Zestaw pomocy dydaktycznych

Podobne dokumenty
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII

ZAKRES WYMAGAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem

WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM. rok szkolny 2016/2017

Wymagania z matematyki na poszczególne oceny II klasy gimnazjum

Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII

Określenie wymagań edukacyjnych z matematyki w klasie II

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA II GIMNAZJUM

Przewodnik po Matlandii 8

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum

wymagania programowe z matematyki kl. III gimnazjum

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH

SZCZEGÓŁOWE WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA II 2016/2017

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016

Wymagania edukacyjne z matematyki do klasy ósmej rok szkolny 2018/2019

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM

Matematyka z plusem Wymagania programowe na poszczególne oceny dla klasy II. Szczegółowe kryteria oceniania po pierwszym półroczu klasy I:

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik

XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY

Katalog wymagań programowych na poszczególne stopnie szkolne

Wymagania edukacyjne z matematyki Szkoła Podstawowa im. Mikołaja z Ryńska w Ryńsku KLASA VIII

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM

ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

GEOPLAN Z SIATKĄ TRÓJKĄTNĄ

SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI. Wymagania na poszczególne oceny klasa VIII Matematyka z kluczem

Wymagania na poszczególne oceny szkolne

Przedmiotowy system oceniania dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych z matematyki w kl.ii

Wymagania edukacyjne z matematyki dla klasy VIII. rok szkolny 2018/2019

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ

Klasa II POTĘGI. Na ocenę dobrą: umie porównać potęgi sprowadzając do tej samej podstawy

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

Przedmiotowy system oceniania z matematyki kl.ii

PLAN WYNIKOWY Z MATEMATYKI DLA II KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: POTĘGI I PIERWIASTKI

Wymagania na poszczególne oceny szkolne Klasa 8

DZIAŁ 1. POTĘGI. stopień

Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum

DZIAŁ 1. LICZBY I DZIAŁANIA

WYMAGANIA EDUKACYJNE

NaCoBeZU z matematyki dla klasy 8

rozszerzające (ocena dobra)

Wymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO

ARKUSZ VIII

ZAKRES WYMAGAŃ EDUKACYJNYCH Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA II

Wymagania edukacyjne z matematyki Klasa II

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE VIII Z MATEMATYKI ROK SZKOLNY

Matematyka klasa 2 gimnazjum Wymagania edukacyjne na ocenę śródroczną.

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY ŚRÓDROCZNE I ROCZNE Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ

Szczegółowe wymagania edukacyjne z matematyki Klasa II. na ocenę dopuszczającą

klasa I Dział Główne wymagania edukacyjne Forma kontroli

WYMAGANIA NA POSZCZEGÓLNE OCENY PO KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM

WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II GIMNAZJUM( IIan1, IIan2, IIb) Na rok szkolny 2015/2016

MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE

Wymagania edukacyjne dla klasy VI z matematyki. Opracowane na podstawie programu nauczania Matematyka z plusem LICZBY NATURALNE I UŁAMKI

WYMAGANIA EDUKACYJNE klasa II

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka

podstawowe (ocena dostateczna) rozszerzające (ocena dobra) wyrażenia tekstowe dotyczące kwadratowych

Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner

Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka

Osiągnięcia ponadprzedmiotowe

Graniastosłupy mają dwie podstawy, a ich ściany boczne mają kształt prostokątów.

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA DRUGA GIMNAZJUM

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) wykraczające (ocena celująca) DZIAŁ 1. PIERWIASTKI

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ

KLASA II POTĘGI. 20) umie zapisywać liczby w notacji wykładniczej,

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM

WYMAGANIA EDUKACUJNE Z MATEMATYKI Z PLUSEM DLA KLASY VIII WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ TEMAT

Wymagania edukacyjne z matematyki w klasie II gimnazjum

Lista działów i tematów

WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum

Katalog wymagań programowych na poszczególne stopnie szkolne

KLASA 8. LICZBY I DZIAŁANIA: Ocenę niedostateczną otrzymuje uczeń, który nie spełnia wymagań na ocenę dopuszczającą.

