Computer Modeling in Cost-Efficient Solar Cell Production Technology

Podobne dokumenty
Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application


EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

Hard-Margin Support Vector Machines

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Krytyczne czynniki sukcesu w zarządzaniu projektami

Knovel Math: Jakość produktu

Spis publikacji. dr hab. Agata Zdyb telefon:

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

THE INFLUENCE OF THE ENGINE LOAD ON VALUE AND TEMPERATURE DISTRIBUTION IN THE VALVE SEATS OF TURBO DIESEL ENGINE

Zarządzanie sieciami telekomunikacyjnymi

Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH

Patients price acceptance SELECTED FINDINGS

Akademia Morska w Szczecinie. Wydział Mechaniczny

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

Country fact sheet. Noise in Europe overview of policy-related data. Poland

Medical electronics part 10 Physiological transducers

Exposure assessment of mercury emissions

Institutional Determinants of IncomeLevel Convergence in the European. Union: Are Institutions Responsible for Divergence Tendencies of Some

The analysis of the energy demand for heating and cooling of the house built on the basis of the traditional Canadian wood-frame construction

t Rysunek 2: Wykres drgań podstawy wspornika u(t)

Cracow University of Economics Poland

Relaxation of the Cosmological Constant

Streszczenie rozprawy doktorskiej

Lecture 18 Review for Exam 1

TRANSPORT W RODZINNYCH GOSPODARSTWACH ROLNYCH

Microsystems in Medical Applications Liquid Flow Sensors

Has the heat wave frequency or intensity changed in Poland since 1950?

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

Sargent Opens Sonairte Farmers' Market

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

SG-MICRO... SPRĘŻYNY GAZOWE P.103

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

SPIS TREŚCI SPIS WAŻNIEJSZYCH OZNACZEŃ WSTĘP KRÓTKA CHARAKTERYSTYKA SEKTORA ENERGETYCZNEGO W POLSCE... 14

Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo

Tytuł pracy w języku angielskim: Microstructural characterization of Ag/X/Ag (X = Sn, In) joints obtained as the effect of diffusion soledering.

Zmiany techniczne wprowadzone w wersji Comarch ERP Altum

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

W trzech niezależnych testach frezy z powłoką X tremeblue typu V803 był w każdym przypadku prawie 2 razy bardziej wydajne niż wersja niepowlekana.

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

Tychy, plan miasta: Skala 1: (Polish Edition)

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Tytuł pracy w języku angielskim: Physical properties of liquid crystal mixtures of chiral and achiral compounds for use in LCDs

Helena Boguta, klasa 8W, rok szkolny 2018/2019

ZASTOSOWANIE RÓWNANIA BOUSSINESQUE A DO OKREŚLANIA NAPRĘŻEŃ W GLEBIE WYWOŁANYCH ODDZIAŁYWANIEM ZESTAWÓW MASZYN

Installation of EuroCert software for qualified electronic signature

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

DOI: / /32/37

AN EFFECT OF FLOW NON-UNIFORMITY IN EARTH-TO-AIR MULTI-PIPE HEAT EXCHANGERS (EAHEs) ON THEIR THERMAL PERFORMANCE

Instructions for student teams

The Lorenz System and Chaos in Nonlinear DEs

POLITECHNIKA WARSZAWSKA. Wydział Zarządzania ROZPRAWA DOKTORSKA. mgr Marcin Chrząścik

ROZPRAWA DOKTORSKA. Model obliczeniowy ogrzewań mikroprzewodowych

Few-fermion thermometry

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

Wprowadzenie do programu RapidMiner, część 2 Michał Bereta 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów

Extraclass. Football Men. Season 2009/10 - Autumn round

METODA OGÓLNEJ OCENY STANU ŚRODO- WISKA OBSZARÓW WIEJSKICH NA PODSTAWIE INFORMACJI Z BANKU DANYCH REGIONALNYCH GUS I OSZACOWAŃ PROGRAMU EMEP

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Formularz recenzji magazynu. Journal of Corporate Responsibility and Leadership Review Form

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

HOW MASSIVE ARE PROTOPLANETARY/ PLANET HOSTING/PLANET FORMING DISCS?

