Bioaccumulation of Cr(VI) Ions from Aqueous Solutions by Penicillium citrinum



Podobne dokumenty


Streszczenie rozprawy doktorskiej

Conception of reuse of the waste from onshore and offshore in the aspect of

Krytyczne czynniki sukcesu w zarządzaniu projektami

PARTICIPATION OF MICROORGANISMS IN EFFLUENT TRANSFORMATION. 1. Introduction. Anna Hołda*, Ewa Kisielowska*, Tomasz Niedoba*

TECHNOLOGIE OCHRONY ŚRODOWISKA (studia I stopnia) Mogilniki oraz problemy związane z ich likwidacją prof. dr hab. inż.

Stargard Szczecinski i okolice (Polish Edition)

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

efekty kształcenia grupa zajęć** K7_K03 K7_W05 K7_U02 K7_W05 A Z K7_K02 K7_W05 K7_U02 A Z K7_U03 K7_U04 K7_W01

Helena Boguta, klasa 8W, rok szkolny 2018/2019



Equipment for ultrasound disintegration of sewage sludge disseminated within the Record Biomap project (Horizon 2020)

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Unit of Social Gerontology, Institute of Labour and Social Studies ageing and its consequences for society

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

OpenPoland.net API Documentation

5. REEMISJA ZWIĄZKÓW RTĘCI W CZASIE UNIESZKODLIWIANIA OSADÓW ŚCIEKOWYCH

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

Typ MFPCR FOR THE MOST DEMANDING REQUIREMENTS ON THE PURITY OF INDOOR AIR, WORKSTATIONS, AND DEVICES

Has the heat wave frequency or intensity changed in Poland since 1950?

EGARA Adam Małyszko FORS. POLAND - KRAKÓW r



Tychy, plan miasta: Skala 1: (Polish Edition)

Konsorcjum Śląskich Uczelni Publicznych

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

Pro-tumoral immune cell alterations in wild type and Shbdeficient mice in response to 4T1 breast carcinomas

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ MECHANICZNY ROZPRAWA DOKTORSKA. mgr inż. Piotr Smurawski

Proceedings of ECOpole DOI: /proc (2) ;6(2)

TECHNOLOGIE OCHRONY ŚRODOWISKA (studia I stopnia) Derywatyzacja w analizie środowiskowej zanieczyszczeń typu jony metali i jony metaloorganiczne

Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytet Mikołaja Kopernika w Toruniu

INŻYNIERIA I OCHRONA ŚRODOWISKA

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

TYRE PYROLYSIS. REDUXCO GENERAL DISTRIBUTOR :: ::

Formularz recenzji magazynu. Journal of Corporate Responsibility and Leadership Review Form

Patients price acceptance SELECTED FINDINGS

ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically


DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

WYKAZ DOROBKU NAUKOWEGO

METODA OGÓLNEJ OCENY STANU ŚRODO- WISKA OBSZARÓW WIEJSKICH NA PODSTAWIE INFORMACJI Z BANKU DANYCH REGIONALNYCH GUS I OSZACOWAŃ PROGRAMU EMEP

Cracow University of Economics Poland

Sargent Opens Sonairte Farmers' Market

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

PROTEOLYTIC ACTIVITY OF Bacillus cereus STRAINS

W trzech niezależnych testach frezy z powłoką X tremeblue typu V803 był w każdym przypadku prawie 2 razy bardziej wydajne niż wersja niepowlekana.

ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

Ekonomiczne i społeczno-demograficzne czynniki zgonów osób w wieku produkcyjnym w Polsce w latach

THE RAIL RATES valid from 1st October 2015

METHODS FOR REMOVAL OF HEAVY METALS FROM ACID MINE DRAINAGE METODY USUWANIA METALI CIĘŻKICH Z ZAKWASZONYCH WÓD KOPALNIANYCH

GLOBAL METHANE INITIATIVE PARTNERSHIP-WIDE MEETING Kraków, Poland

Exposure assessment of mercury emissions

Pielgrzymka do Ojczyzny: Przemowienia i homilie Ojca Swietego Jana Pawla II (Jan Pawel II-- pierwszy Polak na Stolicy Piotrowej) (Polish Edition)

Lek. Ewelina Anna Dziedzic. Wpływ niedoboru witaminy D3 na stopień zaawansowania miażdżycy tętnic wieńcowych.