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM

Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)

PYTANIA TEORETYCZNE Z MATEMATYKI

Minimalne wymagania edukacyjne na poszczególne oceny z matematyki w klasie drugiej Matematyka z plusem dla gimnazjum

Osiągnięcia ponadprzedmiotowe

Kryteria ocen z matematyki w klasie II gimnazjum

Końcoworoczne kryteria oceniania dla klasy II z matematyki Rok szkolny 2015/2016 przygotowała mgr inż. Iwona Śliczner

Wymagania z matematyki KLASA VIII

Matematyka Wymagania edukacyjne dla uczniów klas VIII Rok szkolny 2018/2019. Dział Ocena Umiejętności Potęgi i pierwiastki. Na ocenę dopuszczającą

PLAN NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

Semestr Pierwszy Potęgi

Transkrypt:

Zestaw pomocy dydaktycznych Tablica z uk adem wspó rz dnych Na tablicy z układem współrzędnych można pisać czy rysować pisakami wodoodpornymi suchościeralnymi lub pisakami wodoodpornymi, które można ścierać płynami alkoholizowanymi. Tablica może być przydatna przy realizacji takich tematów lekcji, jak np. Zaznaczanie punktów w układzie współrzędnych Przekształcenia w układzie współrzędnych Przykłady funkcji Pola wielokątów Warto porównywać pola wielokątów wyznaczone za pomocą wzorów z polami wielokątów wyznaczonymi przez zliczanie kwadratów jednostkowych. Twierdzenie Pitagorasa y 4 3 2 1 5 4 3 2 1 0 1 2 3 4 5 6 7 x 1 2 3 4 y 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 x 2

Lusterka Lusterka jednostronne małego formatu, mogą służyć do obserwowania symetrii oraz do kształtowania wyobraźni przestrzennej. Oto przykłady zadań, w których można wykorzystać lusterko: 1. Narysuj kilka wielokątów. Sprawdź, przykładając odpowiednio lusterko, czy narysowany wielokąt ma oś symetrii. 2. Narysuj kilka figur ograniczonych z jednej strony odcinkiem. Przyłóż lusterko wzdłuż tego odcinka i narysuj figurę, jaką tworzy narysowana wcześniej figura i jej obraz w lusterku. 3. Narysuj kilka figur ograniczonych z dwóch stron odcinkami. Przyłóż lusterka wzdłuż tych odcinków i narysuj figurę, jaką tworzy narysowana wcześniej figura i jej obraz w lusterkach. 4. Sprawdź, jak ułożyć dwa lusterka względem siebie i narysowanego na kartce odcinka, aby w lusterkach zobaczyć odcinki przecinające się? 5. Sprawdź, jak ułożyć dwa lusterka względem siebie i narysowanych na kartce dwóch odcinków o wspólnym końcu, aby w lusterkach zobaczyć czworokąt? 6. Sprawdź, jakie wielokąty można zobaczyć w trzech odpowiednio ułożonych lusterkach względem narysowanych na kartce dwóch odcinków o wspólnym końcu. 3