Typ VFR. Circular flow adjustment dampers for the adjustment of volume flow rates and pressures in supply air and extract air systems

WYŁĄCZNIK CZASOWY OUTDOOR TIMER

photo graphic Jan Witkowski Project for exhibition compositions typography colors : : janwi@janwi.com

THERMODYNAMICS OF OXYGEN IN DILUTE LIQUID SILVER-TELLURIUM ALLOYS

PROGRAM STAŻU. Nazwa podmiotu oferującego staż / Company name IBM Global Services Delivery Centre Sp z o.o.

OPTYMALIZACJA PUBLICZNEGO TRANSPORTU ZBIOROWEGO W GMINIE ŚRODA WIELKOPOLSKA

4D and 5D applications in BIM technology.

miniature, low-voltage lighting system MIKRUS S

SPIS TREŚCI / INDEX OGRÓD GARDEN WYPOSAŻENIE DOMU HOUSEHOLD PRZECHOWYWANIE WINA WINE STORAGE SKRZYNKI BOXES

CEE 111/211 Agenda Feb 17

OpenPoland.net API Documentation

Strategic planning. Jolanta Żyśko University of Physical Education in Warsaw

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

BIOPHYSICS. Politechnika Łódzka, ul. Żeromskiego 116, Łódź, tel. (042)

Selection of controller parameters Strojenie regulatorów

Dominika Janik-Hornik (Uniwersytet Ekonomiczny w Katowicach) Kornelia Kamińska (ESN Akademia Górniczo-Hutnicza) Dorota Rytwińska (FRSE)

European Crime Prevention Award (ECPA) Annex I - new version 2014

archivist: Managing Data Analysis Results

SYMULACJA TŁOCZENIA ZAKRYWEK KORONKOWYCH SIMULATION OF CROWN CLOSURES FORMING

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

Liczbę 29 możemy zaprezentować na siedem różnych sposobów:

PERSPEKTYWY ZRÓWNOWAŻONEGO ROZWOJU TRANSPORTU DROGOWEGO W POLSCE DO 2030 ROKU

The Overview of Civilian Applications of Airborne SAR Systems

ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.

Modelowanie zagadnień cieplnych: analiza porównawcza wyników programów ZSoil i AnsysFluent

Revenue Maximization. Sept. 25, 2018

Odnawialne źródła energii. Renewable Energy Resources. Energetics 1 st degree (1st degree / 2nd degree) General (general / practical)

PRZYSTAŃ ODNOWY KRAKÓW - PŁASZÓW HARBOR OF RENEVAL KRAKOW - PŁASZOW

GLOBAL METHANE INITIATIVE PARTNERSHIP-WIDE MEETING Kraków, Poland

Please fill in the questionnaire below. Each person who was involved in (parts of) the project can respond.

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Opis Przedmiotu Zamówienia oraz kryteria oceny ofert. Część nr 8

COMPUTATIONAL DOMAIN DISCRETIZATION AND ITS IMPACT ON FLOW FIELD AROUND THE SPARK PLUG IN SI ENGINE

No matter how much you have, it matters how much you need

Transkrypt:

MIDDLE POMERANIAN SCIENTIFIC SOCIETY OF THE ENVIRONMENT PROTECTION ŚRODKOWO-POMORSKIE TOWARZYSTWO NAUKOWE OCHRONY ŚRODOWISKA Annual Set The Environment Protection Rocznik Ochrona Środowiska Volume/Tom 15. Year/Rok 2013 ISSN 1506-218X 436 447 Computer Modeling in Cost-Efficient Solar Cell Production Technology 1. Introduction Sławomir Gułkowski, Jan M. Olchowik Lublin University of Technology The progress of the Liberal Capitalism in the last years led to faster use of the World energy resources [24, 21]. Because of the fast energy consumption the conception of sustainable development has been formulated [20]. One of the suggested directions of the development is the idea of green economy [9], low carbon growth [4, 25, 28]. Because of using a great amount of energy the research on the optimization of this consumption have been started [3]. Considering Sun as one of the biggest energy source and convert this energy into biomass the main renewable energy resource can be obtained. On the other hand, production biofuel from biomass leads to increase a food price [23]. More suitable for environment is biomethanization process in specially developed reactors [14] or converting biogas from municipal waste landfills [26]. Another solution is thermal utilization of other wastes[22]. One of the biggest possibilities of production energy from renewable sources is photovoltaics. More than 80% of the current solar cells production requires cutting of large silicon crystal. During this process about 50% of the material is lost. Due to this fact, sawing costs comprise 29% of the total wafer production cost, and thus contribute considerably to the total module cost [13]. The technology which could avoid the sawing step of the cell production, can be a method for future developing cost-efficient solar cells. One of the promising technique in this application is Epitaxial Lateral Overgrowth (ELO) technology with Liquid Phase Epitaxy (LPE) equilibrium method [2, 1, 5]. Using thelow-cost and simple apparatus allows to

