnikowe
Para pozostająca w równowadze z roztworem jest bogatsza w ten składnik, którego dodanie do roztworu zwiększa sumaryczną prężność pary nad nim.
RÓWNOWAGA CIECZ-PARA DLA UKŁADÓW DWUSKŁADNIKOWYCH: 1) Zgodnie z regułą faz Gibbsa układ dwuskładnikowy osiąga największą liczbę stopni swobody (f max ), gdy znajduje się w nim najmniejsza możliwa liczba
Warunki izochoryczno-izotermiczne
WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne
Wykład 11. Membrany ciekłe i biopodobne. Opracowała dr Elżbieta Megiel
Wykład 11 Membrany ciekłe i biopodobne Opracowała dr Elżbieta Megiel Rodzaje membran ciekłych Faza donorowa f Faza akceptorowa s Membrany grubowarstwowe ( BLM ang. Bulk liquid membrane) Membrany ciekłe
Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał
Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami
Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis
Nauka o Materiałach Wykład XI Właściwości cieplne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Stabilność termiczna materiałów 2. Pełzanie wysokotemperaturowe 3. Przewodnictwo cieplne 4. Rozszerzalność
Utylizacja i neutralizacja odpadów Międzywydziałowe Studia Ochrony Środowiska. Ćwiczenie 14. Zastosowanie metod membranowych do oczyszczania ścieków
Utylizacja i neutralizacja odpadów Międzywydziałowe Studia Ochrony Środowiska Ćwiczenie 14 Zastosowanie metod membranowych do oczyszczania ścieków Wstęp teoretyczny Opracowała: dr Elżbieta Megiel 1. Klasyfikacja
Technika membranowa MF UF NF - RO
Technika membranowa MF UF NF - RO AquaCare GmbH & Co. KG Am Wiesenbusch 11 (im Innovapark) 45966 Gladbeck, Germany +49-20 43-37 57 58-0 +49-20 43 37 57 58-90 www.aquacare.de e-mail: info@aquacare.de Autoryzowany
wymiana energii ciepła
wymiana energii ciepła Karolina Kurtz-Orecka dr inż., arch. Wydział Budownictwa i Architektury Katedra Dróg, Mostów i Materiałów Budowlanych 1 rodzaje energii magnetyczna kinetyczna cieplna światło dźwięk
APARATURA W OCHRONIE ŚRODOWISKA - 1. WPROWADZENIE
APARATURA W OCHRONIE ŚRODOWISKA - 1. WPROWADZENIE Wykład dla kierunku Ochrona Środowiska Wrocław, 2016 r. Ochrona środowiska - definicje Ochrona środowiska szereg podejmowanych przez człowieka działań
Wykład 3. Fizykochemia biopolimerów- wykład 3. Anna Ptaszek. 30 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego
Wykład 3 - wykład 3 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 30 października 2013 1/56 Warunek równowagi fazowej Jakich układów dotyczy równowaga fazowa? Równowaga fazowa dotyczy układów: jednoskładnikowych
PL B1. ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE, Szczecin, PL BUP 24/15
PL 224627 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 224627 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 408265 (22) Data zgłoszenia: 20.05.2014 (51) Int.Cl.
Spis treści. Przedmowa do wydania trzeciego /11 CZĘŚĆ I. WPROWADZENIE / Procesy podstawowe w technologii żywności /14
Spis treści Przedmowa do wydania trzeciego /11 CZĘŚĆ I. WPROWADZENIE /13 1. Procesy podstawowe w technologii żywności /14 1.1. Pojęcie procesu podstawowego / 14 1.2. Przenoszenie pędu, energii i masy /
PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 01/12
PL 217130 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 217130 (13) B1 (21) Numer zgłoszenia: 391687 (51) Int.Cl. F24F 3/14 (2006.01) B01D 53/22 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej
WYZNACZANIE WSPÓŁCZYNNIKÓW DYFUZJI I PERMEACJI DLA MEMBRAN TYPU MIXED MATRIX
WYZNACZANIE WSPÓŁCZYNNIKÓW DYFUZJI I PERMEACJI DLA MEMBRAN TYPU MIXED MATRIX Maciej Szwast 1, Michał Zalewski 1, Daniel Polak 1 1. Wydział Inżynierii Chemicznej i Procesowej, Politechnika Warszawska, ul.