Tablica 150 liczb Tablica foliowana, można na niej pisać czy rysować pisakami wodoodpornymi suchościeralnymi lub wodoodpornymi, które można ścierać płynami alkoholizowanymi. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 Tablice liczb naturalnych potrzebne są szczególnie przy rozwiązywaniu zadań, dotyczących: wskazywania liczb o podanych własnościach, opisywania za pomocą wyrażeń algebraicznych liczb zaznaczonych na tablicy, obserwowania prawidłowości. Oto przykłady zadań, jakie można rozwiązywać, wykorzystując tablicę 150 liczb. 1. Ile jedynek należy użyć, aby ponumerować wszystkie strony książki od 1 do 150? Ile dwójek, a ile szóstek? 2. Podziel tablicę na 6 kwadratów o takich samych polach i wyznacz sumę liczb w poszczególnych kwadratach. 3. Podziel tablicę na 25 kwadratów o takich samych polach i wyznacz sumę liczb w poszczególnych kwadratach. Zbuduj tablicę tych sum. 4. Zaznacz na tablicy liczb te liczby, które w dzieleniu przez 7 dają resztę 5. Jakie liczby na tablicy liczb znajdują się bezpośrednio pod tymi liczbami? 5. Zaznacz na tablicy liczb wszystkie liczby, które można zapisać w postaci iloczynu dwóch liczb różniących się o 1. Jakie to liczby? 6. Zaznacz liczby ułożone na przekątnych tablicy. Jaką własność mają te liczby? 7. Zaznacz liczby ułożone na bokach tablicy. Jaką własność mają te liczby? 8. Zaznacz liczby będące kwadratami, sześcianami liczb naturalnych. 9. Dane są ułamki o liczniku 1 i mianowniku, będącym liczbą z tej tablicy. Zaznacz na tablicy te liczby, które są mianownikami ułamków, mających rozwinięcia dziesiętne okresowe. 10. Jeśli liczby w pierwszym wierszu są argumentami funkcji, a liczby w trzecim wierszu jej wartościami to, jakim wzorem można opisać tę funkcję? 4

Tablica z siatkà kwadratowà i siatkà w kropki w uk adzie kwadratowym Na tablicy można pisać czy rysować pisakami wodoodpornymi suchościeralnymi lub pisakami wodoodpornymi, które można ścierać płynami alkoholizowanymi. Tablica może być przydatna przy realizacji takich tematów lekcji, jak np. Rysowanie wielokątów Wyznaczanie pól wielokątów Wyznaczanie obwodów figur Szukanie najkrótszej drogi Przekształcenia na płaszczyźnie Siatki wielościanów 1. Zaznacz obszar o wymiarach 5 5? Ile odcinków o wierzchołkach w punktach kratowych można narysować na tym obszarze? Ile jest wśród nich odcinków różnej długości? Wyznacz ich długości. 2. Rozważ łuki okręgów, których środkami są punkty obszaru geoplanu o wymiarach 4 4, a promieniami odcinki łączące dwa punkty geoplanu. Jakie długości może mieć promień okręgu? Ile jest różnych położeń środków okręgów? Ile łuków okręgów można narysować na tym geoplanie? 3. Narysuj wszystkie możliwe trójkąty (czworokąty) na obszarze geoplanu o wymiarach 5 5. Ile różnych trójkątów o wierzchołkach w punktach kratowych można narysować na tym obszarze? Oblicz ich pola i obwody. Wyznacz kąty wewnętrzne tych wielokątów. Narysuj kilka wielokątów o wierzchołkach w punktach kratowych i polu 18 jednostek. Wyznacz obwód każdej z tych figur. 4. Narysuj kwadrat o polu 4 a następnie kwadrat o polu 8. 5. Narysuj kilka siatek sześcianu o polu jednej ściany 2. 5

Tablica z siatkà trójkàtnà i siatkà w kropki w uk adzie trójkàtnym Na tablicy można pisać czy rysować pisakami wodoodpornymi suchościeralnymi lub pisakami wodoodpornymi, które można ścierać płynami alkoholizowanymi. Tablica przydatna przy realizacji takich tematów lekcji, jak np. Rysowanie wielokątów Wyznaczanie pól wielokątów Wyznaczanie obwodów figur Szukanie najkrótszej drogi Przekształcenia na płaszczyźnie Siatki wielościanów? 1. Zaznacz na sieci trójkątnej obszar taki jak na rysunku. Ile odcinków o wierzchołkach w punktach kratowych można narysować na tym obszarze? Ile jest wśród nich odcinków różnej długości? Wyznacz ich długości. 2. Rozważ łuki okręgów, których środkami są punkty obszaru geoplanu o wymiarach 4 4, a promieniami odcinki łaczące dwa punkty geoplanu. Jakie długości może mieć promień okręgu? Ile jest różnych położeń środków okręgów? Ile łuków okręgów można narysować na tym geoplanie? 3. Narysuj wszystkie możliwe trójkąty (czworokąty) na tym obszarze. Ile różnych trójkątów o wierzchołkach w punktach kratowych można narysować na tym obszarze? Oblicz ich obwody. 6