Computer Modeling in Cost-Efficient Solar Cell Production Technology 437 produce high quality Si epitaxial thin films on silicon substrates with poor quality. ELO is the crystal growth technology in which layer starts to crystallize inside the narrow Si windows opened in dielectric mask with using standard photolithography process. Then it proceeds in lateral and normal direction with different growth rates. The major point of ELO is to reduce defect density in the grown layer. More detailed description of the ELO technology as well as LPE method can be found in papers [32, 31, 18, 11]. With the rapid progress in computer technology, simulations and modeling become the new scientific practice which can be compared to the traditional experimental research. Increasing number of simulation works can be observed also in the area of epitaxial growth methods. However, there arestill not many papers concerningthin Si films growth modeling. Existing models are based on the assumption that growth is diffusion and kinetic limited. Kinetic coefficient is determined in experimental work and added into the model [29, 15, 16]. The computational model presented in this work is based on the assumption that growth is diffusion controlled and mass transfer is the main process to reach thermodynamic equilibrium between the solid and liquid phase on the interface. For this reason, the concentration gradients in the vicinity of the grown interface determine the growth rate and in consequence shape of the surface. Modeling this problem, generally known as Stefan s problem, requires the simultaneous solution of the mass transport to the substrate and the interface displacement. It should be emphasized that geometry of the calculation domain changes during the process. In order to solve this complex problem the special computer software was implemented in Matlab code. 2. Numerical simulation model The main idea of the simulation model developed for the epitaxial growth of Si layer on silicon substrate is to calculate growth rate of the interface on the basis of concentration gradients in the vicinity of the moving surface. Two-dimensional computational domain consists of two main parts. Firstone keeps information about Si concentration in the solution. This is liquid phase of the system. Second part is moving interface

438 Sławomir Gułkowski, Jan M. Olchowik grid which represents interface of the layer. Interface nodes changetheir position in time according to the calculated growth rates in the normal direction to the interface. Information about the position of moving grid on the one hand, and concentration field in the vicinity of the interface on the other hand is passed between these two grids. The concept of the model is as follows. During the growth process, the temperature T decreases with time according to the formula T = T 0 - c r t where c r is the constant cooling rate and t is the growth time. The initial concentration C 0 for the liquid solution, set as equilibrium concentration at the starting temperature T 0, is obtained from the phase diagram relation of Si in binary solution [19, 10]. As the temperature of the system decreases, new concentration profile is set according to the formula (1). C(, t) 2 DSi C(, t), (1) t where C(ξ, t) is the mass fraction of the solute and D is the diffusion coefficient of solute, which can be taken from [12]. Boundary conditions of the model for vertical walls of the system and the oxide mask have been chosen asno flux Neumann boundary condition (2): C n 0. For the interface following equation has to be fulfilled: D Si C n L v n s ( C Ceq), where C S eq and C eq (T) are the equilibrium concentrations of components at the interface on the sides of solid and liquid phases. Growth rate ν n is determined from the gradient of concentration in normal direction to the local curvature of the interface. On the basis of the calculated growth rate shift of the interface in each time step is determined. More detailed description of the model can be found in our previous calculation papers [8, 7]. eq (2) (3)

Computer Modeling in Cost-Efficient Solar Cell Production Technology 439 3. Finite Element Solution Method The finite element method is used to solve the moving boundary problem defined above. The modeled Si growth process involves mass transport in the liquid and equilibrium at the moving interface. These types of problems can be generally solved with the use of Front Tracking Methods [30, 17, 27]. Most of them use uniform mesh to calculate concentration profiles. In our case a non-uniform adaptive mesh is used to obtain efficient meshing in high gradient regions. It leads to very precise concentration profiles in the area of grown interface especially on the edges of the layer. Fig. 1 presents example of using adaptive meshing for the domain with three opened Si windows. Higher solution grid can be seen in the area of moving interface. This conception minimize the number of computation nodes with maintaining high accuracy of the solution. Fig. 1. Grid structure of the calculation domain Rys. 1. Struktura siatki w domenie obliczeniowej The computational procedure consists of the following main steps: 1. Set initial computational geometry, 2. Set initial concentration profile for T 0, 3. Generate triangle mesh for the given geometry, 4. Decrease temperature T and calculate equilibrium concentration C eq, 5. Calculate gradients of concentration and growth rate, 6. Calculate growth thickness and determine interface shape, 7. Calculate new geometry and return to step 3.

