2.1.M.06: Modelowanie i wspomaganie komputerowe w inżynierii powierzchni

Wielkość: px
Rozpocząć pokaz od strony:

Download "2.1.M.06: Modelowanie i wspomaganie komputerowe w inżynierii powierzchni"

Transkrypt

1 2nd Workshop on Foresight of surface properties formation leading technologies of engineering materials and biomaterials in Białka Tatrzańska, Poland 29th-30th November Panel nt. Procesy wytwarzania zdeterminowane stanem wiedzy i możliwościami produkcyjnymi parku maszynowego 2.1.M.06: Modelowanie i wspomaganie komputerowe w inżynierii powierzchni J. Trzaska Politechnika Śląska Model (w nauce) umyślnie i celowo uproszczona reprezentacja rzeczywistości. Model jest pozbawiony wielu szczegółów i cech nieistotnych z punktu widzenia modelowanej rzeczywistości. Model matematyczny zbiór symboli i relacji matematycznych oraz zasad posługiwania się nimi, przy czym opisane w modelu symbole i relacje odnoszą się do konkretnych elementów modelowanego obszaru rzeczywistości. Gutenbaum J., Modelowanie matematyczne systemów, Akademicka Oficyna Wydawnicza EXIT, Warszawa, 2003.

2 Proces myślowy prowadzący do powstania modelu matematycznego. Awrejcewicz J., Matematyczne modelowanie systemów, WNT, Warszawa, NATIONAL COHESIO N STRATEGY Etapy modelowania matematycznego: sformułowanie celów modelowania, wybór rodzaju modelu i określenie jego struktury, algorytmizacja obliczeń, weryfikacja obliczeń. Opracowanie modelu matematycznego ma zwykle charakter iteracyjny. Stwierdzenie niezgodności z danymi doświadczalnymi, na przykład na etapie weryfikacji obliczeń, wymusza powrót do wcześniejszych etapów i zmianę założeń, rodzaju czy struktury modelu. Gutenbaum J., Modelowanie matematyczne systemów, Akademicka Oficyna Wydawnicza EXIT, Warszawa, NATIONAL COHESIO N STRATEGY

3 Wybrane kategorie modeli: modele funkcyjne (deterministyczne) i stochastyczne, modele korelacyjne i przyczynowe, modele dynamiczne i statyczne, modele systemów o parametrach rozłożonych w przestrzeni, modele ciągłe i dyskretne, modele całkowito liczbowe i binarne. Metody rozwiązywania równań opisujących model: analityczne, numeryczne, symulacyjne. Gutenbaum J., Modelowanie matematyczne systemów, Akademicka Oficyna Wydawnicza EXIT, Warszawa, NATIONAL COHESIO N STRATEGY Trzy filary nauki Kleiber M., Modelowanie i Symulacja Komputerowa. Moda czy Naturalny Trend Rozwoju Nauki, Nauka 4 (1999) NATIONAL COHESIO N STRATEGY

4 Wybór metod Thin Solid Films (7 300) Applied Surface Science (6 963) Materials Science and Engineering: A (5 821) Wybór metod Dynamika Molekularna 21% Systemy Ekspertowe 2% Inne 5% Sieci neuronowe; 4% Automaty Komórkowe 3% Logika Rozmyta 1% Modelowanie Wieloskalowe 5% Analiza Fraktalna 1% Algorytmy genetyczne Monte Carlo 3% 11% 389 (rok 2008) Metoda Elementów Skończonych 43%

5 Wybrane metody modelowania: Metoda Elementów Skończonych Sztuczne sieci neuronowe Algorytmy genetyczne Systemy ekspertowe Logika rozmyta Automaty komórkowe Analiza fraktalna Metody Monte Carlo Dynamika Molekularna Modelowanie wieloskalowe Metoda elementów skończonych Możliwość uzyskania wyników dla skomplikowanych kształtów (wyniki niemożliwe do uzyskania metodami analitycznymi). Uniwersalność może być stosowana do rozwiązywania wielu klas problemów. Modelowanie zagadnień liniowych i nieliniowych. Własności materiałów nie muszą być jednakowe - możliwość prowadzenia obliczeń dla materiałów wielofazowych lub materiałów w których własności są np. funkcją temperatury. Ośrodek o skomplikowanym kształcie może być aproksymowany z dużą dokładnością za pomocą elementów krzywoliniowych. Wymiary elementów mogą być objętościowo różne. Za pomocą MES można uwzględniać nieliniowe warunki brzegowe. Symulacje nie mogą być prowadzone w czasie rzeczywistym. Obliczone wartości są wartościami przybliżonymi. Potrzebna duża moc obliczeniowa. Konieczność kontroli błędu numerycznego (błąd może zależeć od: gęstości siatki, zmiany warunków brzegowych, zmiany własności materiałowych, kroku czasowego itp.)

6 Sztuczne sieci neuronowe Rozwiązywanie problemów bez znajomości analitycznej zależności między danymi wejściowymi i oczekiwanymi wyjściami. łatwość użycia - nie wymagają programowania (wykorzystują proces uczenia). Zdolność do generalizacji wiedzy nabytej w trakcie uczenia. Różnorodność zastosowań. Odporność na szumy w danych uczących. Skuteczne w rozwiązywaniu problemów nieseparowalnych. Brak dowodów zbiegania do globalnego minimum metodami gradientowymi Niebezpieczeństwo przeuczenia (przetrenowania lub niedouczenia sieci Kłopotliwe dla niedoświadczonego użytkownika ustalenie architektury sieci i parametrów algorytmu uczenia i interpretacji wyników Przybliżone wyniki obliczeń. Brak rozumowania wieloetapowego. Algorytmy genetyczne Unikanie minimów lokalnych. Wyszukiwanie więcej niż jednego rozwiązania. Poszukiwanie rozwiązania w wielowymiarowej, złożonej przestrzeni rozwiązań. Względnie prosta implementacji. Nie występują ograniczenia postaci funkcji celu. Możliwość optymalizacji wielokryterialnej. Łatwa współpraca z innymi technikami (heurystyki inicjalizacyjne, przeszukiwanie lokalne). Możliwość łączenia z innymi metodami modelowania. Często występuje konieczność skalowania funkcji przystosowania. Konieczność podziału przestrzeni rozwiązań zmiennych modelu na skończoną liczbę przedziałów (reprezentacja genetyczna zawiera skończoną liczbę bitów). Przybliżone rozwiązanie.

