Arch. Min. Sci., Vol. 53 (2008), No 1, p

Podobne dokumenty

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

OCENA STANU ZAGROŻENIA WSTRZĄSAMI GÓRNICZYMI Z WYKORZYSTANIEM RELACJI GUTENBERGA-RICHTERA

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Aleksander CIANCIARA, Bogdan CIANCIARA Akademia Górniczo-Hutnicza, Wydział Geologii Geofizyki i Ochrony Środowiska, Kraków

Convolution semigroups with linear Jacobi parameters

Inverse problems - Introduction - Probabilistic approach

Akademia Morska w Szczecinie. Wydział Mechaniczny

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Hard-Margin Support Vector Machines

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

Institutional Determinants of IncomeLevel Convergence in the European. Union: Are Institutions Responsible for Divergence Tendencies of Some

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

POLITECHNIKA WARSZAWSKA. Wydział Zarządzania ROZPRAWA DOKTORSKA. mgr Marcin Chrząścik

Krytyczne czynniki sukcesu w zarządzaniu projektami

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

ROZPRAWY NR 128. Stanis³aw Mroziñski

European Crime Prevention Award (ECPA) Annex I - new version 2014

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

Urbanek J., Jabłoński A., Barszcz T ssswedfsdfurbanek J., Jabłoński A., Barszcz T., Wykonanie pomiarów

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Mgr inż. Krzysztof KRAWIEC. Rozprawa doktorska. Streszczenie

Knovel Math: Jakość produktu

Tychy, plan miasta: Skala 1: (Polish Edition)

Streszczenie rozprawy doktorskiej

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015

DOI: / /32/37

Revenue Maximization. Sept. 25, 2018

Cracow University of Economics Poland


DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Few-fermion thermometry

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

Sargent Opens Sonairte Farmers' Market

Formularz recenzji magazynu. Journal of Corporate Responsibility and Leadership Review Form

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

TRANSPORT W RODZINNYCH GOSPODARSTWACH ROLNYCH


QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

SNP SNP Business Partner Data Checker. Prezentacja produktu

Probabilistic Methods and Statistics. Computer Science 1 st degree (1st degree / 2nd degree) General (general / practical)

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)


ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

tum.de/fall2018/ in2357

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Opis Przedmiotu Zamówienia oraz kryteria oceny ofert. Części nr 10

Installation of EuroCert software for qualified electronic signature

WYDZIAŁ NAUK EKONOMICZNYCH. Studia II stopnia niestacjonarne Kierunek Międzynarodowe Stosunki Gospodarcze Specjalność INERNATIONAL LOGISTICS

Method of evaluating the probability of a strong tremor

EGARA Adam Małyszko FORS. POLAND - KRAKÓW r

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

Walyeldeen Godah Małgorzata Szelachowska Jan Kryński. Instytut Geodezji i Kartografii (IGiK), Warszawa Centrum Geodezji i Geodynamiki

STATYSTYKA OD PODSTAW Z SYSTEMEM SAS. wersja 9.2 i 9.3. Szkoła Główna Handlowa w Warszawie

Has the heat wave frequency or intensity changed in Poland since 1950?

Ocena potrzeb pacjentów z zaburzeniami psychicznymi

Patients price acceptance SELECTED FINDINGS

METODY ROZPOZNAWANIA STANU AKTYWNOŚCI SEJSMICZNEJ GÓROTWORU I STRATEGIA OCENY TEGO ZAGROŻENIA

Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc

EN/PL COUNCIL OF THE EUROPEAN UNION. Brussels, 25 March /14 Interinstitutional File: 2014/0011 (COD)

ROZPRAWA DOKTORSKA. Model obliczeniowy ogrzewań mikroprzewodowych

EN/PL COUNCIL OF THE EUROPEAN UNION. Brussels, 29 August /13 Interinstitutional File: 2013/0224 (COD)

The Overview of Civilian Applications of Airborne SAR Systems

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

Selection of controller parameters Strojenie regulatorów

Gdański Uniwersytet Medyczny Wydział Nauk o Zdrowiu z Oddziałem Pielęgniarstwa i Instytutem Medycyny Morskiej i Tropikalnej. Beata Wieczorek-Wójcik

Dolny Slask 1: , mapa turystycznosamochodowa: Plan Wroclawia (Polish Edition)

Evaluation of the main goal and specific objectives of the Human Capital Operational Programme

Rachunek lambda, zima

ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.

