2.1.M.06: Modelowanie i wspomaganie komputerowe w inżynierii powierzchni

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "2.1.M.06: Modelowanie i wspomaganie komputerowe w inżynierii powierzchni"

Transkrypt

1 2nd Workshop on Foresight of surface properties formation leading technologies of engineering materials and biomaterials in Białka Tatrzańska, Poland 29th-30th November Panel nt. Procesy wytwarzania zdeterminowane stanem wiedzy i możliwościami produkcyjnymi parku maszynowego 2.1.M.06: Modelowanie i wspomaganie komputerowe w inżynierii powierzchni J. Trzaska Politechnika Śląska Model (w nauce) umyślnie i celowo uproszczona reprezentacja rzeczywistości. Model jest pozbawiony wielu szczegółów i cech nieistotnych z punktu widzenia modelowanej rzeczywistości. Model matematyczny zbiór symboli i relacji matematycznych oraz zasad posługiwania się nimi, przy czym opisane w modelu symbole i relacje odnoszą się do konkretnych elementów modelowanego obszaru rzeczywistości. Gutenbaum J., Modelowanie matematyczne systemów, Akademicka Oficyna Wydawnicza EXIT, Warszawa, 2003.

2 Proces myślowy prowadzący do powstania modelu matematycznego. Awrejcewicz J., Matematyczne modelowanie systemów, WNT, Warszawa, NATIONAL COHESIO N STRATEGY Etapy modelowania matematycznego: sformułowanie celów modelowania, wybór rodzaju modelu i określenie jego struktury, algorytmizacja obliczeń, weryfikacja obliczeń. Opracowanie modelu matematycznego ma zwykle charakter iteracyjny. Stwierdzenie niezgodności z danymi doświadczalnymi, na przykład na etapie weryfikacji obliczeń, wymusza powrót do wcześniejszych etapów i zmianę założeń, rodzaju czy struktury modelu. Gutenbaum J., Modelowanie matematyczne systemów, Akademicka Oficyna Wydawnicza EXIT, Warszawa, NATIONAL COHESIO N STRATEGY

3 Wybrane kategorie modeli: modele funkcyjne (deterministyczne) i stochastyczne, modele korelacyjne i przyczynowe, modele dynamiczne i statyczne, modele systemów o parametrach rozłożonych w przestrzeni, modele ciągłe i dyskretne, modele całkowito liczbowe i binarne. Metody rozwiązywania równań opisujących model: analityczne, numeryczne, symulacyjne. Gutenbaum J., Modelowanie matematyczne systemów, Akademicka Oficyna Wydawnicza EXIT, Warszawa, NATIONAL COHESIO N STRATEGY Trzy filary nauki Kleiber M., Modelowanie i Symulacja Komputerowa. Moda czy Naturalny Trend Rozwoju Nauki, Nauka 4 (1999) NATIONAL COHESIO N STRATEGY

4 Wybór metod Thin Solid Films (7 300) Applied Surface Science (6 963) Materials Science and Engineering: A (5 821) Wybór metod Dynamika Molekularna 21% Systemy Ekspertowe 2% Inne 5% Sieci neuronowe; 4% Automaty Komórkowe 3% Logika Rozmyta 1% Modelowanie Wieloskalowe 5% Analiza Fraktalna 1% Algorytmy genetyczne Monte Carlo 3% 11% 389 (rok 2008) Metoda Elementów Skończonych 43%

5 Wybrane metody modelowania: Metoda Elementów Skończonych Sztuczne sieci neuronowe Algorytmy genetyczne Systemy ekspertowe Logika rozmyta Automaty komórkowe Analiza fraktalna Metody Monte Carlo Dynamika Molekularna Modelowanie wieloskalowe Metoda elementów skończonych Możliwość uzyskania wyników dla skomplikowanych kształtów (wyniki niemożliwe do uzyskania metodami analitycznymi). Uniwersalność może być stosowana do rozwiązywania wielu klas problemów. Modelowanie zagadnień liniowych i nieliniowych. Własności materiałów nie muszą być jednakowe - możliwość prowadzenia obliczeń dla materiałów wielofazowych lub materiałów w których własności są np. funkcją temperatury. Ośrodek o skomplikowanym kształcie może być aproksymowany z dużą dokładnością za pomocą elementów krzywoliniowych. Wymiary elementów mogą być objętościowo różne. Za pomocą MES można uwzględniać nieliniowe warunki brzegowe. Symulacje nie mogą być prowadzone w czasie rzeczywistym. Obliczone wartości są wartościami przybliżonymi. Potrzebna duża moc obliczeniowa. Konieczność kontroli błędu numerycznego (błąd może zależeć od: gęstości siatki, zmiany warunków brzegowych, zmiany własności materiałowych, kroku czasowego itp.)

6 Sztuczne sieci neuronowe Rozwiązywanie problemów bez znajomości analitycznej zależności między danymi wejściowymi i oczekiwanymi wyjściami. łatwość użycia - nie wymagają programowania (wykorzystują proces uczenia). Zdolność do generalizacji wiedzy nabytej w trakcie uczenia. Różnorodność zastosowań. Odporność na szumy w danych uczących. Skuteczne w rozwiązywaniu problemów nieseparowalnych. Brak dowodów zbiegania do globalnego minimum metodami gradientowymi Niebezpieczeństwo przeuczenia (przetrenowania lub niedouczenia sieci Kłopotliwe dla niedoświadczonego użytkownika ustalenie architektury sieci i parametrów algorytmu uczenia i interpretacji wyników Przybliżone wyniki obliczeń. Brak rozumowania wieloetapowego. Algorytmy genetyczne Unikanie minimów lokalnych. Wyszukiwanie więcej niż jednego rozwiązania. Poszukiwanie rozwiązania w wielowymiarowej, złożonej przestrzeni rozwiązań. Względnie prosta implementacji. Nie występują ograniczenia postaci funkcji celu. Możliwość optymalizacji wielokryterialnej. Łatwa współpraca z innymi technikami (heurystyki inicjalizacyjne, przeszukiwanie lokalne). Możliwość łączenia z innymi metodami modelowania. Często występuje konieczność skalowania funkcji przystosowania. Konieczność podziału przestrzeni rozwiązań zmiennych modelu na skończoną liczbę przedziałów (reprezentacja genetyczna zawiera skończoną liczbę bitów). Przybliżone rozwiązanie.