Miara krawiecka Miara długości 150 cm z tworzywa, łatwo dająca się zginać. Miary można używać do wykonywania wszelkich pomiarów, ale szczególnie przydatna jest przy wymierzaniu obwodów kół i długości linii krzywych. Oto przykłady zadań doświadczeń z wykorzystaniem miarki: 1. Wykonaj pomiary twojej klasy. Oblicz pole podłogi w twojej klasie oraz oblicz objętość powietrza wypełniającego tę salę. 2. Sprawdź, czy do wzrostu człowieka proporcjonalne są: a) długość ręki, b) obwód bioder, c) obwód szyi. 3. W słoneczny dzień zmierz długość cienia budynku oraz długość patyczka i długość jego cienia. Wykorzystując twierdzenie Talesa wyznacz wysokość budynku. 4. Przygotuj kilka przedmiotów w kształcie koła. Zmierz obwód i średnicę każdego z nich. Wyznacz stosunek obwodu do średnicy. Kostki do gry Kostek do gry można używać do losowania liczb, do obserwacji częstości zdarzeń, do wyznaczania objętości brył, do obserwacji kształtów wielościanów. Oto przykłady zadań, jakie można rozwiązywać wykorzystując te kostki: 1. Zbadaj, co jest bardziej prawdopodobne wyrzucić liczbę parzystą liczbę oczek na kostce sześciennej, czy dwudziestościennej. 2. Doświadczenie polega na rzucie dwiema kostkami czworościennymi i jedną ośmiościenną. Porównujemy sumę liczb wyrzuconych na czworościanach z liczbą oczek na ośmiościanie. Co jest bardziej prawdopodobne wyrzucenie ośmiu oczek na ośmiościanie czy ośmiu punktów w sumie na czworościanach. 3. Do wyskalowanej menzurki z wodą wrzuć kostkę ośmiościenną. O ile podniósł się poziom wody w menzurce? Jaka jest objętość kostki? 4. Narysuj siatki wielościanów, których modelami są wskazane kostki. 5. Przyjrzyj się kostkom do gry różnych kształtów. Opisz zasadę, według której umieszczono liczby lub dobrano liczbę punktów na ściankach kostek. 7

Tabela kalendarz na ca y rok Tabela z kalendarzem jest foliowaną planszą, po której można pisać i rysować pisakami wodoodpornymi suchościeralnymi lub pisakami wodoodpornymi, które można ścierać płynami alkoholizowanymi. Na początku każdego roku kalendarzowego można wykreślić zbędne dni jest to sposobność do mówienia o latach przestępnych, liczbie dni w poszczególnych miesiącach itd. Można tez pokusić się o zaznaczenie dni świątecznych oraz innych dni wolnych od nauki. Oto zadania, jakie można wykonywać wykorzystując kalendarz: 1. Zaznacz w kalendarzu wszystkie niedziele. Ile może być niedziel w roku? 2. Jaki procent roku stanowią niedziele? 3. Zaznacz w kalendarzu wszystkie dni wolne od nauki. Jaki procent roku stanowią dni wolne od nauki? 4. Które miesiące w roku przestępnym, a które w zwykłym rozpoczynają się tym samym dniem tygodnia? 5. Zaznaczcie w kalendarzu dni urodzin wszystkich uczniów z Waszej klasy. Sporządźcie diagram częstości urodzin w poszczególnych miesiącach roku. Styczeƒ Luty Marzec Kwiecieƒ Maj Czerwiec Lipiec Sierpieƒ Wrzesieƒ Paêdziernik Listopad Grudzieƒ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Magnesy Zestaw magnesów potrzebny jest przede wszystkim do mocowania papierowych plansz do tablicy metalowej. Magnesy mogą także służyć, jako modele punktów na narysowanym na metalowej tablicy układzie współrzędnych. Bez trudu pod tak zaznaczonymi punktami można poprowadzić prostą czy odcinek z tasiemki papierowej lub płóciennej. Magnesy mogą być też wierzchołkami wielokątów wyznaczanych na metalowej tablicy. 8