EDYTA KATARZYNA GŁAŻEWSKA METALOPROTEINAZY ORAZ ICH TKANKOWE INHIBITORY W OSOCZU OSÓB CHORYCH NA ŁUSZCZYCĘ LECZONYCH METODĄ FOTOTERAPII UVB.

Zarządzanie sieciami telekomunikacyjnymi

Anna KAMIŃSKA, Małgorzata JĘDRZEJCZAK, Krzysztof WOJCIECHOWSKI*

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

DELTA 600 corner left with TÜV certi ed

DELTA 600 corner right with TÜV certi ed

Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc

SHP / SHP-T Standard and Basic PLUS

POLITECHNIKA WARSZAWSKA. Wydział Zarządzania ROZPRAWA DOKTORSKA. mgr Marcin Chrząścik

DOI: / /32/37

Typ TFP FOR CRITICAL AIR CLEANLINESS AND VERY CRITICAL HYGIENE REQUIREMENTS, SUITABLE FOR CEILING INSTALLATION

Instrukcja obsługi. binding machine KRIS. instruction manual GDAŃSK ul. Krynicka 1 tel.: (058) fax: (058) ODDZIAŁ:

Forested areas in Cracow ( ) evaluation of changes based on satellite images 1 / 31 O

Auditorium classes. Lectures

What our clients think about us? A summary od survey results

Demand Analysis L E C T U R E R : E W A K U S I D E Ł, PH. D.,

Knovel Math: Jakość produktu

Few-fermion thermometry

PORTS AS LOGISTICS CENTERS FOR CONSTRUCTION AND OPERATION OF THE OFFSHORE WIND FARMS - CASE OF SASSNITZ

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

PROJECT. Syllabus for course Global Marketing. on the study program: Management

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

ZWROTNICOWY ROZJAZD.

RECOVERY OF INDUSTRIAL WATER FROM PIG SLURRY BY MEANS OF MEMBRANE TECHNIQUES

Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2)

Ekologiczna uprawa malin jako alternatywa Organic raspberry cultivation as an alternative

INSTYTUT GENETYKI I HODOWLI ZWIERZĄT POLSKIEJ AKADEMII NAUK W JASTRZĘBCU. mgr inż. Ewa Metera-Zarzycka

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Extraclass. Football Men. Season 2009/10 - Autumn round

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

Acta 12 (2) 2012.indd :41:15. Acta Sci. Pol., Formatio Circumiectus 12 (2) 2013,

BARIERA ANTYKONDENSACYJNA

The Overview of Civilian Applications of Airborne SAR Systems

Transkrypt:

MIDDLE POMERANIAN SCIENTIFIC SOCIETY OF THE ENVIRONMENT PROTECTION ŚRODKOWO-POMORSKIE TOWARZYSTWO NAUKOWE OCHRONY ŚRODOWISKA Annual Set The Environment Protection Rocznik Ochrona Środowiska Volume/Tom 15. Year/Rok 213 ISSN 156-218X 448 465 Bioaccumulation of Cr(VI) Ions from Aqueous Solutions by Penicillium citrinum Anna Hołda, Ewa Kisielowska, Anna Młynarczykowska AGH University of Science and Technology 1. Introduction The growing environmental degradation is consequence of technical development of civilization. Industry and agrochemistry influence on environmental pollution by xenobiotics among which heavy and toxic metals can be found. One of them is chromium occurring in natural environment mainly on two levels of oxidation: III and VI. The more toxic and harmful, both for environment and human beings, is Cr(VI). Chromium(VI) is generally produced by industrial processes. Chromium compounds, mostly in chromium(iii) and chromium(vi) forms, produced by the chemical industry are used for chrome plating, the manufacture of dyes and pigments, leather tanning, and wood preserving. Smaller amounts are used in drilling muds, rust and corrosion inhibitors, textiles, and toner for copying machines. Because of toxic properties of chromium(vi) and high mobility, effluents and wastes containing this element are treated as highly dangerous. The additional problem are growing costs of their storage, dump preservation and transport of wastes [2, 15, 17, 3, 31]. Conventional methods for removing dissolved chromium(vi) ions include chemical precipitation, chemical oxidation and reduction, ion exchange, filtration, electrochemical treatment and evaporative recovery. These processes have significant disadvantages like incomplete metal removal, requirements for expensive equipment and monitoring systems, high reagent or energy requirements or generation of toxic sludge or other waste products that require disposal. Besides, the currently applied