7 Systemy ekspertowe Jawna interpretacja wiedzy i oddzielenie jej od procedur sterowania. Zdolność wyjaśniania wskazanego przez system rozwiązań problemów. Możliwość integracji wiedzy z wielu źródeł. Podejmowania złożonych decyzji w czasie rzeczywistym. Intuicyjna komunikacja z użytkownikiem. Przetwarzanie wiedzy oparte głównie na przetwarzanie symbolicznym, w mniejszym zaś stopniu przetwarzaniu numerycznym. Duża pracochłonność w czasie budowy systemu. Trudności w pozyskiwaniu i reprezentacji. Logika rozmyta Interpretacji wiedzy bazującej na pojęciach intuicyjnych. Przetwarzanie wiedzy nieprecyzyjnej. Naśladuje sposób postrzegania rzeczywistości przez człowieka i nieprecyzyjne określanie przez niego wartości. Szczególnie przydatna w przypadku systemów, w których czynnik ludzki odgrywa zasadniczą rolę. Operowanie na zbiorach rozmytych, zamiast na liczbach umożliwia uogólnienie informacji. Sposób rozumowania i interpretowania pewnych wielkości jest często przybliżony.

8 Automaty komórkowe Wykorzystywanie zależności lokalnych do modelowania globalnego zachowania systemu. Stosunkowa prostota metody. Brak konieczności znajomości skomplikowanych zjawisk fizycznych. Umiejętność opisania statystyki lokalnych konfiguracji zmiennych. Niedokładność obliczeń. Trudności w znalezieniu funkcji przejścia dla złożonych problemów. Analiza fraktalna Umożliwia ilościową charakterystykę cech geometrycznych powierzchni. Umożliwia ilościową charakterystykę stopnia nieregularności powierzchni niezależnie od skali - wartość wymiaru fraktalnego opisującego związek między wielkością powierzchni a skalą pomiaru jest stała w szerokim zakresie. Możliwość charakterystyki układów niejednorodnych, które mogą być traktowane jako podzbiory o lokalnych właściwościach samopodobnych (analiza multifraktalna).

9 Metody Monte Carlo Możliwość modelowania złożonych procesów dla których rozwiązanie analityczne jest trudne do uzyskania. Nie jest wymagana znajomość modelu środowiska. Eksperymenty dla skończonej liczby prób. Przybliżone wyniki obliczeń. Wyniki (dokładność obliczeń) zależą od jakości generatora liczb pseudolosowych. Badanie struktury i własności w stanie równowagowym. Nienajlepsze wyniki badania własności zależnych od czasu. Powolna zbieżność obliczeń. Dynamika Molekularna Wyniki mogą dostarczyć danych niedostępnych lub trudnych do uzyskania dla rzeczywistych eksperymentów. Możliwość wnioskowania o własnościach makroskopowych takich układu (temperatura, ciepło właściwe, współczynnik dyfuzji, przewodność cieplna i elektryczna). Wyniki dostarczają informacji o trajektoriach ruchu cząstek. Niezbędna duża moc obliczeniowa komputerów. Długi czas obliczeń. Mała efektywność w badaniach układów ze słabym mieszaniem (np. układów cząsteczek o bardzo zróżnicowanej masie).

10 Modelowanie wieloskalowe Zastosowanie sprzężenia zwrotnego między różnymi skalami modelu umożliwia wierniejsze opisanie rzeczywistego zachowania się materiału. Uzyskanie obrazu mikrostruktury materiału ma istotny wpływ na ocenę własności wyrobów gotowych i może być wykorzystywane na przykład do modelowania procesów technologicznych. Możliwość opisania złożonego układu dzięki analizie oddziaływania między jego podstawowymi elementami składowymi. Duża złożoność obliczeniowa. Liczba związana z analizowanymi metodami modelowania w wybranych czasopismach w latach Liczba Rok

11 Liczba związana z analizowanymi metodami modelowania w wybranych czasopismach w latach Dynamika Molekularna; 686; 27% Automaty Komórkowe; 13; 1% Sieci neuronowe; 91; 4% Logika Rozmyta; 20; 1% Metoda Elementów Skończonych; 674; 26% ,8% wszystkich Modelowanie Wieloskalowe; 38; 2% Monte Carlo; 631; 25% Algorytmy genetyczne; 40; 2% Analiza Fraktalna; 271; 11% Systemy Ekspertowe; 14; 1% Liczba związana z analizowanymi metodami modelowania w Computational Materials Science w latach Systemy Ekspertowe; 9; 0% Modelowanie Wieloskalowe; 120; 6% Dynamika Molekularna; 529; 26% Sieci neuronowe; 91; 4% Analiza Fraktalna; 38; Algorytmy genetyczne; 2% 75; 4% Monte Carlo; 247; 12% Automaty Komórkowe; 57; 3% Logika Rozmyta; 14; 1% % wszystkich Metoda Elementów Skończonych; 852; 42% 2472

12 Porównanie udziału poszczególnych metod modelowania w analizowanych publikacjach w latach Dynamika Molekularna 28% Modelowanie Wieloskalowe 2% Sztuczna Inteligencja 7% Metoda Elementów Skończonych 27% Dynamika Molekularna 26% Modelowanie Wieloskalowe 6% Sztuczna Inteligencja 12% Monte Carlo 25% Analiza Fraktalna 11% Monte Carlo 12% Analiza Fraktalna 2% Metoda Elementów Skończonych 42% Liczba związana z analizowanymi metodami modelowania w wybranych czasopismach w latach Liczba Rok Dynamika Molekularna 629 Monte Carlo 589 Metoda Elementów Skończonych 605 Analiza Fraktalna 248 Sztuczna Inteligencja 186

13 Podsumowanie Podstawowe metody modelowania w obszarze inżynierii powierzchni można podzielić na dwie kategorie: szeroko rozumiane modelowanie matematyczne, któremu towarzyszą rozwiązania numeryczne oraz metody inne, wśród których należy wyróżnić metody inteligencji obliczeniowej i sztucznej inteligencji. Wzrasta popularność modelowania wieloskalowego. Uwzględnienie oddziaływania między różnymi skalami modelu umożliwia wierniejsze opisanie rzeczywistego zachowania się materiału. Istotny wpływ na rozwój metod modelowania ma dynamiczny wzrost mocy obliczeniowej komputerów.