7 Systemy ekspertowe Jawna interpretacja wiedzy i oddzielenie jej od procedur sterowania. Zdolność wyjaśniania wskazanego przez system rozwiązań problemów. Możliwość integracji wiedzy z wielu źródeł. Podejmowania złożonych decyzji w czasie rzeczywistym. Intuicyjna komunikacja z użytkownikiem. Przetwarzanie wiedzy oparte głównie na przetwarzanie symbolicznym, w mniejszym zaś stopniu przetwarzaniu numerycznym. Duża pracochłonność w czasie budowy systemu. Trudności w pozyskiwaniu i reprezentacji. Logika rozmyta Interpretacji wiedzy bazującej na pojęciach intuicyjnych. Przetwarzanie wiedzy nieprecyzyjnej. Naśladuje sposób postrzegania rzeczywistości przez człowieka i nieprecyzyjne określanie przez niego wartości. Szczególnie przydatna w przypadku systemów, w których czynnik ludzki odgrywa zasadniczą rolę. Operowanie na zbiorach rozmytych, zamiast na liczbach umożliwia uogólnienie informacji. Sposób rozumowania i interpretowania pewnych wielkości jest często przybliżony.

8 Automaty komórkowe Wykorzystywanie zależności lokalnych do modelowania globalnego zachowania systemu. Stosunkowa prostota metody. Brak konieczności znajomości skomplikowanych zjawisk fizycznych. Umiejętność opisania statystyki lokalnych konfiguracji zmiennych. Niedokładność obliczeń. Trudności w znalezieniu funkcji przejścia dla złożonych problemów. Analiza fraktalna Umożliwia ilościową charakterystykę cech geometrycznych powierzchni. Umożliwia ilościową charakterystykę stopnia nieregularności powierzchni niezależnie od skali - wartość wymiaru fraktalnego opisującego związek między wielkością powierzchni a skalą pomiaru jest stała w szerokim zakresie. Możliwość charakterystyki układów niejednorodnych, które mogą być traktowane jako podzbiory o lokalnych właściwościach samopodobnych (analiza multifraktalna).

9 Metody Monte Carlo Możliwość modelowania złożonych procesów dla których rozwiązanie analityczne jest trudne do uzyskania. Nie jest wymagana znajomość modelu środowiska. Eksperymenty dla skończonej liczby prób. Przybliżone wyniki obliczeń. Wyniki (dokładność obliczeń) zależą od jakości generatora liczb pseudolosowych. Badanie struktury i własności w stanie równowagowym. Nienajlepsze wyniki badania własności zależnych od czasu. Powolna zbieżność obliczeń. Dynamika Molekularna Wyniki mogą dostarczyć danych niedostępnych lub trudnych do uzyskania dla rzeczywistych eksperymentów. Możliwość wnioskowania o własnościach makroskopowych takich układu (temperatura, ciepło właściwe, współczynnik dyfuzji, przewodność cieplna i elektryczna). Wyniki dostarczają informacji o trajektoriach ruchu cząstek. Niezbędna duża moc obliczeniowa komputerów. Długi czas obliczeń. Mała efektywność w badaniach układów ze słabym mieszaniem (np. układów cząsteczek o bardzo zróżnicowanej masie).

10 Modelowanie wieloskalowe Zastosowanie sprzężenia zwrotnego między różnymi skalami modelu umożliwia wierniejsze opisanie rzeczywistego zachowania się materiału. Uzyskanie obrazu mikrostruktury materiału ma istotny wpływ na ocenę własności wyrobów gotowych i może być wykorzystywane na przykład do modelowania procesów technologicznych. Możliwość opisania złożonego układu dzięki analizie oddziaływania między jego podstawowymi elementami składowymi. Duża złożoność obliczeniowa. Liczba związana z analizowanymi metodami modelowania w wybranych czasopismach w latach Liczba Rok

11 Liczba związana z analizowanymi metodami modelowania w wybranych czasopismach w latach Dynamika Molekularna; 686; 27% Automaty Komórkowe; 13; 1% Sieci neuronowe; 91; 4% Logika Rozmyta; 20; 1% Metoda Elementów Skończonych; 674; 26% ,8% wszystkich Modelowanie Wieloskalowe; 38; 2% Monte Carlo; 631; 25% Algorytmy genetyczne; 40; 2% Analiza Fraktalna; 271; 11% Systemy Ekspertowe; 14; 1% Liczba związana z analizowanymi metodami modelowania w Computational Materials Science w latach Systemy Ekspertowe; 9; 0% Modelowanie Wieloskalowe; 120; 6% Dynamika Molekularna; 529; 26% Sieci neuronowe; 91; 4% Analiza Fraktalna; 38; Algorytmy genetyczne; 2% 75; 4% Monte Carlo; 247; 12% Automaty Komórkowe; 57; 3% Logika Rozmyta; 14; 1% % wszystkich Metoda Elementów Skończonych; 852; 42% 2472