Bioaccumulation of Cr(VI) Ions from Aqueous Solutions 449 chemical methods of treatment of the effluents containing chromium, which results are not satisfying require significant financial costs [17]. The alternative for them may be biotechnological processes [27]. The application of selectively chosen microorganisms may significantly limit the amount of the chromium introduced to environment. The main advantage of biotechnological methods is the fact that these methods are economic and environmentally friendly. The chromium is being removed by the cellular metabolism of microorganisms by mainly bioaccumulation, biosorption and biotransformation. The previous researches describe the applications of living and dead microorganisms cells to remove Cr(VI) from water solutions by biosorption [1, 3-6, 11, 16, 19-23, 26, 28] and bioaccumulation [4, 7-9, 13, 14, 18, 22, 28, 29, 32]. Each of these methods has advantages and disadvantages. The application of dead biomass removes the problems connected with the toxic metal concentration in researched solution and requirements connected with growth environment nourishment. Furthermore, the adsorbed metal may be easily removed and the remaining biomass may be applied once again. However, the limitation of this method is the fact that no reactions are being continued in dried cells. The application of living biomass makes possible to remove metal during its growth what allows to avoid processes of its reproduction, drying and storage. Unfortunately, in this case the metal concentration in environment is highly important too high may be toxic for growing biomass. This problem can be avoided applying the microorganisms of high tolerance on high concentrations of Cr(VI) [13, 14] or getting it by adaptive processes. The purpose of the investigation presented in the paper is to optimize the biological process of removing Cr(VI) by application of clean cultures of sort Penicillium citrinum. 2. Methodology of investigation Clean fungi cultures of Penicillium citrinum was selected to research over removing of Cr(VI). 2.1. Investigation of process dependency on ph 95 ml of nourishment and 5 ml of K 2 Cr 2 O 7 solution of concentration 1g of ions Cr 6+ /l were transferred to Erlenmayer flasks. After deter-

45 Anna Hołda, Ewa Kisielowska, Anna Młynarczykowska mination of certain ph (acidification of,5 M with sulfur acid(vi)) individual species of microscopic fungi were added to prepared medium containing 5 mg of ions Cr 6+ /l. Every day, the same hour, the 2,5 ml samples of medium were collected from each Erlenmayer flask, which were then transferred to flasks of volume of 25 ml. Then,,625 ml of 2M of sulfur acid (VI) and,5 ml of 1,5-difenylocarbaside(I) were added to the flasks. After 5 minutes, the flasks were filled up to the line with medium according to Waksman and the determination of chromium(vi) contents by spectrophotometric method. 2.2. Determination of chromium(vi) contents 2.2.1. Agents Agents being applied to determination of chromium contents, so 1,5-difenylocarbaside(I) and 2M sulfur acid(vi) were prepared according to the norm PN-EN 12441-1 [32]. 2.2.2. Determination of chromium(vi) contents Before starting the measurements, the pattern line was prepared. To this purpose, solutions of sulfur acid(vi), 1,5-difenylocarbaside(I) and certain volumes of pattern solution of chromium(vi) were introduced to 1 ml flasks to get the Cr 6+ ions concentrations as:,,1,,2,,4,,6,,8, 1 mg/l. The analytical samples were prepared by mixing solutions of sulfur acid(vi), 1,5-difenylocarbaside(I) and sample solution in 25 ml flask. 2.3. Dependence of the process of chromium (VI) concentration in nourishment The investigation of Cr(VI) ions concentration in medium in relation to ph allowed to determine the best reaction by which certain fungi grow the best. That was ph = 5,. The certain amount of medium and amount of K 2 Cr 2 O 7 (of concentration 1g of ions Cr 6+ /l) were transferred to Erlenmayer flasks to get the required chromium concentration in certain sample in volume of 1 ml of bed. The determination of chromium(vi) contents was conducted every day at the same hour. The samples of 2,5 ml of medium were collected, which were then transferred to 25 ml flasks (dilution 1 times). Next,