Wykład 9: Dializa i Elektrodializa
Wykład 9: Dializa i Elektrodializa Zastrzeżenie Niektóre materiały graficzne zamieszczone w tym dokumencie oraz w łączach zewnętrznych mogą być chronione prawem autorskim i jako takie są przeznaczone jedynie
- Dyfuzja / Konwekcja / Wnikanie / Przenikanie - Masy -
Układy wielofazowe płyn1 (G Gas / V - Vapor) // płyn2 (L (Liquid)) -- na powierzchni ciała stałego (S) jako nośnika (G/V-L-S) -- na półkach aparatów półkowych -- - Dyfuzja / Konwekcja / Wnikanie / Przenikanie
Procesy membranowe (membrane processes)
Procesy membranowe (membrane processes) ROZDZIAŁ STRUMIENIA W PROCESIE MEMBRANOWYM Koncentrat CELE: zatężanie oczyszczanie frakcjonowanie Membrana Pod pojęciem membrany rozumiano pierwotnie półprzepuszczalną
PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 01/12
PL 216277 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 216277 (13) B1 (21) Numer zgłoszenia: 391686 (51) Int.Cl. C10K 1/32 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:
Czy równowaga jest procesem korzystnym? dr hab. prof. nadzw. Małgorzata Jóźwiak
Czy równowaga jest procesem korzystnym? dr hab. prof. nadzw. Małgorzata Jóźwiak 1 Pojęcie równowagi łańcuch pokarmowy równowagi fazowe równowaga ciało stałe - ciecz równowaga ciecz - gaz równowaga ciało
Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).
Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo
TECHNIKI ROZDZIELANIA
TECHNIKI ROZDZIELANIA Ćwiczenie 2 Techniki wzbogacania i prekoncentracji: Membrany stałe/odparowanie próżniowe Politechnika Gdańska Wydział Chemiczny Katedra Inżynierii Chemicznej i Procesowej Prowadzący
Technologia chemiczna. Zajęcia 2
Technologia chemiczna Zajęcia 2 Podstawą wszystkich obliczeń w technologii chemicznej jest bilans materiałowy. Od jego wykonania rozpoczyna się projektowanie i rachunek ekonomiczny planowanego lub istniejącego
Odwracalność przemiany chemicznej
Odwracalność przemiany chemicznej Na ogół wszystkie reakcje chemiczne są odwracalne, tzn. z danych substratów tworzą się produkty, a jednocześnie produkty reakcji ulegają rozkładowi na substraty. Fakt
Zadanie: 1 (1pkt) Zadanie: 2 (1 pkt)
Zadanie: 1 (1pkt) Stężenie procentowe nasyconego roztworu azotanu (V) ołowiu (II) Pb(NO 3 ) 2 w temperaturze 20 0 C wynosi 37,5%. Rozpuszczalność tej soli w podanych warunkach określa wartość: a) 60g b)
ZAMRAŻANIE PODSTAWY CZ.2
METODY PRZECHOWYWANIA I UTRWALANIA BIOPRODUKTÓW ZAMRAŻANIE PODSTAWY CZ.2 Opracował: dr S. Wierzba Katedra Biotechnologii i Biologii Molekularnej Uniwersytetu Opolskiego Odmienność procesów zamrażania produktów
Akademickie Centrum Czystej Energii. Ogniwo paliwowe
Ogniwo paliwowe 1. Zagadnienia elektroliza, prawo Faraday a, pierwiastki galwaniczne, ogniwo paliwowe 2. Opis Główną częścią ogniwa paliwowego PEM (Proton Exchange Membrane) jest membrana złożona z katody
ZAMRAŻANIE PODSTAWY CZ.1
METODY PRZECHOWYWANIA I UTRWALANIA BIOPRODUKTÓW ZAMRAŻANIE PODSTAWY CZ.1 Opracował: dr S. Wierzba Katedra Biotechnologii i Biologii Molekularnej Uniwersytetu Opolskiego Zamrażaniem produktów nazywamy proces
WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ
WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-06 Temat: Wyznaczanie zmiany entropii ciała
Plan zajęć. Sorpcyjne Systemy Energetyczne. Adsorpcyjne systemy chłodnicze. Klasyfikacja. Klasyfikacja adsorpcyjnych systemów chłodniczych
Plan zajęć Sorpcyjne Systemy Energetyczne Adsorpcyjne systemy chłodnicze dr inż. Bartosz Zajączkowski Wydział Mechaniczno-Energetyczny Katedra Termodynamiki, Teorii Maszyn i Urządzeń Cieplnych kontakt:
relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach
1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach
(54) Sposób wydzielania zanieczyszczeń organicznych z wody
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 175992 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 305151 (22) Data zgłoszenia: 23.09.1994 (51) IntCl6: C02F 1/26 (54)
Czym w ogóle jest energia geotermalna?