12 Porównanie udziału poszczególnych metod modelowania w analizowanych publikacjach w latach Dynamika Molekularna 28% Modelowanie Wieloskalowe 2% Sztuczna Inteligencja 7% Metoda Elementów Skończonych 27% Dynamika Molekularna 26% Modelowanie Wieloskalowe 6% Sztuczna Inteligencja 12% Monte Carlo 25% Analiza Fraktalna 11% Monte Carlo 12% Analiza Fraktalna 2% Metoda Elementów Skończonych 42% Liczba związana z analizowanymi metodami modelowania w wybranych czasopismach w latach Liczba Rok Dynamika Molekularna 629 Monte Carlo 589 Metoda Elementów Skończonych 605 Analiza Fraktalna 248 Sztuczna Inteligencja 186

13 Podsumowanie Podstawowe metody modelowania w obszarze inżynierii powierzchni można podzielić na dwie kategorie: szeroko rozumiane modelowanie matematyczne, któremu towarzyszą rozwiązania numeryczne oraz metody inne, wśród których należy wyróżnić metody inteligencji obliczeniowej i sztucznej inteligencji. Wzrasta popularność modelowania wieloskalowego. Uwzględnienie oddziaływania między różnymi skalami modelu umożliwia wierniejsze opisanie rzeczywistego zachowania się materiału. Istotny wpływ na rozwój metod modelowania ma dynamiczny wzrost mocy obliczeniowej komputerów.

2.2.P.07: Komputerowe narzędzia inżynierii powierzchni

2.2.P.07: Komputerowe narzędzia inżynierii powierzchni 2nd Workshop on Foresight of surface properties formation leading technologies of engineering materials and biomaterials in Białka Tatrzańska, Poland 29th-30th November 2009 2 Panel nt. Produkt oraz materiał

Bardziej szczegółowo

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Ewa Wołoszko Praca pisana pod kierunkiem Pani dr hab. Małgorzaty Doman Plan tego wystąpienia Teoria Narzędzia

Bardziej szczegółowo

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty

Bardziej szczegółowo

Definicje. Najprostszy schemat blokowy. Schemat dokładniejszy

Definicje. Najprostszy schemat blokowy. Schemat dokładniejszy Definicje owanie i symulacja owanie zastosowanie określonej metodologii do stworzenia i weryfikacji modelu dla danego rzeczywistego Symulacja zastosowanie symulatora, w którym zaimplementowano model, do

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela

Statystyka w pracy badawczej nauczyciela Statystyka w pracy badawczej nauczyciela Wykład 1: Terminologia badań statystycznych dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka (1) Statystyka to nauka zajmująca się zbieraniem, badaniem

Bardziej szczegółowo

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ.

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Jolanta Zimmerman 1. Wprowadzenie do metody elementów skończonych Działanie rzeczywistych

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA W GLIWICACH Wydział Mechaniczny Technologiczny PRACA DYPLOMOWA MAGISTERSKA

POLITECHNIKA ŚLĄSKA W GLIWICACH Wydział Mechaniczny Technologiczny PRACA DYPLOMOWA MAGISTERSKA POLITECHNIKA ŚLĄSKA W GLIWICACH Wydział Mechaniczny Technologiczny PRACA DYPLOMOWA MAGISTERSKA Wykorzystanie pakietu MARC/MENTAT do modelowania naprężeń cieplnych Spis treści Pole temperatury Przykład

Bardziej szczegółowo

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki

Bardziej szczegółowo

w ekonomii, finansach i towaroznawstwie

w ekonomii, finansach i towaroznawstwie w ekonomii, finansach i towaroznawstwie spotykane określenia: zgłębianie danych, eksploracyjna analiza danych, przekopywanie danych, męczenie danych proces wykrywania zależności w zbiorach danych poprzez

Bardziej szczegółowo

Odniesienie do obszarowych efektów kształcenia 1 2 3. Kierunkowe efekty kształcenia WIEDZA (W)

Odniesienie do obszarowych efektów kształcenia 1 2 3. Kierunkowe efekty kształcenia WIEDZA (W) EFEKTY KSZTAŁCENIA NA KIERUNKU "MECHATRONIKA" nazwa kierunku studiów: Mechatronika poziom kształcenia: studia pierwszego stopnia profil kształcenia: ogólnoakademicki symbol kierunkowych efektów kształcenia

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* Zał. nr do ZW 33/01 WYDZIAŁ / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Optymalizacja systemów Nazwa w języku angielskim System optimization Kierunek studiów (jeśli dotyczy): Inżynieria Systemów

Bardziej szczegółowo

Gospodarcze zastosowania algorytmów genetycznych

Gospodarcze zastosowania algorytmów genetycznych Marta Woźniak Gospodarcze zastosowania algorytmów genetycznych 1. Wstęp Ekonometria jako nauka zajmująca się ustalaniem za pomocą metod statystycznych ilościowych prawidłowości zachodzących w życiu gospodarczym

Bardziej szczegółowo

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu Podstawy baz danych PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych

Bardziej szczegółowo

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Dorota Witkowska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wprowadzenie Sztuczne

Bardziej szczegółowo

Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel

Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel według przewidywań internetowego magazynu ZDNET News z 8 lutego 2001 roku eksploracja danych (ang. data mining ) będzie jednym z najbardziej rewolucyjnych osiągnięć następnej dekady. Rzeczywiście MIT Technology

Bardziej szczegółowo

Dr hab. inż. Jan Duda. Wykład dla studentów kierunku Zarządzanie i Inżynieria Produkcji

Dr hab. inż. Jan Duda. Wykład dla studentów kierunku Zarządzanie i Inżynieria Produkcji Automatyzacja i Robotyzacja Procesów Produkcyjnych Dr hab. inż. Jan Duda Wykład dla studentów kierunku Zarządzanie i Inżynieria Produkcji Podstawowe pojęcia Automatyka Nauka o metodach i układach sterowania

Bardziej szczegółowo

Dotyczy to zarówno istniejących już związków, jak i związków, których jeszcze dotąd nie otrzymano.