2.2.P.07: Komputerowe narzędzia inżynierii powierzchni

2.2.P.07: Komputerowe narzędzia inżynierii powierzchni 2nd Workshop on Foresight of surface properties formation leading technologies of engineering materials and biomaterials in Białka Tatrzańska, Poland 29th-30th November 2009 2 Panel nt. Produkt oraz materiał

Bardziej szczegółowo

Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka

Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka Modelowanie jako sposób opisu rzeczywistości Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka 2015 Wprowadzenie: Modelowanie i symulacja PROBLEM: Podstawowy problem z opisem otaczającej

Bardziej szczegółowo

ODWZOROWANIE RZECZYWISTOŚCI

ODWZOROWANIE RZECZYWISTOŚCI ODWZOROWANIE RZECZYWISTOŚCI RZECZYWISTOŚĆ RZECZYWISTOŚĆ OBIEKTYWNA Ocena subiektywna OPIS RZECZYWISTOŚCI Odwzorowanie rzeczywistości zależy w dużej mierze od możliwości i nastawienia człowieka do otoczenia

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: INTELIGENTNE SYSTEMY OBLICZENIOWE Systems Based on Computational Intelligence Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj

Bardziej szczegółowo

Metody symulacji komputerowych Modelowanie systemów technicznych

Metody symulacji komputerowych Modelowanie systemów technicznych Metody symulacji komputerowych Modelowanie systemów technicznych dr inż. Ryszard Myhan Katedra Inżynierii Procesów Rolniczych Program przedmiotu Lp. Temat Zakres 1. Wprowadzenie do teorii systemów Definicje

Bardziej szczegółowo

Podstawy metodologiczne symulacji

Podstawy metodologiczne symulacji Sławomir Kulesza kulesza@matman.uwm.edu.pl Symulacje komputerowe (05) Podstawy metodologiczne symulacji Wykład dla studentów Informatyki Ostatnia zmiana: 26 marca 2015 (ver. 4.1) Spirala symulacji optymistycznie

Bardziej szczegółowo

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Ewa Wołoszko Praca pisana pod kierunkiem Pani dr hab. Małgorzaty Doman Plan tego wystąpienia Teoria Narzędzia

Bardziej szczegółowo

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty

Bardziej szczegółowo

Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa

Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa Jacek Skorupski pok. 251 tel. 234-7339 jsk@wt.pw.edu.pl http://skorupski.waw.pl/mmt prezentacje ogłoszenia konsultacje: poniedziałek 16 15-18, sobota zjazdowa 9 40-10 25 Udział w zajęciach Kontrola wyników

Bardziej szczegółowo

Najprostszy schemat blokowy

Najprostszy schemat blokowy Definicje Modelowanie i symulacja Modelowanie zastosowanie określonej metodologii do stworzenia i weryfikacji modelu dla danego układu rzeczywistego Symulacja zastosowanie symulatora, w którym zaimplementowano

Bardziej szczegółowo

T2A_W01 T2A_W01 T2A_W02 3 SI_W03 Posiada szeroką wiedzę w zakresie teorii grafów T2A_W01

T2A_W01 T2A_W01 T2A_W02 3 SI_W03 Posiada szeroką wiedzę w zakresie teorii grafów T2A_W01 Efekty dla studiów drugiego stopnia profil ogólnoakademicki, na kierunku Informatyka w języku polskim, na specjalnościach Metody sztucznej inteligencji oraz Projektowanie systemów CAD/CAM, na Wydziale

Bardziej szczegółowo

Definicje. Najprostszy schemat blokowy. Schemat dokładniejszy

Definicje. Najprostszy schemat blokowy. Schemat dokładniejszy Definicje owanie i symulacja owanie zastosowanie określonej metodologii do stworzenia i weryfikacji modelu dla danego rzeczywistego Symulacja zastosowanie symulatora, w którym zaimplementowano model, do

Bardziej szczegółowo

ZASTOSOWANIE SIECI NEURONOWYCH DO OPTYMALIZACJI WARUNKÓW OBRÓBKI CIEPLNEJ STOPÓW Mg-Al

ZASTOSOWANIE SIECI NEURONOWYCH DO OPTYMALIZACJI WARUNKÓW OBRÓBKI CIEPLNEJ STOPÓW Mg-Al LESZEK A. DOBRZAŃSKI, TOMASZ TAŃSKI ZASTOSOWANIE SIECI NEURONOWYCH DO OPTYMALIZACJI WARUNKÓW OBRÓBKI CIEPLNEJ STOPÓW Mg-Al APPLICATION OF NEURAL NETWORKS FOR OPTIMISATION OF Mg-Al ALLOYS HEAT TREATMENT

Bardziej szczegółowo

Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści

Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, 2012 Spis treści Przedmowa do wydania drugiego Przedmowa IX X 1. Wstęp 1 2. Wybrane zagadnienia sztucznej inteligencji

Bardziej szczegółowo

Plan. Zakres badań teorii optymalizacji. Teoria optymalizacji. Teoria optymalizacji a badania operacyjne. Badania operacyjne i teoria optymalizacji

Plan. Zakres badań teorii optymalizacji. Teoria optymalizacji. Teoria optymalizacji a badania operacyjne. Badania operacyjne i teoria optymalizacji Badania operacyjne i teoria optymalizacji Instytut Informatyki Poznań, 2011/2012 1 2 3 Teoria optymalizacji Teoria optymalizacji a badania operacyjne Teoria optymalizacji zajmuje się badaniem metod optymalizacji

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

8. PODSTAWY ANALIZY NIELINIOWEJ

8. PODSTAWY ANALIZY NIELINIOWEJ 8. PODSTAWY ANALIZY NIELINIOWEJ 1 8. 8. PODSTAWY ANALIZY NIELINIOWEJ 8.1. Wprowadzenie Zadania nieliniowe mają swoje zastosowanie na przykład w rozwiązywaniu cięgien. Przyczyny nieliniowości: 1) geometryczne:

Bardziej szczegółowo

a) Szczegółowe efekty kształcenia i ich odniesienie do opisu efektów

a) Szczegółowe efekty kształcenia i ich odniesienie do opisu efektów 1. PROGRAM KSZTAŁCENIA 1) OPIS EFEKTÓW KSZTAŁCENIA a) Szczegółowe efekty kształcenia i ich odniesienie do opisu efektów kształcenia dla obszaru nauk społecznych i technicznych Objaśnienie oznaczeń: I efekty

Bardziej szczegółowo

zna metody matematyczne w zakresie niezbędnym do formalnego i ilościowego opisu, zrozumienia i modelowania problemów z różnych

zna metody matematyczne w zakresie niezbędnym do formalnego i ilościowego opisu, zrozumienia i modelowania problemów z różnych Grupa efektów kierunkowych: Matematyka stosowana I stopnia - profil praktyczny (od 17 października 2014) Matematyka Stosowana I stopień spec. Matematyka nowoczesnych technologii stacjonarne 2015/2016Z

Bardziej szczegółowo

Kierunek Informatyka stosowana Studia stacjonarne Studia pierwszego stopnia

Kierunek Informatyka stosowana Studia stacjonarne Studia pierwszego stopnia Studia pierwszego stopnia I rok Matematyka dyskretna 30 30 Egzamin 5 Analiza matematyczna 30 30 Egzamin 5 Algebra liniowa 30 30 Egzamin 5 Statystyka i rachunek prawdopodobieństwa 30 30 Egzamin 5 Opracowywanie

Bardziej szczegółowo

ALGORYTMY GENETYCZNE (wykład + ćwiczenia)

ALGORYTMY GENETYCZNE (wykład + ćwiczenia) ALGORYTMY GENETYCZNE (wykład + ćwiczenia) Prof. dr hab. Krzysztof Dems Treści programowe: 1. Metody rozwiązywania problemów matematycznych i informatycznych.. Elementarny algorytm genetyczny: definicja

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela

Statystyka w pracy badawczej nauczyciela Statystyka w pracy badawczej nauczyciela Wykład 1: Terminologia badań statystycznych dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka (1) Statystyka to nauka zajmująca się zbieraniem, badaniem

Bardziej szczegółowo

Zastosowania metod odkrywania wiedzy do diagnostyki maszyn i procesów

Zastosowania metod odkrywania wiedzy do diagnostyki maszyn i procesów Zastosowania metod odkrywania wiedzy do diagnostyki maszyn i procesów Wojciech Moczulski Politechnika Śląska Katedra Podstaw Konstrukcji Maszyn Sztuczna inteligencja w automatyce i robotyce Zielona Góra,

Bardziej szczegółowo

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI

Bardziej szczegółowo

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu Podstawy baz danych PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych

Bardziej szczegółowo

Dostawa oprogramowania. Nr sprawy: ZP /15

Dostawa oprogramowania. Nr sprawy: ZP /15 ........ (pieczątka adresowa Oferenta) Zamawiający: Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu, ul. Staszica,33-300 Nowy Sącz. Strona: z 5 Arkusz kalkulacyjny określający minimalne parametry techniczne

Bardziej szczegółowo

Wprowadzenie do teorii systemów ekspertowych

Wprowadzenie do teorii systemów ekspertowych Myślące komputery przyszłość czy utopia? Wprowadzenie do teorii systemów ekspertowych Roman Simiński siminski@us.edu.pl Wizja inteligentnych maszyn jest od wielu lat obecna w literaturze oraz filmach z

Bardziej szczegółowo

Efekty kształcenia dla kierunku studiów INFORMATYKA, Absolwent studiów I stopnia kierunku Informatyka WIEDZA

Efekty kształcenia dla kierunku studiów INFORMATYKA, Absolwent studiów I stopnia kierunku Informatyka WIEDZA Symbol Efekty kształcenia dla kierunku studiów INFORMATYKA, specjalność: 1) Sieciowe systemy informatyczne. 2) Bazy danych Absolwent studiów I stopnia kierunku Informatyka WIEDZA Ma wiedzę z matematyki

Bardziej szczegółowo

Spis treści 377 379 WSTĘP... 9

Spis treści 377 379 WSTĘP... 9 Spis treści 377 379 Spis treści WSTĘP... 9 ZADANIE OPTYMALIZACJI... 9 PRZYKŁAD 1... 9 Założenia... 10 Model matematyczny zadania... 10 PRZYKŁAD 2... 10 PRZYKŁAD 3... 11 OPTYMALIZACJA A POLIOPTYMALIZACJA...

Bardziej szczegółowo

Odniesienie do obszarowych efektów kształcenia 1 2 3. Kierunkowe efekty kształcenia WIEDZA (W)

Odniesienie do obszarowych efektów kształcenia 1 2 3. Kierunkowe efekty kształcenia WIEDZA (W) EFEKTY KSZTAŁCENIA NA KIERUNKU "MECHATRONIKA" nazwa kierunku studiów: Mechatronika poziom kształcenia: studia pierwszego stopnia profil kształcenia: ogólnoakademicki symbol kierunkowych efektów kształcenia

Bardziej szczegółowo

Modelowanie glikemii w procesie insulinoterapii

Modelowanie glikemii w procesie insulinoterapii Dawid Kaliszewski Modelowanie glikemii w procesie insulinoterapii Promotor dr hab. inż. Zenon Gniazdowski Cel pracy Zbudowanie modelu predykcyjnego przyszłych wartości glikemii diabetyka leczonego za pomocą

Bardziej szczegółowo

Laboratorium demonstrator bazowych technologii Przemysłu 4.0 przykład projektu utworzenia laboratorium przez KSSE i Politechnikę Śląską

Laboratorium demonstrator bazowych technologii Przemysłu 4.0 przykład projektu utworzenia laboratorium przez KSSE i Politechnikę Śląską Laboratorium demonstrator bazowych technologii Przemysłu 4.0 przykład projektu utworzenia laboratorium przez KSSE i Politechnikę Śląską (wynik prac grupy roboczej ds. kształcenia, kompetencji i zasobów