Energia geotermalna Czym w ogóle jest energia geotermalna? Ogólnie jest to energia zakumulowana w gruntach, skałach i płynach wypełniających pory i szczeliny skalne. Energia ta biorąc pod uwagę okres istnienia
Stacje odwróconej osmozy Technika membranowa
Stacje odwróconej osmozy Technika membranowa Przemysłowe stacje odwróconej osmozy Watersystem. Działając od przeszło 20 lat na rynku uzdatniania wody, oferujemy klientom sprawdzone jednostki odwróconej
SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA
SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA Zadania dla studentów ze skryptu,,obliczenia z chemii ogólnej Wydawnictwa Uniwersytetu Gdańskiego 1. Reakcja między substancjami A i B zachodzi według
Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1
Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący Uwaga! Proszę stosować się do następującego sposobu wprowadzania tekstu w ramkach : pola szare
Chemia - laboratorium
Chemia - laboratorium Wydział Geologii, Geofizyki i Ochrony Środowiska Studia stacjonarne, Rok I, Semestr zimowy 01/1 Dr hab. inż. Tomasz Brylewski e-mail: brylew@agh.edu.pl tel. 1-617-59 Katedra Fizykochemii
Ciśnieniowe techniki membranowe
Wykład 4 Ciśnieniowe techniki membranowe Opracowała dr Elżbieta Megiel Pressure driven processes P= MF 10-300 kpa UF 50-500 kpa NF 0.5-1.5 MPa RO 0.5-1.5 MPa Bacteria, parasites, High molecular particles
Zjawiska powierzchniowe
Zjawiska powierzchniowe Adsorpcja Model Langmuira Model BET 1 Zjawiska powierzchniowe Adsorpcja Proces gromadzenia się substancji z wnętrza fazy na granicy międzyfazowej; Wynika z tego, że w obszarze powierzchniowym
Projektowanie Biznesu Ekologicznego Wykład 2 Adriana Zaleska-Medynska Katedra Technologii Środowiska, p. G202
Projektowanie Biznesu Ekologicznego Wykład 2 Adriana Zaleska-Medynska Katedra Technologii Środowiska, p. G202 Wykład 2 1. Jak przejść od pomysłu do przemysłu? 2. Projekt procesowy: koncepcja chemiczna
Wykład 8B. Układy o ograniczonej mieszalności
Wykład 8B Układy o ograniczonej mieszalności Układy o ograniczonej mieszalności Jeżeli dla pewnego składu entalpia swobodna mieszania ( Gmiesz> 0) jest dodatnia, to mieszanie nie jest procesem samorzutnym
ODZYSKIWANIE ETANOLU Z NISKOSTĘŻONYCH ROZTWORÓW WODNYCH ZA POMOCĄ KONTAKTORÓW MEMBRANOWYCH Z UDZIAŁEM CIECZY JONOWEJ
Proceedings of ECOpole DOI: 10.2429/proc.2015.9(1)039 2015;9(1) Karina SNOCHOWSKA 1, Michał TYLMAN 1 i Władysław KAMIŃSKI 1 ODZYSKIWANIE ETANOLU Z NISKOSTĘŻONYCH ROZTWORÓW WODNYCH ZA POMOCĄ KONTAKTORÓW
Wpływ dodatku biowęgla na emisje w procesie kompostowania odpadów organicznych
BIOWĘGIEL W POLSCE: nauka, technologia, biznes 2016 Serock, 30-31 maja 2016 Wpływ dodatku biowęgla na emisje w procesie kompostowania odpadów organicznych dr hab. inż. Jacek Dach, prof. nadzw.* dr inż.
Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne
Innowacyjny układ odzysku ciepła ze spalin dobry przykład
Innowacyjny układ odzysku ciepła ze spalin dobry przykład Autor: Piotr Kirpsza - ENEA Wytwarzanie ("Czysta Energia" - nr 1/2015) W grudniu 2012 r. Elektrociepłownia Białystok uruchomiła drugi fluidalny
prof. dr hab. Małgorzata Jóźwiak
Czy równowaga w przyrodzie i w chemii jest korzystna? prof. dr hab. Małgorzata Jóźwiak 1 Pojęcie równowagi łańcuch pokarmowy równowagi fazowe równowaga ciało stałe - ciecz równowaga ciecz - gaz równowaga
4. SPRZĘGŁA HYDRAULICZNE
4. SPRZĘGŁA HYDRAULICZNE WYTYCZNE PROJEKTOWE www.immergas.com.pl 26 SPRZĘGŁA HYDRAULICZNE 4. SPRZĘGŁO HYDRAULICZNE - ZASADA DZIAŁANIA, METODA DOBORU NOWOCZESNE SYSTEMY GRZEWCZE Przekazywana moc Czynnik
BADANIE WYMIENNIKÓW CIEPŁA
1.Wprowadzenie DNIE WYMIENNIKÓW CIEPŁ a) PŁSZCZOWO-RUROWEGO b) WĘŻOWNICOWEGO adanie wymiennika ciepła sprowadza się do pomiaru współczynników przenikania ciepła k w szerokim zakresie zmian parametrów ruchowych,
BIOTECHNOLOGIA OGÓLNA
BIOTECHNOLOGIA OGÓLNA 1. 2. 3. 4. 5. Ogólne podstawy biologicznych metod oczyszczania ścieków. Ścieki i ich rodzaje. Stosowane metody analityczne. Substancje biogenne w ściekach. Tlenowe procesy przemiany
TECHNOLOGIA CHEMICZNA JAKO NAUKA STOSOWANA GENEZA NOWEGO PROCESU TECHNOLOGICZNEGO CHEMICZNA KONCEPCJA PROCESU
PODSTAWY TECHNOLOGII OGÓŁNEJ wykład 1 TECHNOLOGIA CHEMICZNA JAKO NAUKA STOSOWANA GENEZA NOWEGO PROCESU TECHNOLOGICZNEGO CHEMICZNA KONCEPCJA PROCESU Technologia chemiczna - definicja Technologia chemiczna
PROCESY ADSORPCYJNE W USUWANIU LOTNYCH ZWIĄZKÓW ORGANICZNYCH Z POWIETRZA
PROCESY ADSORPCYJNE W USUWANIU LOTNYCH ZWIĄZKÓW ORGANICZNYCH Z POWIETRZA Źródła emisji lotnych związków organicznych (VOC) Biogeniczne procesy fotochemiczne i biochemiczne w otaczającym środowisku (procesy
Układ siłowni z organicznymi czynnikami roboczymi i sposób zwiększania wykorzystania energii nośnika ciepła zasilającego siłownię jednobiegową
PL 217365 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 217365 (13) B1 (21) Numer zgłoszenia: 395879 (51) Int.Cl. F01K 23/04 (2006.01) F01K 3/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej
BADANIE WYMIENNIKA CIEPŁA TYPU RURA W RURZE
BDNIE WYMIENNIK CIEPŁ TYPU RUR W RURZE. Cel ćwiczenia Celem ćwiczenia jest zapoznanie z konstrukcją, metodyką obliczeń cieplnych oraz poznanie procesu przenikania ciepła w rurowych wymiennikach ciepła..
Efektywność pracy dwufazowego reaktora z membraną enzymatyczną w oparciu o model sieciowy
Efektywność pracy dwufazowego reaktora z membraną enzymatyczną w oparciu o model sieciowy Piotr Adamczak*, Józef Ceynowa, Izabela Leciak Uniwersytet Mikołaja Kopernika w Toruniu, Wydział Chemii * Tel.:
Równanie gazu doskonałego
Równanie gazu doskonałego Gaz doskonały to abstrakcyjny model gazu, który zakłada, że gaz jest zbiorem sprężyście zderzających się kulek. Wiele gazów w warunkach normalnych zachowuje się jak gaz doskonały.
Ćwiczenie 2. Charakteryzacja niskotemperaturowego czujnika tlenu. (na prawach rękopisu)
Ćwiczenie 2. Charakteryzacja niskotemperaturowego czujnika tlenu (na prawach rękopisu) W analityce procesowej istotne jest określenie stężeń rozpuszczonych w cieczach gazów. Gazy rozpuszczają się w cieczach
(86) Data i numer zgłoszenia międzynarodowego: , PCT/JP02/ (87) Data i numer publikacji zgłoszenia międzynarodowego:
RZECZPOSPOLITA POLSKA Urząd Patentowy Rzeczypospolitej Polskiej (12) OPIS PATENTOWY (19) PL (11) 205828 (21) Numer zgłoszenia: 370226 (22) Data zgłoszenia: 20.06.2002 (86) Data i numer zgłoszenia międzynarodowego:
PL B1. ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE, Szczecin, PL BUP 21/13
PL 220892 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 220892 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 398748 (22) Data zgłoszenia: 06.04.2012 (51) Int.Cl.