440 Sławomir Gułkowski, Jan M. Olchowik 4. Results and discussion In our previous modeling work [6] evolution of the interface during thin film layer growth for one window domain was presented. This paper is focused on the distance dependence between two adjacent windows during epitaxial growth. Similar to the previous studies, computations were performed using diffusion coefficient of Si in tin equals D = 5.0 10-5 cm 2 /s [12]. Size of the domain was 1000 µm x 2000 µm. The growth process was started from the temperature of 920ºC and proceeded with constant cooling rate equals 0.5ºC/min. Figs. 2 and 3 show concentration surfaces of Si in Si-Sn binary solution of the whole domain. Because of the crystallization process, depletion of the Si atoms near the growth substrate can be observed. The difference in concentration of Si near the interface and in faraway from it force flux of the Si atoms to the interface. Comparing profiles presented in Figs. 4and 5with the profilesobtained for one window [7], similarity in the area of growth substrate can be observed. Stream of solute is perpendicular to the isoconcentration lines. Due to no flux boundary condition for the mask region all Si species move from the mask area towards the region of the grown layer. It leads to higher gradient concentration in the region of layer s edges and in consequence to higher growth rate in that region. Fig. 2. Concentration plot of Si in the solution for growth substrate consisted of three opened Si windows Rys. 2. Powierzchnia koncentracji Si a roztworze w przypadku podłoża wzrostowego zawierającego trzy okna krzemowe

Computer Modeling in Cost-Efficient Solar Cell Production Technology 441 Fig. 3. Concentration plot of Si in the solution for growth substrate consisted of five opened Si windows Rys. 3. Powierzchnia koncentracji Si a roztworze w przypadku podłoża wzrostowego zawierającego pięć okien krzemowych Fig. 4a. Concentration contour plot of Si in the solution for the geometry of several Si widows obtained for computational domain Rys. 4a. Wykres konturowy Si w roztworze dla geometrii zawierającej kilka okien uzyskany dladomeny obliczeniowej

442 Sławomir Gułkowski, Jan M. Olchowik Fig. 4b. Concentration contour plot of Si in the solution for the geometry of several Si widows obtained for area of 400 x 400 µm of the same domain Rys. 4b. Wykres konturowy Si w roztworze dla geometrii zawierającej kilka okien Si w obszarze 400 x 400 µm The simulation results of the lateral growth rate in function of time for three different substrate geometry have been shown in Fig. 5. Similar to our previous results for one window geometry [6] the growth rate is rising for the first minutes of growth and then becomes constant due to size of the domain. Fig. 5 shows also dependence of lateral growth rate on the geometry of the substrate. The highest growth rate is for the geometry in which most of the substrate is covered by dielectric mask. It means that if the distance between two adjacent windows is bigger the more species flow from the mask region to the interface of the layer. It leads to the higher concentration gradient and in consequence to higher growth rate. It is also visible in Fig. 6 in which ratio of lateral to vertical growth rate (Aspect ratio Ar) for different substrate geometry was shown. As it can be seen in Fig. 5 aspect ratio decreases with decreasing the amount of the substrate surface covered by dielectric mask. It means that aspect ratio decreases with the decreasing distance between adjacent window. It is significant observation for the stage of creation growth substrate in photolithography process.

Computer Modeling in Cost-Efficient Solar Cell Production Technology 443 Fig. 5. Growth rate dependence on time for three substrate geometries with different mask-to-window ratio Rys. 5. Wykres zależności szybkości wzrostu od czasu dla trzech geometrii podłoży o różnym współczynniku wypełnienia podłoża Fig. 6. Aspect ratio dependence on the mask-to-window ratio of the growth substrate Rys. 6.Wykres zależności parametruaspect ratio od współczynnika wypełnienia podłoża