Elementy do budowania szkieletów bry Z tych elementów można budować nie tylko szkielety brył, ale także szkielety wielokątów. 9

10

Elementy do budowania szkieletów brył można wykorzystywać przy omawianiu takich zagadnień, jak wyznaczanie pól i obwodów wielokątów, porównywanie pól wielokątów, przekształcenia geometryczne, porównywanie pól figur podobnych, budowanie modeli brył, wskazywanie wierzchołków, krawędzi i ścian brył. Oto przykłady zadań, jakie można rozwiązywać, wykorzystując elementy do budowy szkieletów brył. 1. Zbuduj trójkąt równoboczny złożony z 4, 9, 16, 25, 36 trójkątów. Porównaj pola i obwody tych trójkątów. 2. Jakie wielokąty można zbudować z trójkątów równobocznych? 3. Zbuduj trójkąt równoboczny złożony z 81 trójkątów. a) Wskaż pary trójkątów symetrycznych względem pewnego punktu. b) Wskaż pary trójkątów symetrycznych względem pewnej prostej. c) Wskaż pary trójkątów o tej własności, że jeden jest obrazem drugiego w pewnym przesunięciu. d) Wybierz dwa dowolne trójkąty z tej układanki i wskaż, jakie przekształcenia trzeba wykonać, aby pierwszy z tych trójkątów zajął miejsce drugiego. 4. Czy można prostokątną podłogę pokryć tylko klepkami w kształcie trójkątów równobocznych? A w kształcie sześciokątów foremnych? A pięciokątów foremnych? 5. Zbuduj wielokąt z kwadratu i czterech trójkątów równobocznych. Jaki wielokąt otrzymałeś? 6. Pokryj na różne sposoby powierzchnię elementami do składania szkieletów brył. 7. Zbuduj czworościan foremny z 4, 16, 36 trójkątów równobocznych. Porównaj pola powierzchni i objętości tych czworościanów. Z ilu trójkątów równobocznych można zbudować czworościan? 8. Zbuduj sześcian z 6, 24, 54 kwadratów. Porównaj pola powierzchni i objętości tych sześcianów. Z ilu kwadratów można zbudować sześcian? 9. Zbuduj wielościan foremny z pięciokątów. Ile ścian ma ten wielościan? 10. Zbuduj wielościan foremny z sześciokątów. Ile ścian ma ten wielościan? 11. Zbuduj graniastosłupy, które w podstawach mają trójkąty równoboczne a ściany boczne jednego z nich są kwadratami, a drugiego prostokątami zbudowanymi z dwóch kwadratów. Porównaj pola powierzchni i objętości tych graniastosłupów. 12. Zbuduj graniastosłupy, które w podstawach mają trójkąty równoboczne, takie, że pole jednej podstawy jest cztery razy większe od pola drugiej podstawy, a wysokości tych graniastosłupów są identyczne. Porównaj pola powierzchni i objętości tych graniastosłupów.

Zestaw pomocy dydaktycznych MATEMATYKA 2001 może być wykorzystywany zarówno przez nauczycieli uczących z materiałów pakietu MATEMATYKA 2001, jak i przez nauczycieli, pracujących z materiałami innych cykli do nauczania matematyki w gimnazjum. Projekt graficzny: Jakub Sowiński Fotografie: Małgorzata Kozioł / WSiP SA Copyright by Wydawnictwa Szkolne i Pedagogiczne Spółka Akcyjna, Warszawa 2005 Wydawnictwa Szkolne i Pedagogiczne Spółka Akcyjna Aleje Jerolimskie 136, 00-965 Warszawa, p. poczt. nr 9 www.wsip.com.pl Wydanie pierwsze. Skład i łamanie: Iwona Mrozek/DTP WSiP SA