Dotyczy to zarówno istniejących już związków, jak i związków, których jeszcze dotąd nie otrzymano. Chemia teoretyczna to dział chemii zaliczany do chemii fizycznej, zajmujący się zagadnieniami związanymi z wiedzą chemiczną od strony teoretycznej, tj. bez wykonywania eksperymentów na stole laboratoryjnym.

Bardziej szczegółowo

Fizyka komputerowa(ii)

Fizyka komputerowa(ii) Instytut Fizyki Fizyka komputerowa(ii) Studia magisterskie Prowadzący kurs: Dr hab. inż. Włodzimierz Salejda, prof. PWr Godziny konsultacji: Poniedziałki i wtorki w godzinach 13.00 15.00 pokój 223 lub

Bardziej szczegółowo

Efekty kształcenia na kierunku AiR drugiego stopnia - Wiedza Wydziału Elektrotechniki, Automatyki i Informatyki Politechniki Opolskiej

Efekty kształcenia na kierunku AiR drugiego stopnia - Wiedza Wydziału Elektrotechniki, Automatyki i Informatyki Politechniki Opolskiej Efekty na kierunku AiR drugiego stopnia - Wiedza K_W01 K_W02 K_W03 K_W04 K_W05 K_W06 K_W07 K_W08 K_W09 K_W10 K_W11 K_W12 K_W13 K_W14 Ma rozszerzoną wiedzę dotyczącą dynamicznych modeli dyskretnych stosowanych

Bardziej szczegółowo

MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH

MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH 1. Przedmiot nie wymaga przedmiotów poprzedzających 2. Treść przedmiotu Proces i cykl decyzyjny. Rola modelowania matematycznego w procesach decyzyjnych.

Bardziej szczegółowo

Transformacja wiedzy w budowie i eksploatacji maszyn

Transformacja wiedzy w budowie i eksploatacji maszyn Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces

Bardziej szczegółowo

PLAN SZKOLEŃ FEMAP. Nasza oferta: Solid Edge najefektywniejszy dostępny obecnie na rynku system CAD klasy mid-range,

PLAN SZKOLEŃ FEMAP. Nasza oferta: Solid Edge najefektywniejszy dostępny obecnie na rynku system CAD klasy mid-range, PLAN SZKOLEŃ FEMAP Firma GM System Integracja Systemów Inżynierskich Sp. z o.o. została założona w 2001 roku. Zajmujemy się dostarczaniem systemów CAD/CAM/CAE/PDM. Jesteśmy jednym z największych polskich

Bardziej szczegółowo

Narzędzia AI. Jakub Wróblewski jakubw@pjwstk.edu.pl Pokój 312. http://zajecia.jakubw.pl SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE)

Narzędzia AI. Jakub Wróblewski jakubw@pjwstk.edu.pl Pokój 312. http://zajecia.jakubw.pl SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE) Narzędzia AI Jakub Wróblewski jakubw@pjwstk.edu.pl Pokój 312 http://zajecia.jakubw.pl SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE) Nauka o maszynach realizujących zadania, które wymagają inteligencji

Bardziej szczegółowo

Obliczenia ewolucyjne - plan wykładu

Obliczenia ewolucyjne - plan wykładu Obliczenia ewolucyjne - plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne modele obliczeń ewolucyjnych Podsumowanie Ewolucja Ewolucja

Bardziej szczegółowo

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie

Bardziej szczegółowo

Techniki CAx. dr inż. Michał Michna. Politechnika Gdańska

Techniki CAx. dr inż. Michał Michna. Politechnika Gdańska Techniki CAx dr inż. Michał Michna 1 Sterowanie CAP Planowanie PPC Sterowanie zleceniami Kosztorysowanie Projektowanie CAD/CAM CAD Klasyfikacja systemów Cax Y-CIM model Planowanie produkcji Konstruowanie

Bardziej szczegółowo

Informatyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)

Informatyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES) KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Badania Operacyjne w Informatyce Operations Research in Computer Science

Bardziej szczegółowo

Tematy prac dyplomowych r. akad. 2014/2015

Tematy prac dyplomowych r. akad. 2014/2015 Instytut Informatyki 14.05.14 r. Tematy prac dyplomowych r. akad. 2014/2015 Tematy prac magisterskich Zakład Modelowania Materiałów dr hab. Marian Stanisław Uba 1. System wspomagający pracę telemarketera

Bardziej szczegółowo

Techniki CAx. dr inż. Michał Michna. Politechnika Gdańska

Techniki CAx. dr inż. Michał Michna. Politechnika Gdańska Techniki CAx dr inż. Michał Michna 1 Komputerowe techniki wspomagania projektowania 2 Techniki Cax - projektowanie Projektowanie złożona działalność inżynierska, w której przenikają się doświadczenie inżynierskie,

Bardziej szczegółowo

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów

Bardziej szczegółowo

Projektowanie elementów z tworzyw sztucznych

Projektowanie elementów z tworzyw sztucznych Projektowanie elementów z tworzyw sztucznych Wykorzystanie technik komputerowych w projektowaniu elementów z tworzyw sztucznych Tematyka wykładu Techniki komputerowe, Problemy występujące przy konstruowaniu

Bardziej szczegółowo

ZARZĄDZANIE I INŻYNIERIA PRODUKCJI

ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZARZĄDZANIE I INŻYNIERIA PRODUKCJI STUDIA PIERWSZEGO STOPNIA PROFIL OGÓLNOAKADEMICKI Załącznik nr 2 Odniesienie efektów kierunkowych do efektów obszarowych i odwrotnie Załącznik nr 2a - Tabela odniesienia

Bardziej szczegółowo

Informatyka wspomaga przedmioty ścisłe w szkole

Informatyka wspomaga przedmioty ścisłe w szkole Informatyka wspomaga przedmioty ścisłe w szkole Prezentuje : Dorota Roman - Jurdzińska W arkuszu I na obu poziomach występują dwa zadania związane z algorytmiką: Arkusz I bez komputera analiza algorytmów,

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃOCZNYCH Projekt

METODA ELEMENTÓW SKOŃOCZNYCH Projekt METODA ELEMENTÓW SKOŃOCZNYCH Projekt Wykonali: Maciej Sobkowiak Tomasz Pilarski Profil: Technologia przetwarzania materiałów Semestr 7, rok IV Prowadzący: Dr hab. Tomasz STRĘK 1. Analiza przepływu ciepła.