Bioaccumulation of Cr(VI) Ions from Aqueous Solutions 451 solutions of 2M sulfur acid(vi) and 1,5-difenylocarbaside(I) were added. After 5 minutes, the sample was filled up to the line with medium according to Waksman. Chromium(VI) ions concentration in the sample was determined by measuring the absorption at 54 nm using spectrophotometer Cadas 2 type LPG 392 [1, 12, 24, 25]. In case of the concentration higher than the pattern scale range samples were adequately diluted. 2.4. Determination of biological type of Cr(VI) ions removing The removing of chromium(vi) from water solution may occur because of reduction, biosorption or bioaccumulation processes. To determine which of them occurred during the investigation, the Cr(III) contents were determined in samples of medium as well chromium contents in ooze after mycelium irrigating and in mycelium. 2.4.1. Determination of Cr(III) in medium contents The Cr(III) ions contents was determined on the basis on difference between total chromium contents and chromium(vi) contents in medium after 14 days of incubation. In purpose of total chromium contents determination, the samples of medium of certain volume assuring the concentration of Cr being inside of pattern scale range were introduced to beaker of 2 ml volume and were filled up to the volume of 5 ml. Next, in purpose of oxidation of Cr(III) ions to Cr(VI) the solutions of sulfuric acid (VI) and ammonium persulfate were added to the sample and then it was boiled and maintained in this state during 2 25 minutes. After chilling the samples were transfer red to flask of 5 ml volume and the solution of 1,5- difenylocarbaside(i) was added. After 5 minutes the sample was filled up to the line with medium according to Waksman. Chromium(VI) ions concentration in the sample was determined by measuring the absorption at 54 nm using spectrophotometer Cadas 2 type LPG 392 [1, 12, 24, 25]. 2.4.2. Determination of chromium contents in ooze after mycelium irrigating The mycelium was investigated after 14 days of incubation. To determine the presence of chromium adsorbed on the surface mycelium

452 Anna Hołda, Ewa Kisielowska, Anna Młynarczykowska was irrigated. The given ooze was then analyzed to prove the total chromium presence [1, 12, 24, 25]. 2.4.3. Determination of chromium contents in mycelium After 14 days of incubation dried fungi at 15 C was buried in oven in temperature of 6 C. Next, the chromium compounds were transformed into dilatable nitrates by means of concentrated nitrogen acid (V). The contents of Cr(VI) in mineralized sample was determined by spectrophotometric method [12]. 3. Results 3.1. Investigation of process dependency on ph On the basis of given results the graphs were done presenting the dependency of chromium(vi) ions concentration in medium on ph. Figures shows the change of Cr(VI) concentration in the medium with different initial ph ranging from 4, 6,5. 6 5 4 ccr [mg/l] 3 2 1 2 4 6 8 1 12 14 Fig. 1. Dependency c Cr = f(t) for ph = 4,, initial concentration of Cr(VI) 5 mg/l Rys. 1. Zależność c Cr = f(t) dla ph = 4,, stężenie początkowe Cr(VI) 5 mg/l

Bioaccumulation of Cr(VI) Ions from Aqueous Solutions 453 6 5 4 c Cr [mg/l] 3 2 1 2 4 6 8 1 12 14 Fig. 2. Dependency c Cr = f(t) for ph = 4,5, initial concentration of Cr(VI) 5 mg/l Rys. 2. Zależność c Cr = f(t) dla ph = 4,5, stężenie początkowe Cr(VI) 5 mg/l 6 5 4 c Cr [mg/l] 3 2 1 2 4 6 8 1 12 14 Fig. 3. Dependency c Cr = f(t) for ph = 5,, initial concentration of Cr(VI) 5 mg/l Rys. 3. Zależność c Cr = f(t) dla ph = 5, stężenie początkowe Cr(VI) 5 mg/l