444 Sławomir Gułkowski, Jan M. Olchowik 5. Conclusions Computer simulation of the epitaxial layer growth from the liquid phase was used to analyze thin film growth on masked substrate. Concentration profiles for different substrate geometry was calculated as a consequence of species transport due to crystallization on the surface. Growth rates on the basis of concentration gradients in the vicinity of the interface for different substrate geometry were shown. Obtained results show the correlation of the lateral growth rate with substrate area covered by mask and in consequence with distance between adjacent windows. Increasing this distance leads to increase Si flow from the area of oxide mask to the grown layer.in consequence it leads to higher concentration gradient and faster growth in this region. It is very significant in the process of preparing growth substrate for epitaxial growth for photovoltaic applications. References 1. Ballhorn G. et al.: High-efficiency multicrystalline silicon solar cells by liquid phase epitaxy. Solar Energy Materials and Solar Cells 52 61 68 (1998). 2. Beaucarne G. et al.: Epitaxial thin-film Si solar cells. Thin Solid Films 511 512. 533 542 (2006). 3. Cholewa T., Pawłowski A.: Zrównoważone użytkowanie energii w sektorze komunalnym. Rocznik Ochrona Środowiska (Annual Set of Environment Protection), 11 vol 2, 1165 1177 (2009). 4. Dasgupta P., Taneja N.: Low Carbon Growth: An Indian Perspective on Sustainability and Technology Transfer. Problems of Sustainable Development, vol 7, no 1, 65 74 (2012). 5. Goetzberger A., Hebling Ch.Photovoltaic materials, past, present, future. Solar Energy Matrials& Solar Cells 62. 1 19 (2000). 6. Gulkowski S., Olchowik J., Cieslak K., Moskvin P.: Finite element method simulation of interface evolution during epitaxial growth. Materials Science-Poland, 30 (4), 414 418 (2012). 7. Gulkowski S, Olchowik J., Cieslak K., Moskvin P.: Modeling of the Interface Evolution During Si Layer Growth on a Partially Masked Substrate. Task Quarterly 15 No 1, 91 98. 8. Gulkowski S, Olchowik J,Jozwik I., Moskvin P.: Modelling of Thin Si Layers Growth on Partially Masked Si Substrate. Task Quarterly 12 No 1 121 126 (2008).

Computer Modeling in Cost-Efficient Solar Cell Production Technology 445 9. Gurtowski S.: Green Economy Idea Limits, Perspectives, Implications. Problems of Sustainable Development, vol 6, no 1, 75 82 (2012). 10. Jacobs M, Spencer P.: A thermodynamic evaluation of the system Si- SnCalphad 20 89 91 (1996). 11. Jozwik I, Olchowik J.: The epitaxial lateral overgrowth of silicon by twostep liquid phase epitaxy. Journal of Crystal Growth 294 367 372 (2006). 12. Kimura M., Djilali N., Dost S.: Convective transport and interface kinetics in liquid phase epitaxy. Journal of Crystal Growth. 334 348 (1994). 13. Koch. W et al.: Bulk Crystal Growth and Wafering for PVinHandbook of Photovoltaic Science and Enginieering (ed. Antonio Luque, Steven Hegedus) Wiley, 2003. 14. Lebiocka M. et al.: Biometanizacja metodą zrównoważonej utylizacji odpadów. Rocznik Ochrona Środowiska (Annual Set of Environment Protection), 11. 1257 1266 (2009). 15. Liu Y. C., Zytkiewicz Z.R., Dost S.: Computational analysis of lateral overgrowth of GaAs by liquid-phase epitaxy. Journal of Crystal Growth 275 e953 e957 (2005). 16. Liu Y. C, Zytkiewicz Z.R., Dost S.A model for epitaxial lateral overgrowth of GaAs by liquid-phase electroepitaxy. Journal of Crystal Growth 265 (2004) 341 350 17. Muradoglu M., Tryggvason G.: A front-tracking method for computation of interfacial flows with soluble surfactants. Journal of Computational Physics 227 2238 2262 (2008). 18. Nishinaga T.: Microchannelepitaxy: an overview. Journal of Crystal Growth 237 239. 1410 1417 (2002). 19. Olesinski R.W., Abbaschian G.J.: The Si-Sn (Silicon-Tin) system. Bull. Alloy Phase Diagrams 5 273 276 (1984). 20. Pawłowski A.: Teoretyczne uwarunkowania rozwoju zrównoważonego. Rocznik Ochrona Środowiska (Annual Set of Environment Protection), 11, 985 994 (2009). 21. Pawłowski L.: Do the Liberal Capitalism and Globalization Enable the Implementation of Sustainable Development Strategy. Problems of Sustainable Development, vol 7, no 2, 7 13 (2012). 22. Piecuch T. et al.: Laboratory Investigations on Possibility of Thermal Utilisation of Post-production Waste Polyester. Rocznik Ochrona Środowiska (Annual Set of Environment Protection), 11 87 101 (2009). 23. Piementel D.: Energy Production from Maize. Problems of Sustainable Development, vol 7, no 2, 15 22 (2012) 24. Pieńkowski D.: The Jevons Effect and the Consumption of Energy in the European Union. Problems of Sustainable Development, vol 7, no 1, 105 116 (2012).