Instalacja Właściwości

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ MECHANICZNY ROZPRAWA DOKTORSKA. mgr inż. Piotr Smurawski

Stargard Szczecinski i okolice (Polish Edition)

OpenPoland.net API Documentation

SYNTEZA SCENARIUSZY EKSPLOATACJI I STEROWANIA

THERMODYNAMICS OF OXYGEN IN DILUTE LIQUID SILVER-TELLURIUM ALLOYS

STATISTICAL METHODS IN BIOLOGY

Zmiany techniczne wprowadzone w wersji Comarch ERP Altum

Country fact sheet. Noise in Europe overview of policy-related data. Poland

EPS. Erasmus Policy Statement

PRZEWODNIK PO PRZEDMIOCIE. Negotiation techniques. Management. Stationary. II degree

SNP Business Partner Data Checker. Prezentacja produktu

ZASTOSOWANIE SPLOTU FUNKCJI DO OPISU WŁASNOŚCI NIEZAWODNOŚCIOWYCH UKŁADÓW Z REZERWOWANIEM

WAVELET TRANSFORM OF SELECTED SIMULATION SIGNALS USING DETAILS AS INFORMATION SOURCE

OBWIESZCZENIE MINISTRA INFRASTRUKTURY. z dnia 18 kwietnia 2005 r.

Camspot 4.4 Camspot 4.5

Michał PIECHA, Agnieszka KRZYŻANOWSKA, Marta Kozak KWK Bielszowice

Updated Action Plan received from the competent authority on 4 May 2017

CEE 111/211 Agenda Feb 17

OCENA MECHANIZMÓW POWSTAWANIA PĘKNIĘĆ WĄTROBY W URAZACH DECELERACYJNYCH ZE SZCZEGÓLNYM UWZGLĘDNIENIEM ROLI WIĘZADEŁ WĄTROBY

NIESTACJONARNY PRZEPŁYW CIEPŁA W TŁOKU DOŁADOWANEGO SILNIKA Z ZAPŁONEM SAMOCZYNNYM

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

Przedmioty do wyboru oferowane na stacjonarnych studiach II stopnia (magisterskich) dla II roku w roku akademickim 2015/2016

Forested areas in Cracow ( ) evaluation of changes based on satellite images 1 / 31 O

Transkrypt:

Arch. Min. Sci., Vol. 53 (28), No 1, p. 23 3 23 EWA TAKUSKA-WĘGRZYN* APPLICATION OF STATISTICAL METHODS FOR EVALUATION OF ROCK-BURST RISKS IN COPPER ORE MINE CONDITIONS ZASTOSOWANIE METOD STATYSTYCZNYCH DO OCENY STANU ZAGROŻENIA TĄPANIAMI W WARUNKACH KOPALŃ RUD MIEDZI The paper presents a proposal for a method of rock-burst risk estimation based upon an analysis of the non-homogeneity degree of rock cracking processes. In periods preceding moments of tremors there are tendencies towards enlargement of crack sizes causing increases in the non-homogeneity degree. It is known that rock cracking is represented in the form of a seismoacoustic emission, which can be observed (registered). The non-homogeneity degree of the cracking process can be estimated on the basis of the statistical analysis of the registered seismoacoustic emission stream. It is known from experience that the registered emission constitutes nonstationary and non-homogeneous stream of events. Information about energies (extents) of processes and time intervals between effects is necessary for its complete description. The paper presents appropriate models of measures describing the non-homogeneity degree of the cracking process. These measures treated as indicative functions enable a qualitative connection between the non-homogeneity degree discussed and the rock-burst risk condition. The findings have been illustrated with examples of behaviour of these measures estimated on the basis of the registered seismoacoustic emission stream in the G-22/4 ZG Rudna Branch. Keywords: tremors, rock cracking, seismoacoustic emission, seismoacoustic effects, stream of events, non-homogeneity degree, extent of processes, time intervals between effects, rock-burst risk W pracy przedstawiono propozycję sposobu oceny zagrożenia tąpaniami, opartego na analizie stopnia niejednorodności procesów pękania skał. W okresach poprzedzających momenty wystąpienia wstrząsów występują tendencje w kierunku powiększania się rozmiarów pęknięć, powodując wzrosty stopnia niejednorodności. Wiadomo, że pękanie skał jest odwzorowywane w formie emisji sejsmoakustycznej, którą możemy obserwować (rejestrować). Stopień niejednorodności procesu pękania może być oceniany na podstawie analizy statystycznej rejestrowanego strumienia emisji sejsmoakustycznej. Z praktyki wiadomo, że rejestrowana emisja stanowi niestacjonarny i niejednorodny strumień zdarzeń. Do pełnego jej opisu * AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, FACULTY OF GEOLOGY, GEOPHYSICS AND ENVIRONMENTAL PROTECTION, DEPARTMENT OF GEOPHYSICS, AL. MICKIEWICZA 3, 3-59 KRAKÓW, POLAND

24 konieczna jest informacja o energiach (rozmiarach) zjawisk oraz odstępach czasu między zjawiskami. W pracy przedstawiono odpowiednie modele miar opisujących stopień niejednorodności procesu pękania. Miary te traktowane jako funkcje wskaźnikowe umożliwiają jakościowe powiązanie omawianego stopnia niejednorodności ze stanem zagrożenia tąpaniami. Uzyskane wyniki zostały zilustrowane przykładami zachowania się tych miar estymowanych na podstawie rejestrowanego strumienia emisji sejsmoakustycznej w Oddziale G-22/4 ZG Rudna. Słowa kluczowe: wstrząsy górnicze, pękanie skał, emisja sejsmoakustyczna, zjawiska sejsmoakustyczne, strumień zdarzeń, stopień niejednorodności, rozmiary zjawisk, odstępy czasu między zjawiskami, zagrożenie tąpaniami. 1. Introduction The main objective of this paper is to present possibilities of application of statistical methods for development of methods of rock-burst risk monitoring, in particular of tremor risk monitoring. The method of analysis has been adjusted to the geological and mining conditions in copper ore mines. It is known that the sufficient size of samples analysed is the basic principle of correct application of statistical methods. This principle is met in the case of seismoacoustic emission because it is characterized by high activity of effects. The seismoacoustic emission is generated by cracking processes occurring in the rockmass, caused by mining. Knowing the correct structure of these processes has a direct impact on the quality of their description. It is known from geomechanical theories (Jaeger & Cook, 1969) that individual rockmass cracks are characterized by a high level of indeterminism and should be treated as random events. Therefore it is assumed that cracking processes have stochastic structure and should be modeled in the form of random streams of events. Thus concluding about their course should be performed on the basis of probabilistic methods. These processes cannot be directly observed, however, as it is well known, they can be analyzed on the basis of properly registered seismic emission. The frequency band of registering and distances between sensors should ensure such size of registered effects as is necessary for correct performance of statistical analyses. On the basis of research carried out in copper ore mine conditions it has been found that this band should be within the range of 3 and 5 Hz whereas distances between the sensors should not exceed the distance between 1 and 2 m. With research it may turn out that the band limits may be changed. However excessive increase in its upper limit leads to increase in the share of various noises in registered records. Nevertheless the lower band limit determines the radius (in terms of typology) of the area observed. A seismic emission registered in such a way will be referred to as a seismoacoustic emission in further considerations. It is described in probabilistic terms. At the beginning an assumption is made that individual events of the cracking process or cracks are equated with specific seismoacoustic effects. It is also assumed that statistical parameters, in particular probability distributions of specific characteristics, describe both the cracking processes and the seismoacoustic emission they cause. More precisely, these distributions are described by the same models. Seismoacoustic effects