454 Anna Hołda, Ewa Kisielowska, Anna Młynarczykowska 6 5 4 ccr [mg/l] 3 2 1 2 4 6 8 1 12 14 Fig. 4. Dependency c Cr = f(t) for ph = 5,5, initial concentration of Cr(VI) 5 mg/l Rys. 4. Zależność c Cr = f(t) dla ph = 5,5, stężenie początkowe Cr(VI) 5 mg/l 6 5 4 ccr [mg/l] 3 2 1 2 4 6 8 1 12 14 Fig. 5. Dependency c Cr = f(t) for ph = 6,, initial concentration of Cr(VI) 5 mg/l Rys. 5. Zależność c Cr = f(t) dla ph = 6,, stężenie początkowe Cr(VI) 5 mg/l

Bioaccumulation of Cr(VI) Ions from Aqueous Solutions 455 6 5 4 ccr [mg/l] 3 2 1 2 4 6 8 1 12 14 Fig. 6. Dependency c Cr = f(t) for ph = 6,5, initial concentration of Cr(VI) 5 mg/l Rys. 6. Zależność c Cr = f(t) dla ph = 6,5, stężenie początkowe Cr(VI) 5 mg/l 6 5 4 c Cr [mg/l] 3 2 ph = 4 ph = 4,5 ph = 5 ph = 5,5 ph = 6 ph = 6,5 1 2 4 6 8 1 12 14 Fig. 7. Dependency c Cr = f(t)by various values of ph, initial concentration of chromium(vi) 5 mg/l Rys. 7. Zależność c Cr = f(t) dla różnych wartości ph, stężenie początkowe chromu 5 mg/l.

456 Anna Hołda, Ewa Kisielowska, Anna Młynarczykowska From this figures optimal ph was determined for Penicilium citrinum ph = 5,. This was the one were the chromium(vi) ions were removed the most efficiently and the certain mildew fungi developed the best. 3.2. Dependency of process on chromium(vi) concentration in sample On the basis of measurement results the figures presenting relations of chromium(vi) ions concentration in medium on this process time were prepared. Obtained results suggested that Cr(VI) removal for the Penicillium citrinum occurred even at the highest concentration of 125 mg/l, but complete Cr(VI) removal was observed for 1 and 25 mg/l at 14 days in both concentrations. However the change of Cr(VI) concentration indicates that in the same incubation time, more amount of Cr(VI) was reduced at higher initial Cr(VI) concentration. 12 1 8 c Cr [mg/l] 6 4 2 2 4 6 8 1 12 14 Fig. 8. Dependency c Cr = f(t), initial concentrations of Cr(VI) 1 mg/l; ph = 5 Rys. 8. Zależność c Cr = f(t), ph = 5, stężenie początkowe chromu(vi) 1 mg/l

Bioaccumulation of Cr(VI) Ions from Aqueous Solutions 457 3 25 2 ccr [ mg/l] 15 1 5 2 4 6 8 1 12 14 Fig. 9. Dependency c Cr = f(t), initial concentrations of Cr(VI) 25 mg/l; ph = 5 Rys. 9. Zależność c Cr = f(t), ph = 5, stężenie początkowe chromu(vi) 25 mg/l 6 5 4 ccr [mg/l] 3 2 1 2 4 6 8 1 12 14 Fig. 1. Dependency c Cr = f(t), initial concentrations of Cr(VI) 5 mg/l; ph = 5 Rys. 1. Zależność c Cr = f(t), ph = 5, stężenie początkowe chromu(vi) 5 mg/l

458 Anna Hołda, Ewa Kisielowska, Anna Młynarczykowska 8 7 6 5 ccr [mg/l] 4 3 2 1 2 4 6 8 1 12 14 Fig. 11. Dependency c Cr = f(t), initial concentrations of Cr(VI) 75 mg/l; ph = 5 Rys. 11. Zależność c Cr = f(t), ph = 5, stężenie początkowe chromu(vi) 75 mg/l 12 1 8 c Cr [mg/l] 6 4 2 2 4 6 8 1 12 14 Fig. 12. Dependency c Cr = f(t), initial concentrations of Cr(VI) 1 mg/l; ph = 5 Rys. 12. Zależność c Cr = f(t), ph = 5, stężenie początkowe chromu(vi) 1 mg/l