Bardziej szczegółowo

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki

Bardziej szczegółowo

Państwowa Wyższa Szkoła Techniczno-Ekonomiczna w Jarosławiu

Państwowa Wyższa Szkoła Techniczno-Ekonomiczna w Jarosławiu Załącznik nr 1 do Uchwały nr 9/12 Rady Instytutu Inżynierii Technicznej PWSTE w Jarosławiu z dnia 30 marca 2012r Państwowa Wyższa Szkoła Techniczno-Ekonomiczna w Jarosławiu EFEKTY KSZTAŁCENIA DLA KIERUNKU

Bardziej szczegółowo

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Dorota Witkowska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wprowadzenie Sztuczne

Bardziej szczegółowo

KARTA PRZEDMIOTU. Dyscyplina:

KARTA PRZEDMIOTU. Dyscyplina: KARTA PRZEDMIOTU Jednostka: WIPiE Dyscyplina: Poziom studiów: 3 Semestr: 3 lub 4 Forma studiów: stacjonarne Język wykładowy: Nazwa przedmiotu: Metody sztucznej inteligencji Symbol przedmiotu: MSI Liczba

Bardziej szczegółowo

Wykład organizacyjny

Wykład organizacyjny Automatyka - zastosowania, metody i narzędzia, perspektywy na studiach I stopnia specjalności: Automatyka i systemy sterowania Wykład organizacyjny dr inż. Michał Grochowski kiss.pg.mg@gmail.com michal.grochowski@pg.gda.pl

Bardziej szczegółowo

Kierunek:Informatyka- - inż., rok I specjalność: Grafika komputerowa i multimedia

Kierunek:Informatyka- - inż., rok I specjalność: Grafika komputerowa i multimedia :Informatyka- - inż., rok I specjalność: Grafika komputerowa i multimedia Podstawy prawne. 1 15 1 Podstawy ekonomii. 1 15 15 2 Metody uczenia się i studiowania. 1 15 1 Środowisko programisty. 1 30 3 Komputerowy

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe)

Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe) METODA ELEMENTÓW W SKOŃCZONYCH 1 Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe) stałych własnościach

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Algorytmy i programowanie Algorithms and Programming Kierunek: Zarządzanie i Inżynieria Produkcji Rodzaj przedmiotu: kierunkowy Poziom studiów: studia I stopnia forma studiów: studia

Bardziej szczegółowo

Kierownik Katedry: Prof. dr hab. inż. Tadeusz BURCZYŃSKI

Kierownik Katedry: Prof. dr hab. inż. Tadeusz BURCZYŃSKI Kierownik Katedry: Prof. dr hab. inż. Tadeusz BURCZYŃSKI Zakład Inteligentnych Systemów Obliczeniowych RMT4-3 Kierownik Zakładu: Prof. dr hab. inż. Tadeusz BURCZYŃSKI Zakład Metod Numerycznych w Termomechanice

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE DIAGNOSTYKĘ MEDYCZNĄ Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj zajęć: wykład, projekt

Bardziej szczegółowo

Tomasz M. Gwizdałła 2012/13

Tomasz M. Gwizdałła 2012/13 METODY METODY OPTYMALIZACJI OPTYMALIZACJI Tomasz M. Gwizdałła 2012/13 Informacje wstępne Tomasz Gwizdałła Katedra Fizyki Ciała Stałego UŁ Pomorska 149/153, p.523b tel. 6355709 tomgwizd@uni.lodz.pl http://www.wfis.uni.lodz.pl/staff/tgwizdalla

Bardziej szczegółowo

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)

Bardziej szczegółowo

Inżynieria danych I stopień Praktyczny Studia stacjonarne Wszystkie specjalności Katedra Inżynierii Produkcji Dr Małgorzata Lucińska

Inżynieria danych I stopień Praktyczny Studia stacjonarne Wszystkie specjalności Katedra Inżynierii Produkcji Dr Małgorzata Lucińska KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 205/206 Z-ID-602 Wprowadzenie do uczenia maszynowego Introduction to Machine Learning

Bardziej szczegółowo

w ekonomii, finansach i towaroznawstwie

w ekonomii, finansach i towaroznawstwie w ekonomii, finansach i towaroznawstwie spotykane określenia: zgłębianie danych, eksploracyjna analiza danych, przekopywanie danych, męczenie danych proces wykrywania zależności w zbiorach danych poprzez

Bardziej szczegółowo

ECTS Razem 30 Godz. 330

ECTS Razem 30 Godz. 330 3-letnie stacjonarne studia licencjackie kier. Matematyka profil: ogólnoakademicki Semestr 1 Przedmioty wspólne Algebra liniowa z geometrią analityczną I 7 30 30 E Analiza matematyczna I 13 60 60 E Technologie

Bardziej szczegółowo

Modelowanie komputerowe w zagadnieniach środowiska. Strona:

Modelowanie komputerowe w zagadnieniach środowiska. Strona: Modelowanie komputerowe w zagadnieniach środowiska Wykład 30 godzin + Laboratorium 30 godzin Strona: http://www.icm.edu.pl/~aniat/modele/wdw1 Literatura Modelowanie Urszula Foryś, Matematyka w biologii,

Bardziej szczegółowo

MODELE I MODELOWANIE

MODELE I MODELOWANIE MODELE I MODELOWANIE Model układ materialny (np. makieta) lub układ abstrakcyjny (np..rysunki, opisy słowne, równania matematyczne). Model fizyczny (nominalny) opis procesów w obiekcie (fizycznych, również

Bardziej szczegółowo

JAKIEGO RODZAJU NAUKĄ JEST

JAKIEGO RODZAJU NAUKĄ JEST JAKIEGO RODZAJU NAUKĄ JEST INFORMATYKA? Computer Science czy Informatyka? Computer Science czy Informatyka? RACZEJ COMPUTER SCIENCE bo: dziedzina ta zaistniała na dobre wraz z wynalezieniem komputerów

Bardziej szczegółowo

MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH

MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH 1. Przedmiot nie wymaga przedmiotów poprzedzających 2. Treść przedmiotu Proces i cykl decyzyjny. Rola modelowania matematycznego w procesach decyzyjnych.