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: HYDRAULIKA, PNEUMATYKA I SYSTEMY AUTOMATYZACJI PRODUKCJI Hydraulics, pneumatics and production automation systems Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na

Bardziej szczegółowo

S1A_W06 makroekonomii niezbędną do rozumienia podstawowych procesów

S1A_W06 makroekonomii niezbędną do rozumienia podstawowych procesów Kierunkowe efekty kształcenia Kierunek: zarządzanie i inŝynieria produkcji Obszar kształcenia: nauki rolnicze, leśne i weterynaryjne, nauki techniczne oraz społeczne Poziom kształcenia: studia pierwszego

Bardziej szczegółowo

Rozmyte systemy doradcze

Rozmyte systemy doradcze Systemy ekspertowe Rozmyte systemy doradcze Plan. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte (systemy doradcze). typu

Bardziej szczegółowo

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Anna Manerowska, Michal Kozakiewicz 2.12.2009 1 Wstęp Jako projekt na przedmiot MEUM (Metody Ewolucyjne Uczenia Maszyn)

Bardziej szczegółowo

Szanowni Studenci, Szanowne Studentki,

Szanowni Studenci, Szanowne Studentki, Szanowni Studenci, Szanowne Studentki, Pracownia Sztucznego Serca zaprasza chętne osoby (po III roku studiów inżynierskich) na miesięczne lub dłuższe praktyki studenckie. Proponujemy Wam realizację ciekawych

Bardziej szczegółowo

Arkadiusz Manikowski Zbigniew Tarapata. Prognozowanie i symulacja rozwoju przedsiębiorstw

Arkadiusz Manikowski Zbigniew Tarapata. Prognozowanie i symulacja rozwoju przedsiębiorstw Arkadiusz Manikowski Zbigniew Tarapata Prognozowanie i symulacja rozwoju przedsiębiorstw Warszawa 2002 Recenzenci doc. dr. inż. Ryszard Mizera skład i Łamanie mgr. inż Ignacy Nyka PROJEKT OKŁADKI GrafComp,

Bardziej szczegółowo

Kierunek: ELEKTROTECHNIKA Profil: ogólnoakademicki Studia: 2 stopnia

Kierunek: ELEKTROTECHNIKA Profil: ogólnoakademicki Studia: 2 stopnia Kierunek: ELEKTROTECHNIKA Profil: ogólnoakademicki Studia: 2 stopnia Umiejscowienie kierunku w obszarze kształcenia Kierunek Elektrotechnika należy do obszaru kształcenia w zakresie nauk technicznych i

Bardziej szczegółowo

INFORMATYKA Pytania ogólne na egzamin dyplomowy

INFORMATYKA Pytania ogólne na egzamin dyplomowy INFORMATYKA Pytania ogólne na egzamin dyplomowy 1. Wyjaśnić pojęcia problem, algorytm. 2. Podać definicję złożoności czasowej. 3. Podać definicję złożoności pamięciowej. 4. Typy danych w języku C. 5. Instrukcja

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu. SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu

Bardziej szczegółowo

Rozwiązywanie równań liniowych. Transmitancja. Charakterystyki częstotliwościowe

Rozwiązywanie równań liniowych. Transmitancja. Charakterystyki częstotliwościowe Zał. nr do ZW 33/01 WYDZIAŁ Informatyki i Zarządzania / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Modele systemów dynamicznych Nazwa w języku angielskim Dynamic Systems Models. Kierunek studiów (jeśli

Bardziej szczegółowo

W kategoria wiedzy U kategoria umiejętności K kategoria kompetencji społecznych 01, 02, 03, i kolejne numer efektu kształcenia

W kategoria wiedzy U kategoria umiejętności K kategoria kompetencji społecznych 01, 02, 03, i kolejne numer efektu kształcenia Załącznik nr 5 do uchwały nr 514 Senatu Uniwersytetu Zielonogórskiego z dnia 25 kwietnia 2012 r. w sprawie określenia efektów kształcenia dla kierunków studiów pierwszego i drugiego stopnia prowadzonych

Bardziej szczegółowo

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania. Studia: I stopnia (inżynierskie)

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania. Studia: I stopnia (inżynierskie) Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia I stopnia (inżynierskie) Temat: Skalowanie czujników prędkości kątowej i orientacji przestrzennej 1. Analiza właściwości czujników i układów

Bardziej szczegółowo

Optymalizacja konstrukcji

Optymalizacja konstrukcji Optymalizacja konstrukcji Kształtowanie konstrukcyjne: nadanie właściwych cech konstrukcyjnych przeszłej maszynie określenie z jakiego punktu widzenia (wg jakiego kryterium oceny) będą oceniane alternatywne

Bardziej szczegółowo

WZORCOWE EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW MATEMATYKA STUDIA PIERWSZEGO STOPNIA PROFIL OGÓLNOAKADEMICKI

WZORCOWE EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW MATEMATYKA STUDIA PIERWSZEGO STOPNIA PROFIL OGÓLNOAKADEMICKI Dziennik Ustaw Nr 253 14793 Poz. 1521 WZORCOWE EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW MATEMATYKA STUDIA PIERWSZEGO STOPNIA PROFIL OGÓLNOAKADEMICKI Umiejscowienie kierunku wobszarze Załącznik nr3 Kierunek