Bioaccumulation of Cr(VI) Ions from Aqueous Solutions 459 14 12 1 ccr [mg/l] 8 6 4 2 2 4 6 8 1 12 14 Fig. 13. Dependency c Cr = f(t), initial concentrations of Cr(VI) 125 mg/l; ph = 5 Rys. 13. Zależność c Cr = f(t), ph = 5, stężenie początkowe chromu(vi) 125 mg/l 14 12 1 ccr [mg/l] 8 6 1 mg/l 25 mg/l 5 mg/l 75 mg/l 1 mg/l 125 mg/l 4 2 2 4 6 8 1 12 14 Fig. 14. Dependency c Cr =f(t) for various initial concentrations of Cr(VI); ph = 5 Rys. 14. Zależność c Cr = f(t) dla różnych stężeń początkowych Cr(VI), ph = 5

46 Anna Hołda, Ewa Kisielowska, Anna Młynarczykowska 3.3. Determination of type of biologia Cr(VI) ions removing process 3.3.1. Determination of Cr(III) contents in medium Results of Cr(III) contents investigation in medium were presented in Table 1. Table 1. Results of analysis of Cr(III) presence in medium Tabela 1. Wyniki analizy na obecność Cr(III) w pożywce Initial Cr(VI) concentration [mg/l] Total chromium concentration in medium [mg/l] Cr(III) concentration in medium [mg/l] 1 2 5,279,121 75,735,113 1 6,3 1,29 125 11,62 1,38 Modest amounts of Cr(III) In medium might occur because of acidification of environment by products of fungi metabolism in the final stage of 14-days period of culture. So little chromium concentration on III level of oxidation proves also that the reduction process is not a cause of biological removing of Cr(VI) ions removing by application of mildew fungi. 3.3.2. Determination of overall chromium contents in ooze after mycelium irrigating The results of investigation were presented in Table 2. The trace amount of total chromium in ooze rather eliminates the ion adsorption of this element on the surface of mycelium. This process could occur in initial phase of mycelium growth and was the first stage of intracellular accumulation.

Bioaccumulation of Cr(VI) Ions from Aqueous Solutions 461 Table 2. Results of analysis of overall chromium presence in the ooze Tabela 2. Wyniki analizy na obecność chromu ogólnego w przesączu Initial Cr(VI) concentration [mg/l] 1 2 5,92 75,33 1,25 125,411 Total chromium concentration in ooze [mg/l] 3.3.3. Determination of chromium contents in mycelium The results of investigation were presented in Table 3. Table 3. Results of analysis of overall chromium presence in mycelium Tabela 3. Wyniki analizy na obecność chromu ogólnego w grzybni Initial Cr(VI) concentration [mg/l] Total chromium concentration in mycelium [mg/l] 1 9,9 2 19,76 5 49,11 75 73,69 1 93,12 125 112,82 The results indicate that the growth of Cr(VI) ions in mycelium occurred in comparison with these ions concentration in surrounding environment. This may prove that the removal of Cr(VI) from water solutions by macroscopic fungi occurs by intracellular bioaccumulation.