Bardziej szczegółowo

WYDZIAŁ TRANSPORTU I INFORMATYKI MECHANIKA I BUDOWA MASZYN I STOPIEŃ PRAKTYCZNY

WYDZIAŁ TRANSPORTU I INFORMATYKI MECHANIKA I BUDOWA MASZYN I STOPIEŃ PRAKTYCZNY WYDZIAŁ TRANSPORTU I INFORMATYKI Nazwa kierunku Poziom Profil Symbole efektów na kierunku K_W01 K _W 02 K _W03 K _W04 K _W05 K _W06 MECHANIKA I BUDOWA MASZYN I STOPIEŃ PRAKTYCZNY Efekty - opis słowny Po

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z inteligentnymi

Bardziej szczegółowo

Metrologia: organizacja eksperymentu pomiarowego

Metrologia: organizacja eksperymentu pomiarowego Metrologia: organizacja eksperymentu pomiarowego (na podstawie: Żółtowski B. Podstawy diagnostyki maszyn, 1996) dr inż. Paweł Zalewski Akademia Morska w Szczecinie Teoria eksperymentu: Teoria eksperymentu

Bardziej szczegółowo

PROGRAM KSZTAŁCENIA NA STUDIACH III STOPNIA Informatyka (nazwa kierunku)

PROGRAM KSZTAŁCENIA NA STUDIACH III STOPNIA Informatyka (nazwa kierunku) PROGRAM KSZTAŁCENIA NA STUDIACH III STOPNIA Informatyka (nazwa kierunku) 1. OPIS ZAKŁADANYCH EFEKTÓW KSZTAŁCENIA: 1) Tabela odniesień kierunkowych efektów kształcenia (EKK) do obszarowych efektów kształcenia

Bardziej szczegółowo

Zakładane efekty kształcenia dla kierunku Wydział Telekomunikacji, Informatyki i Elektrotechniki

Zakładane efekty kształcenia dla kierunku Wydział Telekomunikacji, Informatyki i Elektrotechniki Jednostka prowadząca kierunek studiów Nazwa kierunku studiów Specjalności Obszar kształcenia Profil kształcenia Poziom kształcenia Forma kształcenia Tytuł zawodowy uzyskiwany przez absolwenta Dziedziny

Bardziej szczegółowo

2.1.M.07: Wpływ warunków zużycia na własności powierzchni materiałów inżynierskich

2.1.M.07: Wpływ warunków zużycia na własności powierzchni materiałów inżynierskich 2nd Workshop on Foresight of surface properties formation leading technologies of engineering materials and biomaterials in Białka Tatrzańska, Poland 29th-30th November 2009 1 Panel nt. Procesy wytwarzania

Bardziej szczegółowo

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ.

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Jolanta Zimmerman 1. Wprowadzenie do metody elementów skończonych Działanie rzeczywistych

Bardziej szczegółowo

Tabela odniesień efektów kierunkowych do efektów obszarowych

Tabela odniesień efektów kierunkowych do efektów obszarowych Umiejscowienie kierunku w obszarze kształcenia Kierunek studiów automatyka i robotyka należy do obszaru kształcenia w zakresie nauk technicznych i jest powiązany z takimi kierunkami studiów jak: mechanika

Bardziej szczegółowo

1. Tabela odniesień efektów kierunkowych do efektów obszarowych z komentarzami

1. Tabela odniesień efektów kierunkowych do efektów obszarowych z komentarzami EFEKTY KSZTAŁCENIA 1. Tabela odniesień efektów kierunkowych do efektów obszarowych z komentarzami Kierunkowy efekt kształcenia - symbol K_W01 K_W02 K_W03 K_W04 K_W05 K_W06 K_W07 K_W08 Kierunkowy efekt

Bardziej szczegółowo

Zakładane efekty kształcenia dla kierunku

Zakładane efekty kształcenia dla kierunku Zakładane efekty dla kierunku Jednostka prowadząca kierunek studiów Nazwa kierunku studiów Specjalności Obszar Profil Poziom Tytuł zawodowy uzyskiwany przez absolwenta Dziedziny nauki / sztuki i dyscypliny

Bardziej szczegółowo

Komputerowe wspomaganie projektowania- CAT-01

Komputerowe wspomaganie projektowania- CAT-01 Komputerowe wspomaganie projektowania- CAT-01 Celem szkolenia jest praktyczne zapoznanie uczestników z podstawami metodyki projektowania 3D w programie CATIA V5 Interfejs użytkownika Modelowanie parametryczne

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* Zał. nr do ZW 33/01 WYDZIAŁ / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Optymalizacja systemów Nazwa w języku angielskim System optimization Kierunek studiów (jeśli dotyczy): Inżynieria Systemów

Bardziej szczegółowo

Sterowanie z wykorzystaniem logiki rozmytej

Sterowanie z wykorzystaniem logiki rozmytej Sterowanie z wykorzystaniem logiki rozmytej konspekt seminarium Paweł Szołtysek 24 stycznia 2009 1 Wstęp 1.1 Podstawy logiki rozmytej Logika rozmyta jest rodzajem logiki wielowartościowej, stanowi uogólnienie

Bardziej szczegółowo

AUTOMATYZACJA PROCESÓW CIĄGŁYCH I WSADOWYCH

AUTOMATYZACJA PROCESÓW CIĄGŁYCH I WSADOWYCH AUTOMATYZACJA PROCESÓW CIĄGŁYCH I WSADOWYCH kierunek Automatyka i Robotyka Studia II stopnia specjalności Automatyka Dr inż. Zbigniew Ogonowski Instytut Automatyki, Politechnika Śląska Plan wykładu pojęcia

Bardziej szczegółowo

Specjalność Optymalizacja Decyzji Menedżerskich. Katedra Badań Operacyjnych Uniwersytetu Łódzkiego

Specjalność Optymalizacja Decyzji Menedżerskich. Katedra Badań Operacyjnych Uniwersytetu Łódzkiego Specjalność Optymalizacja Decyzji Menedżerskich Katedra Badań Operacyjnych Uniwersytetu Łódzkiego Kilka słów o nas Katedra Badań Operacyjnych jest częścią Instytutu Ekonomik Stosowanych i Informatyki.

Bardziej szczegółowo

Sztuczna inteligencja - wprowadzenie

Sztuczna inteligencja - wprowadzenie Sztuczna inteligencja - wprowadzenie Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Sztuczna inteligencja komputerów - wprowadzenie Kontakt: dr inż. Dariusz Banasiak, pok.