Bardziej szczegółowo

PODSTAWY MODELOWANIA UKŁADÓW DYNAMICZNYCH W JĘZYKACH SYMULACYJNYCH

PODSTAWY MODELOWANIA UKŁADÓW DYNAMICZNYCH W JĘZYKACH SYMULACYJNYCH PODSTAWY MODELOWANIA UKŁADÓW DYNAMICZNYCH W JĘZYKACH SYMULACYJNYCH ( Na przykładzie POWERSIM) M. Berndt-Schreiber 1 Plan Zasady modelowania Obiekty symbole graficzne Dyskretyzacja modelowania Predefiniowane

Bardziej szczegółowo

DiaSter - system zaawansowanej diagnostyki aparatury technologicznej, urządzeń pomiarowych i wykonawczych. Politechnika Warszawska

DiaSter - system zaawansowanej diagnostyki aparatury technologicznej, urządzeń pomiarowych i wykonawczych. Politechnika Warszawska Jan Maciej Kościelny, Michał Syfert DiaSter - system zaawansowanej diagnostyki aparatury technologicznej, urządzeń pomiarowych i wykonawczych Instytut Automatyki i Robotyki Plan wystąpienia 2 Wprowadzenie

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: MODELOWANIE I SYMULACJA PROCESÓW WYTWARZANIA Modeling and Simulation of Manufacturing Processes Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy specjalności PSM Rodzaj zajęć: wykład,

Bardziej szczegółowo

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74 3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D - 4. Zastosowanie teoretycznej analizy modalnej w dynamice maszyn

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D - 4. Zastosowanie teoretycznej analizy modalnej w dynamice maszyn POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN Ćwiczenie D - 4 Temat: Zastosowanie teoretycznej analizy modalnej w dynamice maszyn Opracowanie: mgr inż. Sebastian Bojanowski Zatwierdził:

Bardziej szczegółowo

Opis modułu kształcenia Programowanie liniowe

Opis modułu kształcenia Programowanie liniowe Opis modułu kształcenia Programowanie liniowe Nazwa podyplomowych Nazwa obszaru kształcenia, w zakresie którego są prowadzone studia podyplomowe Nazwa kierunku, z którym jest związany zakres podyplomowych

Bardziej szczegółowo

Ruch granulatu w rozdrabniaczu wielotarczowym

Ruch granulatu w rozdrabniaczu wielotarczowym JÓZEF FLIZIKOWSKI ADAM BUDZYŃSKI WOJCIECH BIENIASZEWSKI Wydział Mechaniczny, Akademia Techniczno-Rolnicza, Bydgoszcz Ruch granulatu w rozdrabniaczu wielotarczowym Streszczenie: W pracy usystematyzowano

Bardziej szczegółowo

pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ

pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ Ćwiczenie audytoryjne pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ Autor: dr inż. Radosław Łyszkowski Warszawa, 2013r. Metoda elementów skończonych MES FEM - Finite Element Method przybliżona

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych Rodzaj zajęć: wykład, laboratorium BAZY DANYCH I SYSTEMY EKSPERTOWE Database and expert systems Forma

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Inżynieria oprogramowania, Sieci komputerowe Rodzaj zajęć: wykład, laboratorium MODELOWANIE I SYMULACJA Modelling

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

Studia podyplomowe w zakresie przetwarzanie, zarządzania i statystycznej analizy danych

Studia podyplomowe w zakresie przetwarzanie, zarządzania i statystycznej analizy danych Studia podyplomowe w zakresie przetwarzanie, zarządzania i statystycznej analizy danych PRZEDMIOT (liczba godzin konwersatoriów/ćwiczeń) Statystyka opisowa z elementami analizy regresji (4/19) Wnioskowanie

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: KOMPUTEROWE WSPOMAGANIE PRAC INŻYNIERSKICH Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności: Komputerowe projektowanie maszyn i urządzeń Rodzaj zajęć:

Bardziej szczegółowo

DEKLARACJA WYBORU PRZEDMIOTÓW NA STUDIACH II STOPNIA STACJONARNYCH CYWILNYCH (nabór 2009) II semestr

DEKLARACJA WYBORU PRZEDMIOTÓW NA STUDIACH II STOPNIA STACJONARNYCH CYWILNYCH (nabór 2009) II semestr WOJSKOWA AKADEMIA TECHNICZNA WYDZIAŁ MECHANICZNY STUDENT..................................................................................................................... ( imię i nazwisko) (grupa szkolna)

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

I rok. semestr 1 semestr 2 15 tyg. 15 tyg. Razem ECTS. laborat. semin. ECTS. konwer. wykł. I rok. w tym. Razem ECTS. laborat. semin. ECTS. konwer.

I rok. semestr 1 semestr 2 15 tyg. 15 tyg. Razem ECTS. laborat. semin. ECTS. konwer. wykł. I rok. w tym. Razem ECTS. laborat. semin. ECTS. konwer. Wydział Informatyki i Nauki o Materiałach Kierunek Informatyka studia I stopnia inżynierskie studia stacjonarne 08- IO1S-13 od roku akademickiego 2015/2016 A Lp GRUPA TREŚCI PODSTAWOWYCH kod Nazwa modułu

Bardziej szczegółowo

Metoda Monte Carlo i jej zastosowania

Metoda Monte Carlo i jej zastosowania i jej zastosowania Tomasz Mostowski Zajęcia 31.03.2008 Plan 1 PWL 2 3 Plan PWL 1 PWL 2 3 Przypomnienie PWL Istnieje wiele wariantów praw wielkich liczb. Wspólna ich cecha jest asymptotyczne zachowanie

Bardziej szczegółowo

TECHNOLOGIA MASZYN. Wykład dr inż. A. Kampa

TECHNOLOGIA MASZYN. Wykład dr inż. A. Kampa TECHNOLOGIA MASZYN Wykład dr inż. A. Kampa Technologia - nauka o procesach wytwarzania lub przetwarzania, półwyrobów i wyrobów. - technologia maszyn, obejmuje metody kształtowania materiałów, połączone