462 Anna Hołda, Ewa Kisielowska, Anna Młynarczykowska 4. Conclusions On the basis of given results the following conclusions were made: Removing of Cr(VI) from water solutions by application of microscopic fungi Penicillium citrinum occur by intracellular bioaccumulation; Process of intracellular chromium absorption with alimentary substances is the biggest during first 5 days of mycelium growth; Bioaccumulation of chromium(vi) is dependent on environmental ph and is the most efficient by ph 5, for Penicillium citrinum; The bigger is chromium(vi) concentration the smaller is accumulation of this element from the environment and the growth of mycelium is slower; The degree of removal of Cr(VI) ions from water solutions by application of microscopic fungi Penicillium citrinum was: 1% for c Cr(VI) = 1,2,5 mg/l; 98% for c Cr(VI) = 75 mg/l; 93% for c Cr(VI) = 1 mg/l; 9% for c Cr(VI) = 125 mg/l. Application of mildew fungi to biological removing of chromium(vi) may be a perfect alternative for chemical methods. Its disadvantages are longer time of bioaccumulation and lack of possibility of metal recovery without destruction of the mycelium this causes that the application of these microorganisms is possible only once. References 1. Anjana K., Kaushik A., Kiran B., Nisha R.: Biosorption of Cr(VI) by immobilized biomass of two indigenous strains of cyanobacteria isolated from metal contaminated soil. Journal of Hazardous Materials, 148, 383 386 (27). 2. Badura L.: Chrom w środowisku i jego oddziaływanie na organizmy żywe. Zeszyty Naukowe PAN, 5, 1993. 3. Bai RS, Abraham TE.: Studies on chromium (VI) adsorption desorption using immobilized fungal biomass. Bioresour Technol, 87, 17 26 (23). 4. Chen, J.M., Hao, O.J.: Biological removal of aqueous hexavalent chromium. J. Chem. Technol. Biotechnol, 69, 7 76 (1997).

Bioaccumulation of Cr(VI) Ions from Aqueous Solutions 463 5. Deepa K.K., Sathishkumar M.,. Binupriya A.R, Murugesan G.S., Swaminathan K., Yun S.E.: Sorption of Cr(VI) from dilute solutions and wastewater by live and pretreated biomass of Aspergillus flavus. Chemosphere, 62, 833 84 (26). 6. Donghee Park, Yeoung-Sang Yun, Jong Moon Park: Use of dead fungal biomass for the detoxification of hexavalent chromium: screening and kinetics. Process Biochemistry, 4, 2559 2565 (25). 7. Dönmez G, Koçberber N.: Bioaccumulation of hexavalent chromium by enriched microbial cultures obtained from molasses and NaCl containing media. Process Biochem., 4, 2493 258 (25). 8. Dönmez G, Koçberber N.: Chromium(VI) bioaccumulation capacities of adapted mixed cultures isolated from industrial saline wastewaters. Bioresource Technology, 98, 2178 2183 (27). 9. Dursan AY, Ulsu G, Cuci Y, Aksu Z.: Bioaccumulation of copper(ii), lead(ii) and chromium(vi) by growing Aspergillus niger. Process Biochem., 38, 1647 51 (23). 1. Gajkowska-Stefańska L. and others: Laboratoryjne badania wody, ścieków i osadów ściekowych. PW Publishing, Warszawa 21. 11. Gupta V.K., Rastogi A.: Sorption and desorption studies of chromium(vi) from nonviable cyanobacterium Nostoc muscorum biomass. Journal of Hazardous Materials. 154, 347 354 (28). 12. Hermanowicz W. and others: Fizyczno-chemiczne badanie wody i ścieków. Arkady, Warszawa 1999. 13. Hołda A., Kisielowska E., Niedoba T.: Bioaccumulation of Cr(VI) ions from aqueos solutions by Aspergilus niger. Polish Journal of Environmental Studies, 2 no. 2, 345 349 (211). 14. Hołda A., Kisielowska E.: Biological removal of Cr(VI) ions from aqueous solutions by Trichoderma viride. Physicochemical Problems of Mineral Processing, 49, 47 6 (213). 15. Kabata- Pendias A.: Biochemia chromu, niklu i glinu. Zeszyty Naukowe PAN. 5, 1993. 16. Kapoor A., Viraraghavan T.: Fungal biosorption an alternative option for heavy metal bearing wastewaters. Bioresource Technology. 53, 195-26, 1995 17. Kowalski Z.: Technologie związków chromu. Wydawnictwo Politechniki Krakowskiej, Kraków 22. 18. Ksheminska H., Fedorovych D., Babyak L., Yanovych D., Kaszycki P., Koloczek H.: Chromium(III) and (VI) tolerance and bioaccumulation in yeast: a survey of cellular chromium content in selected strains of representative genera. Process Biochemistry, 4, 1565 1572 (25).