Bardziej szczegółowo

Symbol efektu kształcenia

Symbol efektu kształcenia Efekty dla studiów drugiego stopnia - profil ogólnoakademicki, na kierunku Informatyka, na specjalnościach Metody sztucznej inteligencji (Tabela 1), Projektowanie systemów CAD/CAM (Tabela 2) oraz Przetwarzanie

Bardziej szczegółowo

Metody Prognozowania

Metody Prognozowania Wprowadzenie Ewa Bielińska 3 października 2007 Plan 1 Wprowadzenie Czym jest prognozowanie Historia 2 Ciągi czasowe Postępowanie prognostyczne i prognozowanie Predykcja długo- i krótko-terminowa Rodzaje

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z własnościami

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Systemy Decision suport systems Zarządzanie i Inżynieria Produkcji Management and Engineering of Production Rodzaj przedmiotu: obowiązkowy Poziom studiów: studia II stopnia

Bardziej szczegółowo

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2016/2017 Język wykładowy: Polski

Bardziej szczegółowo

Transformacja wiedzy w budowie i eksploatacji maszyn

Transformacja wiedzy w budowie i eksploatacji maszyn Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA Realizacja w roku akademickim 2016/17

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA Realizacja w roku akademickim 2016/17 Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015 2019 Realizacja w roku akademickim 2016/17 1.1. Podstawowe informacje o przedmiocie/module Nazwa przedmiotu/ modułu

Bardziej szczegółowo

II. MODUŁY KSZTAŁCENIA

II. MODUŁY KSZTAŁCENIA PROGRAM STUDIÓW I. INFORMACJE OGÓLNE 1. Nazwa jednostki prowadzącej kierunek: W y d z i a ł M a t e m a t y k i i I n f o r m a t y k i 2. Nazwa kierunku: I n f o r m a t y k a 3. Poziom kształcenia: s

Bardziej szczegółowo

Dr hab. inż. Jan Duda. Wykład dla studentów kierunku Zarządzanie i Inżynieria Produkcji

Dr hab. inż. Jan Duda. Wykład dla studentów kierunku Zarządzanie i Inżynieria Produkcji Automatyzacja i Robotyzacja Procesów Produkcyjnych Dr hab. inż. Jan Duda Wykład dla studentów kierunku Zarządzanie i Inżynieria Produkcji Podstawowe pojęcia Automatyka Nauka o metodach i układach sterowania

Bardziej szczegółowo

Uczenie sieci neuronowych i bayesowskich

Uczenie sieci neuronowych i bayesowskich Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

Techniki CAx. dr inż. Michał Michna. Politechnika Gdańska

Techniki CAx. dr inż. Michał Michna. Politechnika Gdańska Techniki CAx dr inż. Michał Michna 1 Komputerowe techniki wspomagania projektowania 2 Techniki Cax - projektowanie Projektowanie złożona działalność inżynierska, w której przenikają się doświadczenie inżynierskie,

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE

Bardziej szczegółowo

INSTYTUT METEOROLOGII I GOSPODARKI WODNEJ PAŃSTWOWY INSTYTUT BADAWCZY Oddział we Wrocławiu. Görlitz

INSTYTUT METEOROLOGII I GOSPODARKI WODNEJ PAŃSTWOWY INSTYTUT BADAWCZY Oddział we Wrocławiu. Görlitz Görlitz 17.11.2014 Pakiet programów MIKE opracowany na Politechnice Duńskiej, zmodyfikowany przez Duński Instytut Hydrauliki, Zasady działania modeli: MIKE NAM - model konceptualny o parametrach skupionych,

Bardziej szczegółowo

Modelowanie komputerowe

Modelowanie komputerowe Modelowanie komputerowe wykład 1- Generatory liczb losowych i ich wykorzystanie dr Marcin Ziółkowski Instytut Matematyki i Informatyki Akademia im. Jana Długosza w Częstochowie 5,12 października 2016 r.

Bardziej szczegółowo

PROGRAM KSZTAŁCENIA NA KIERUNKU STUDIÓW WYŻSZYCH

PROGRAM KSZTAŁCENIA NA KIERUNKU STUDIÓW WYŻSZYCH PROGRAM KSZTAŁCENIA NA KIERUNKU STUDIÓW WYŻSZYCH od semestru letniego 2014/2015 w cyklach, które rozpoczęły studia od roku akademickiego 2012/2013 NAZWA WYDZIAŁU: WYDZIAŁ FIZYKI TECHNICZNEJ I MATEMATYKI

Bardziej szczegółowo

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW NAUCZANIE MATEMATYKI I INFORMATYKI

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW NAUCZANIE MATEMATYKI I INFORMATYKI EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW NAUCZANIE MATEMATYKI I INFORMATYKI poziom kształcenia profil kształcenia tytuł zawodowy uzyskiwany przez absolwenta studia drugiego stopnia ogólnoakademicki magister

Bardziej szczegółowo

Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym

Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym POLITECHNIKA WARSZAWSKA Instytut Technik Wytwarzania Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym Marcin Perzyk Dlaczego eksploracja danych?

Bardziej szczegółowo

ANALIZA WYNIKÓW EGZAMINU GIMNAZJALNEGO 2012

ANALIZA WYNIKÓW EGZAMINU GIMNAZJALNEGO 2012 PUBLICZNE GIMNAZJUM IM. KRÓLA JANA KAZIMIERZA W RAJCZY ANALIZA WYNIKÓW EGZAMINU GIMNAZJALNEGO 2012 CZĘŚĆ MATEMATYCZNO PRZYRODNICZA Egzamin Gimnazjalny w części matematyczno przyrodniczej składał się z

Bardziej szczegółowo

WIEDZA. Ma podstawową wiedzę niezbędną do rozumienia ekonomicznych i innych pozatechnicznych uwarunkowań działalności inżynierskiej.