Bardziej szczegółowo

Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej

Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej Spis treści Autor: Marcin Orchel Algorytmika...2 Algorytmika w gimnazjum...2 Algorytmika w liceum...2 Język programowania w

Bardziej szczegółowo

Wprowadzenie do Metody Elementu Skończonego

Wprowadzenie do Metody Elementu Skończonego Wprowadzenie do Metody Elementu Skończonego Krzysztof Balonek, Sławomir Gozdur Wydział Fizyki i Informatyki Stosowanej, AGH, Kraków, Poland email: kbalonek@g10.pl, slagozd@gmail.com Praca dostępna w internecie:

Bardziej szczegółowo

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego IBS PAN, Warszawa 9 kwietnia 2008 Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego mgr inż. Marcin Jaruszewicz promotor: dr hab. inż. Jacek Mańdziuk,

Bardziej szczegółowo

TEST POZIOMU KOMPETENCJI UCZNIÓW KLAS PIERWSZYCH TECHNIKUM PO GIMNAZJUM Z MATEMATYKI (rok szkolny 2007/2008)

TEST POZIOMU KOMPETENCJI UCZNIÓW KLAS PIERWSZYCH TECHNIKUM PO GIMNAZJUM Z MATEMATYKI (rok szkolny 2007/2008) TEST POZIOMU KOMPETENCJI UCZNIÓW KLAS PIERWSZYCH TECHNIKUM PO GIMNAZJUM Z MATEMATYKI (rok szkolny 007/008) Test i analizę opracował: mgr Wojciech Janeczek Test przeprowadziły: mgr Barbara Zalewska, mgr

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU I. KARTA PRZEDMIOTU. Nazwa przedmiotu: KOMPUTEROWE WSPOMAGANIE PROJEKTOWANIA Z CAD 2. Kod przedmiotu: Ko 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechanika i budowa maszyn

Bardziej szczegółowo

Zagadnienia na egzamin dyplomowy. Studia jednolite magisterskie WFMiI rok akad. 2010/11

Zagadnienia na egzamin dyplomowy. Studia jednolite magisterskie WFMiI rok akad. 2010/11 Zagadnienia na egzamin dyplomowy Studia jednolite magisterskie WFMiI rok akad. 2010/11 Lp PRZEDMIOT PYTANIE 1 2 3 4 Jakie jest główne zastosowanie mechanizmu Samba? Proszę omówić możliwości ochrony serwerów

Bardziej szczegółowo

Grupy pytań na egzamin inżynierski na kierunku Informatyka

Grupy pytań na egzamin inżynierski na kierunku Informatyka Grupy pytań na egzamin inżynierski na kierunku Informatyka Dla studentów studiów dziennych Należy wybrać dwie grupy pytań. Na egzaminie zadane zostaną 3 pytania, każde z innego przedmiotu, pochodzącego

Bardziej szczegółowo

ANALIZA WYNIKÓW EGZAMINU GIMNAZJALNEGO w GIMNAZJUM nr 1 KWIECIEŃ 2012. WYNIKI ZESTAWU w CZĘŚCI MATEMATYCZNO-PRZYRODNICZEJ

ANALIZA WYNIKÓW EGZAMINU GIMNAZJALNEGO w GIMNAZJUM nr 1 KWIECIEŃ 2012. WYNIKI ZESTAWU w CZĘŚCI MATEMATYCZNO-PRZYRODNICZEJ ANALIZA WYNIKÓW EGZAMINU GIMNAZJALNEGO w GIMNAZJUM nr 1 KWIECIEŃ 2012 WYNIKI ZESTAWU w CZĘŚCI MATEMATYCZNO-PRZYRODNICZEJ Egzamin gimnazjalny organizowany przez Okręgową Komisję Egzaminacyjną w Jaworznie

Bardziej szczegółowo

Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka

Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka Poznań, 16.05.2012r. Raport z promocji projektu Nowa generacja energooszczędnych

Bardziej szczegółowo

Badania Statystyczne

Badania Statystyczne Statystyka Opisowa z Demografią oraz Biostatystyka Badania Statystyczne Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: MODELOWANIE PROCESÓW ENERGETYCZNYCH Kierunek: ENERGETYKA Rodzaj przedmiotu: specjalności obieralny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE

Bardziej szczegółowo

PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika

PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika METODY NUMERYCZNE WYKŁAD Andrzej M. Dąbrowski amd@agh.edu.pl Paw.C p.100e Konsultacje: środa 14 45-15 30 czwartek 14 45 - Wykład 2 godz. lekcyjne.

Bardziej szczegółowo

17. 17. Modele materiałów

17. 17. Modele materiałów 7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie

Bardziej szczegółowo

przedmiot kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) polski semestr I

przedmiot kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) polski semestr I Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/1013

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek: 10-11, środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd

Bardziej szczegółowo

PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION

PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION Mirosław GUZIK Grzegorz KOSZŁKA PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION W artykule przedstawiono niektóre

Bardziej szczegółowo

Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych. Badania operacyjne. Dr inż.

Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych. Badania operacyjne. Dr inż. Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych Badania operacyjne Dr inż. Artur KIERZKOWSKI Wprowadzenie Badania operacyjne związana jest ściśle z teorią podejmowania

Bardziej szczegółowo

Modelowanie biomechaniczne. Dr inż. Sylwia Sobieszczyk Politechnika Gdańska Wydział Mechaniczny KMiWM 2005/2006

Modelowanie biomechaniczne. Dr inż. Sylwia Sobieszczyk Politechnika Gdańska Wydział Mechaniczny KMiWM 2005/2006 Modelowanie biomechaniczne Dr inż. Sylwia Sobieszczyk Politechnika Gdańska Wydział Mechaniczny KMiWM 2005/2006 Zakres: Definicja modelowania Modele kinematyczne ruch postępowy, obrotowy, przemieszczenie,

Bardziej szczegółowo

(1) Symbol (2) Efekty kształcenia dla kierunku studiów (3) Odniesienie do efektów kształcenia w obszarze kształcenia

(1) Symbol (2) Efekty kształcenia dla kierunku studiów (3) Odniesienie do efektów kształcenia w obszarze kształcenia Efekty kształcenia dla kierunku studiów i ich relacje z efektami kształcenia dla obszarów kształcenia Wydział prowadzący kierunek studiów: Kierunek studiów: Wydział Nauk Ekonomicznych i Zarządzania Wydział

Bardziej szczegółowo

1. Metoda komputerowego wspomagania wyznaczania po danego wyposa enia sprz towo-materiałowego Podstawowej Jednostki Organizacyjnej Systemu Bezpiecze

1. Metoda komputerowego wspomagania wyznaczania po danego wyposa enia sprz towo-materiałowego Podstawowej Jednostki Organizacyjnej Systemu Bezpiecze 1. Metoda komputerowego wspomagania wyznaczania pożądanego wyposażenia sprzętowo-materiałowego Podstawowej Jednostki Organizacyjnej Systemu Bezpieczeństwa Kraju 1. Analiza rodzajów i strat powodowanych

Bardziej szczegółowo

Roman Mocek Zabrze 01.09.2007 Opracowanie zbiorcze ze źródeł Scholaris i CKE

Roman Mocek Zabrze 01.09.2007 Opracowanie zbiorcze ze źródeł Scholaris i CKE Różnice między podstawą programową z przedmiotu Technologia informacyjna", a standardami wymagań będącymi podstawą przeprowadzania egzaminu maturalnego z przedmiotu Informatyka" I.WIADOMOŚCI I ROZUMIENIE

Bardziej szczegółowo

Efekty kształcenia na kierunku studiów projektowanie mebli i ich odniesienie do efektów obszarowych oraz kompetencji inżynierskich

Efekty kształcenia na kierunku studiów projektowanie mebli i ich odniesienie do efektów obszarowych oraz kompetencji inżynierskich Załącznik nr 1 do uchwały nr 46/2013 Senatu UP Efekty kształcenia na kierunku studiów projektowanie mebli i ich odniesienie do efektów obszarowych oraz kompetencji inżynierskich Wydział prowadzący kierunek:

Bardziej szczegółowo

KARTA INFORMACYJNA PRZEDMIOTU

KARTA INFORMACYJNA PRZEDMIOTU Uniwersytet Rzeszowski WYDZIAŁ KIERUNEK Matematyczno-Przyrodniczy Fizyka techniczna SPECJALNOŚĆ RODZAJ STUDIÓW stacjonarne, studia pierwszego stopnia KARTA INFORMACYJNA PRZEDMIOTU NAZWA PRZEDMIOTU WG PLANU

Bardziej szczegółowo

DIGITALIZACJA GEOMETRII WKŁADEK OSTRZOWYCH NA POTRZEBY SYMULACJI MES PROCESU OBRÓBKI SKRAWANIEM

DIGITALIZACJA GEOMETRII WKŁADEK OSTRZOWYCH NA POTRZEBY SYMULACJI MES PROCESU OBRÓBKI SKRAWANIEM Dr inż. Witold HABRAT, e-mail: witekhab@prz.edu.pl Politechnika Rzeszowska, Wydział Budowy Maszyn i Lotnictwa Dr hab. inż. Piotr NIESŁONY, prof. PO, e-mail: p.nieslony@po.opole.pl Politechnika Opolska,

Bardziej szczegółowo

Izabela Zimoch Zenon Szlęk Biuro Badań i Rozwoju Technologicznego. Katowice, dnia 13.08.2013 r.

Izabela Zimoch Zenon Szlęk Biuro Badań i Rozwoju Technologicznego. Katowice, dnia 13.08.2013 r. System informatyczny wspomagający optymalizację i administrowanie produkcją i dystrybucją wody przeznaczonej do spożycia przez ludzi subregionu centralnego i zachodniego województwa śląskiego Izabela Zimoch

Bardziej szczegółowo

Sztuczne Sieci Neuronowe. Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW

Sztuczne Sieci Neuronowe. Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW Sztuczne Sieci Neuronowe Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW SN są częścią dziedziny Sztucznej Inteligencji Sztuczna Inteligencja (SI) zajmuje się

Bardziej szczegółowo

PLAN SZKOLEŃ MOLDEX3D

PLAN SZKOLEŃ MOLDEX3D PLAN SZKOLEŃ MOLDEX3D Firma GM System Integracja Systemów Inżynierskich Sp. z o.o. została założona w 2001 roku. Zajmujemy się dostarczaniem systemów CAD/CAM/CAE/PDM. Jesteśmy jednym z największych polskich

Bardziej szczegółowo

Uniwersytet Rolniczy w Krakowie Wydział Inżynierii Produkcji i Energetyki

Uniwersytet Rolniczy w Krakowie Wydział Inżynierii Produkcji i Energetyki Uniwersytet Rolniczy w Krakowie Wydział Inżynierii Produkcji i Energetyki Efekty dla programu : Kierunek: Zarządzanie i inżynieria produkcji Specjalności: Inżynieria produkcji surowcowej, Infrastruktura

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie. SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

Badania właściwości dynamicznych sieci gazowej z wykorzystaniem pakietu SimNet TSGas 3

Badania właściwości dynamicznych sieci gazowej z wykorzystaniem pakietu SimNet TSGas 3 Andrzej J. Osiadacz Maciej Chaczykowski Łukasz Kotyński Badania właściwości dynamicznych sieci gazowej z wykorzystaniem pakietu SimNet TSGas 3 Andrzej J. Osiadacz, Maciej Chaczykowski, Łukasz Kotyński,

Bardziej szczegółowo