446 Sławomir Gułkowski, Jan M. Olchowik 25. Shan S., Bi X.: Low Carbon Development of China s Yangtze River Delta Region. Problems of Sustainable Development, vol 7, no 2, 33 41 (2012) 26. Staszewska E.et al.: Characteristics of Emisions from Municipal Waste Landfills. Rocznik Ochrona Środowiska (Annual Set of Environment Protection), 12, 47 59 (2010). 27. Udaykumar H.S., Mittal R., Shyy W.: Computation of Solid Liquid Phase Fronts in the Sharp Interface Limit on Fixed Grids. Journal of Computational Physics, 153, 534 574. 28. Wall G.: Exergy, Life and Sustainable Development. Problems of Sustainable Development, vol 8, no 1, 27 41 (2013) 29. Yan Z, Naritsuka S., Nishinaga T.: Two-dimensional numerical calculation of solute diffusion in microchannelepitaxy of InP. Journal of Crystal Growth 209 1 7 (2000). 30. Yang Y, Udaykumar H. S.: Sharp interface Cartesian grid method III: Solidification of pure materials and binary solutions. Journal of Computational Physics 210 55 74 (2005). 31. Zytkiewicz Z.R.: Laterally overgrown structures as substrates for lattice mismatched epitaxy. Thin Solid Films 412 64 75 (2002). 32. Zytkiewicz Z.R.: Recent progress in lateral overgrowth of semiconductor structures from the liquid phase. Cryst. Res. Technol. 40 No. 4/5, 321 328 (2005). Komputerowe modelowanie w technologii produkcji ekonomicznych ogniw słonecznych Streszczenie W artykule przedstawione zostały rezultaty symulacji lateralnego wzrostu epitaksjalnego (ELO Epitaxial Lateral Overgrowth) przeprowadzonych dla krzemowych podłoży wzrostowych o różnych współczynnikach wypełnienia maski (mask-to-window ratio): 70%, 50%, 30% oraz 10%. Zastosowano przy tym następujące parametry: wymiary domeny: 1000 µm 2000 µm, szybkość chłodzenia: 0,5ºC/min, temperatura początkowa: 920ºC. Przedstawiono przykładową domenę obliczeniową oraz wygenerowaną siatkę numeryczną. W celu zwiększenia precyzji obliczeń w obszarach dużych gradientów koncentracji zastosowano zagęszczenie siatki. Dla wybranych geometrii domen przedstawiono profile koncentracji. Zbadano wpływ geometrii obszaru na kształt pola koncentracji, określającego strumienie masy. Zwiększenie powierzchni krystalizacji składnika spowodowało ukształtowanie się linii stałej koncentracji w objętości roztworu,

Computer Modeling in Cost-Efficient Solar Cell Production Technology 447 charakterystyczne dla standardowej metody LPE. Kierunek przepływu Si w objętości jest prostopadły do powierzchni podłoża na całej jego długości. Natomiast przy powierzchni podłoża, na stosunkowo niewielkiej odległości, tworzy się warstwa roztworu, w której linie stałej koncentracji układają się wokół okien Si. Grubość tej warstwy zależy od stopnia wypełnienia i maleje wraz ze wzrostem liczby okien w obszarze domeny. Sąsiadujące ze sobą okna stanowią dla siebie konkurencję pod względem obszaru krystalizacji: tym większą, im bliżej siebie są umiejscowione. Przyczynia się to bezpośrednio do zmniejszenia szybkości wzrostu w kierunku lateralnym przy niewielkiej zmianie wartości szybkości w kierunku normalnym. Skutkuje to również zmniejszeniem wydłużenia względnego otrzymywanych warstw. Z analiz numerycznych wynika, że w celu otrzymania warstw lateralnych o maksymalnym wydłużeniu względnym należy uwzględnić szerokość pasm dielektryka znajdującego się między oknami. Odpowiednie dobranie geometrii podłoża pozwala na uzyskanie możliwie maksymalnych szybkości wzrostu w kierunku lateralnym.