WIEDZA. Ma podstawową wiedzę niezbędną do rozumienia ekonomicznych i innych pozatechnicznych uwarunkowań działalności inżynierskiej. Efekty kształcenia dla kierunku: LOGISTYKA Wydział: ORGANIZACJI I ZARZĄDZANIA nazwa kierunku studiów: Logistyka poziom kształcenia: studia I stopnia profil kształcenia: ogólnoakademicki symbol K1A_W01

Bardziej szczegółowo

INFORMATYKA i FINANSE KATEDRA INFORMATYKI TEORETYCZNEJ

INFORMATYKA i FINANSE KATEDRA INFORMATYKI TEORETYCZNEJ INFORMATYKA i FINANSE KATEDRA INFORMATYKI TEORETYCZNEJ dr hab. Czesław Bagiński, prof. PB Kierownik KIT dr hab. Wiktor Dańko, prof. PB dr hab. Piotr Grzeszczuk, prof. PB dr Ryszard Mazurek dr Jolanta Koszelew

Bardziej szczegółowo

Efekty kształcenia na kierunku AiR drugiego stopnia - Wiedza Wydziału Elektrotechniki, Automatyki i Informatyki Politechniki Opolskiej

Efekty kształcenia na kierunku AiR drugiego stopnia - Wiedza Wydziału Elektrotechniki, Automatyki i Informatyki Politechniki Opolskiej Efekty na kierunku AiR drugiego stopnia - Wiedza K_W01 K_W02 K_W03 K_W04 K_W05 K_W06 K_W07 K_W08 K_W09 K_W10 K_W11 K_W12 K_W13 K_W14 Ma rozszerzoną wiedzę dotyczącą dynamicznych modeli dyskretnych stosowanych

Bardziej szczegółowo

Zastosowanie metody interpolacji warstwic do tworzenia NMT. dr inż. Ireneusz Wyczałek Zakład Geodezji POLITECHNIKA POZNAŃSKA

Zastosowanie metody interpolacji warstwic do tworzenia NMT. dr inż. Ireneusz Wyczałek Zakład Geodezji POLITECHNIKA POZNAŃSKA Zastosowanie metody interpolacji warstwic do tworzenia NMT dr inż. Ireneusz Wyczałek Zakład Geodezji POLITECHNIKA POZNAŃSKA Zastosowanie metody interpolacji warstwic do tworzenia Numerycznego Modelu Terenu

Bardziej szczegółowo

Propozycje tematów prac magisterskich dla studentów planujących obronę w roku akademickim 2016/2017 lub w latach późniejszych.

Propozycje tematów prac magisterskich dla studentów planujących obronę w roku akademickim 2016/2017 lub w latach późniejszych. dr M. Kopernik Propozycje tematów prac magisterskich dla studentów planujących obronę w roku akademickim 2016/2017 lub w latach późniejszych. Tematy inżynierskie mogą być podobne, ale realizowane w węższym

Bardziej szczegółowo

ZARZĄDZANIE I INŻYNIERIA PRODUKCJI

ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZARZĄDZANIE I INŻYNIERIA PRODUKCJI STUDIA PIERWSZEGO STOPNIA PROFIL OGÓLNOAKADEMICKI Załącznik nr 2 Odniesienie efektów kierunkowych do efektów obszarowych i odwrotnie Załącznik nr 2a - Tabela odniesienia

Bardziej szczegółowo

Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach PROGRAM KSZTAŁCENIA. Studia III stopnia (doktoranckie) kierunek Informatyka

Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach PROGRAM KSZTAŁCENIA. Studia III stopnia (doktoranckie) kierunek Informatyka Uniwersytet Śląski Wydział Informatyki i Nauki o Materiałach PROGRAM KSZTAŁCENIA Studia III stopnia (doktoranckie) kierunek Informatyka (przyjęty przez Radę Wydziału Informatyki i Nauki o Materiałach w

Bardziej szczegółowo

ID1SII4. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)

ID1SII4. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu ID1SII4 Nazwa modułu Systemy inteligentne 1 Nazwa modułu w języku angielskim Intelligent

Bardziej szczegółowo

PLAN SZKOLEŃ FEMAP. Nasza oferta: Solid Edge najefektywniejszy dostępny obecnie na rynku system CAD klasy mid-range,

PLAN SZKOLEŃ FEMAP. Nasza oferta: Solid Edge najefektywniejszy dostępny obecnie na rynku system CAD klasy mid-range, PLAN SZKOLEŃ FEMAP Firma GM System Integracja Systemów Inżynierskich Sp. z o.o. została założona w 2001 roku. Zajmujemy się dostarczaniem systemów CAD/CAM/CAE/PDM. Jesteśmy jednym z największych polskich

Bardziej szczegółowo

Lista zagadnień kierunkowych pomocniczych w przygotowaniu do egzaminu dyplomowego magisterskiego Kierunek: Mechatronika

Lista zagadnień kierunkowych pomocniczych w przygotowaniu do egzaminu dyplomowego magisterskiego Kierunek: Mechatronika Lista zagadnień kierunkowych pomocniczych w przygotowaniu do Kierunek: Mechatronika 1. Materiały używane w budowie urządzeń precyzyjnych. 2. Rodzaje stali węglowych i stopowych, 3. Granica sprężystości

Bardziej szczegółowo

Wykład 1 BIOMATEMATYKA DR WIOLETA DROBIK

Wykład 1 BIOMATEMATYKA DR WIOLETA DROBIK Wykład 1 BIOMATEMATYKA DR WIOLETA DROBIK SPRAWY ORGANIZACYJNE Konsultacje: czwartek 12-14, pokój 33 Email: wioleta.drobik@gmail.com, wioleta_drobik@sggw.pl Wykład 30 h (10 x 3 h w tygodniu) Ćwiczenia 15

Bardziej szczegółowo

INFORMATYKA Pytania ogólne na egzamin dyplomowy

INFORMATYKA Pytania ogólne na egzamin dyplomowy INFORMATYKA Pytania ogólne na egzamin dyplomowy 1. Wyjaśnić pojęcia problem, algorytm. 2. Podać definicję złożoności czasowej. 3. Podać definicję złożoności pamięciowej. 4. Typy danych w języku C. 5. Instrukcja

Bardziej szczegółowo

Odniesienie do efektów kształcenia w obszarze kształcenia w zakresie nauk przyrodniczych i technicznych

Odniesienie do efektów kształcenia w obszarze kształcenia w zakresie nauk przyrodniczych i technicznych Wydział Biotechnologii i Hodowli Zwierząt Nazwa kierunku studiów: bioinformatyka Poziom kształcenia: studia pierwszego stopnia Profil kształcenia: ogólnoakademicki Obszar kształcenia: w zakresie nauk przyrodniczych

Bardziej szczegółowo