Rzeszów, 15 stycznia, 2013 r.
Rzeszów, 15 stycznia, 2013 r. OPINIA o całokształcie dorobku naukowego dr inż. Adama ROTKEGEL ze szczególnym uwzględnieniem osiągnięcia naukowego pt. Wymiana ciepła i masy w zintegrowanym procesie niskotemperaturowej
3. Przejścia fazowe pomiędzy trzema stanami skupienia materii:
Temat: Zmiany stanu skupienia. 1. Energia sieci krystalicznej- wielkość dzięki której można oszacować siły przyciągania w krysztale 2. Energia wiązania sieci krystalicznej- ilość energii potrzebnej do
BADANIE WPŁYWU WŁAŚCIWOŚCI WODY NA INTENSYWNOŚĆ I MECHANIZM ZJAWISKA FOULINGU W PROCESIE ULTRAFILTRACJI
Proceedings of ECOpole Vol. 5, No. 1 2011 Aleksandra PŁATKOWSKA-SIWIEC 1 i Michał BODZEK 1 BADANIE WPŁYWU WŁAŚCIWOŚCI WODY NA INTENSYWNOŚĆ I MECHANIZM ZJAWISKA FOULINGU W PROCESIE ULTRAFILTRACJI INFLUENCE
Uzdatnianie wody. Ozon posiada wiele zalet, które wykorzystuje się w uzdatnianiu wody. Oto najważniejsze z nich:
Ozonatory Dezynfekcja wody metodą ozonowania Ozonowanie polega na przepuszczaniu przez wodę powietrza nasyconego ozonem O3 (tlenem trójatomowym). Ozon wytwarzany jest w specjalnych urządzeniach zwanych
WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ
INSYU INFORMAYKI SOSOWANEJ POLIECHNIKI ŁÓDZKIEJ Ćwiczenie Nr2 WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ 1.WPROWADZENIE. Wymiana ciepła pomiędzy układami termodynamicznymi może być realizowana na
ELEKTRODIALIZA. Karina Rolińska Aleksandra Sierakowska Beata Ulmaniec r.
ELEKTRODIALIZA 1 Karina Rolińska Aleksandra Sierakowska Beata Ulmaniec 29. 05. 2018 r. HISTORIA ELEKTRODIALIZY W 1952 roku powstał pierwszy zakład odsalania wody z wykorzystaniem tej metody - elektroliza
Szczegóły budowy kolektora próżniowego typu HeatPipe. Część 1.
Szczegóły budowy kolektora próżniowego typu HeatPipe. Część 1. Popularność kolektorów próżniowych w Polsce jest na tle Europy zjawiskiem dość wyjątkowym w zasadzie wiele przemawia za wyborem kolektora
Wnikanie ciepła przy konwekcji swobodnej. 1. Wstęp
Wnikanie ciepła przy konwekcji swobodnej 1. Wstęp Współczynnik wnikania ciepła podczas konwekcji silnie zależy od prędkości czynnika. Im prędkość czynnika jest większa, tym współczynnik wnikania ciepła
Wykład 8. Dyfuzyjne techniki membranowe (część 3) Opracowała dr Elżbieta Megiel
Wykład 8 Dyfuzyjne techniki membranowe (część 3) Opracowała dr Elżbieta Megiel Dializa Dializa dla roztworów elektrolitów Równowaga Donnana, 1911 W warunkach równowagowych iloczyn jonowy każdego elektrolitu
Zaawansowane techniki utleniania. Mokre utlenianie powietrzem Adriana Zaleska-Medynska. Wykład 9
Zaawansowane techniki utleniania Adriana Zaleska-Medynska Wykład 9 Nowoczesne Procesy Utleniania (Advanced Oxidation Processes) Utlenianie fotokatalityczne Utlenianie w wodzie nadkrytycznej Termohydroliza
Wykład 6. Klasyfikacja przemian fazowych
Wykład 6 Klasyfikacja przemian fazowych JS Klasyfikacja Ehrenfesta Ehrenfest klasyfikuje przemiany fazowe w oparciu o potencjał chemiczny. nieciągłość Przemiany fazowe pierwszego rodzaju pochodne potencjału
BADANIE ZDOLNOŚCI PERMEACJI GAZU PRZEZ MEMBRANĘ POROWATĄ
Ćwiczenie 14: BADANIE ZDOLNOŚCI PERMEACJI GAZU PRZEZ MEMBRANĘ POROWATĄ 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z budową i zasadą działania modułów membranowych oraz eksperymentalne wyznaczenie