464 Anna Hołda, Ewa Kisielowska, Anna Młynarczykowska 19. Kumar R., Bhatiab D., Singha R., Rania S., Bishnoia N.R.: Sorption of heavy metals from electroplating effluent using immobilized biomass Trichoderma viride in a continuous packed-bed column. International Biodeterioration and Biodegradation, 65, 1133 (211). 2. Kumar R., Narsi R. Bishnoi, Garima, Kiran Bishnoi: Biosorption of chromium(vi) from aqueous solution and electroplating wastewater using fungal biomass. Chemical Engineering Journal, 135, 22 28 (28). 21. Ming Zhou, Yunguo Liu, Guangming Zeng, Xin Li, Weihua Xu, Ting Fan: Kinetic and equilibrium studies of Cr(VI) biosorption by dead Bacillus licheniformis biomass. World J Microbiol Biotechnol., 23, 43 48 (27). 22. Morales-Barrera L., Cristiani-Urbina E.: Removal of hexavalent chromium by Trichoderma viride in an airlift bioreactor. Enzyme and Microbial Technology. 4, 17 113 (26). 23. Parka D., Yeoung-Sang Yunb, Ji Hye Joa, JongMoon Parka: Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger. Water Research, 39, 533 54 (25). 24. PN-C-464:1977 25. PN-EN ISO 18412:27 26. Saxena D, Levin R, Firer MA.: Removal of chromate from industrial effluent by a new isolate of Staphylococcus cohnii. Water Sci Technol., 42, 93 8 (2). 27. Sen M, Dastidar M.G., Roychoudhury P.K.: Biological removal of Cr(VI) using Fusarium solani in batch and continuous modes of operation. Enzyme and Microbial Technology, 41, 51 56 (27). 28. Srinath T, Verma T, Ramteka PW, Garg SK.: Chromium(VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere, 48, 427 35 (22). 29. Srivastavaa S., Thakurb I.S.: Evaluation of bioremediation and detoxification potentiality of Aspergillus niger for removal of hexavalent chromium in soil microcosm. Soil Biology & Biochemistry, 38, 194 1911 (26). 3. Szymański K., Janowska B., Jastrzębski P.: Heavy Metal Compounds in Wastewater and Sewage Sludge, Rocznik Ochrona Środowiska (Annual Set The Environment Protection), 13, 83 1 (211). 31. Wolak W., Leboda R., Hubicki Z.: Metale ciężkie w środowisku i ich analiza. Biblioteka Monitoringu Środowiska, Chełm 1995. 32. Ziagova M., Dimitriadis G., Aslanidou D., Papaioannou X., Litopoulou Tzannetaki E., Liakopoulou-Kyriakides M.: Comparative study of Cd(II) and Cr(VI) biosorption on Staphylococcus xylosus and Pseudomonas sp. in single and binary mixtures. Bioresource Technology, 98, 2859 2865 (27).

Bioaccumulation of Cr(VI) Ions from Aqueous Solutions 465 Bioakumulacja jonów Cr(VI) z roztworów wodnych przy wykorzystaniu grzyba Penicillium citrinum Abstrakt W artykule przedstawiono biologiczne usuwanie jonów Cr(VI) z roztworu wodnego przy użyciu czystej kultury grzyba Penicillium citrinum. Wzrost organizmu oraz usuwanie chromu(vi) przeprowadzono w roztworze wodnym o różnej zawartości chromu(vi), oraz przy określonym optymalnym ph. W czasie 14 dni inkubacji, codziennie, pobierano 5ml próbki roztworu w celu oznaczenia zawartości chromu(vi) w roztworze i na tej podstawie określono efektywność biologicznego usuwania tego pierwiastka. Ponieważ usuwanie chromu(vi) z roztworu wodnego może zachodzić wskutek procesów redukcji, biosorpcji lub bioakumulacji to aby określić, który z tych procesów miał miejsce w trakcie badań wykonano oznaczenia zawartości Cr(III) w próbkach pożywki oraz zawartości chromu ogólnego w przesączu po płukaniu grzybni oraz w grzybni. Badania wykazały wysoką skuteczność grzyba mikroskopowego z gatunku Penicillium citrinum w eliminacji jonów chromu(vi) z roztworu w przypadku najwyższego stężenia Cr(VI) równego 125 mg/l stopień usunięcia wynosił 9%.