are identified on the basis of signals registered with a system of multiple sensors, at least of two sensors. It should be emphasized that registrations performed with single sensors may contain too many noises. These assumptions have been confirmed in numerous surveys published (Cianciara, 1999; Cianciara et al., 26) and constitute the basis for concluding on the course of cracking processes. Research on cracking processes should be carried out on the basis of crack sizes. They are however difficult to define because they are not directly observable. Therefore their sizes can only be estimated on the basis of analysis of the registered seismoacoustic emission. The study assumes a concept that crack sizes should be estimated on the basis of energy of seismoacoustic effects (Cianciara et al., 26) or on the basis of time intervals between subsequent effects (Cianciara & Cianciara, 26). It is assumed that in terms of seismoacoustics, crack sizes are proportional to the square of norms of signals representing the effects. However in the case of estimation of sizes on the basis of time intervals between effects, linear statistical dependence connecting them with the energy of effects is used (Cianciara & Cianciara, 26). These dependence can be presented as follows: u k F, where: u k the time intervals between effects, E F,k the physical energy of effects, E F, the reference energy, ε k random values, δ and σ coeficients. 25 EF, k log k (1.1) E However their expected values meet the following linear dependency: where: M means the expected value. E F, k M [ U] M log (1.2) EF, During research on seismoacoustic emission generated in conditions of copper ore mines it was found that these two characteristics allow to conclude on the direction of the cracking process development. For clarity one should add that the energy discussed herein is not treated as a physical parameter but it represents a mathematical notion. However it does not change the fact that it is fully suitable for statistical analyses and yields good results. Cracking processes are treated as non-homogenous stream of random events of specific course dynamics. Research on their dynamics is carried out on the basis of analysis of experimental data registered in specific time intervals T, the so called information

26 windows, which are moved in time by a set step. During the research conducted it has been found that the cracking process dynamics observed in copper ore mines is characterized by significantly lower speed compared to the one in hard coal mines. It can be confirmed by the analysis of activity of effects, which in the case of copper ore mines is even up to ten times lower that the one registered in hard coal mines. To be able to obtain adequate effectiveness of estimates one should use relatively large windows, the size of which, as appears from practice, should be even a few 24-hour periods. Therefore, it is possible to examine the course of rockmass cracking process only on the basis of seismoacoustic emission as it is characterized by a sufficient activity. 2. The non-homogeneity degree of the cracking process Tendencies in cracking process development can be examined by treating them as a random streams of events. One of the factors is the characteristics of non-homogeneity of the streams in question. This notion is taken from probabilistics and it states that a stream of events is homogeneous if it has independent and stationary increments (Kowalenko et al., 1989). If the increments concerned are non-stationary, the stream of events is non-homogeneous. The theoretical analysis of cracking processes on the basis of geomechanical theories shows that their courses are characterized by a significant degree of non-homogeneity (Cornell, 1968; Jaeger & Cook, 1969). The non-homogeneoity in question concerns changes in the state of stress, which cause the presence of tendencies in development of crack sizes. Examination of the degree of non-homegeneity is conducted by analysis of seismoacoustic emission, by determination of probability distributions and the expected value of energy of effects and time intervals between effects. It is assumed that the statistical distribution of emission characteristics is governed by the Weilbull s law (Cianciara, 2), which can be presented in the following form: for F ( ) (2.1) exp[ ( ) ] for where: β and γ are parameters, and β >, γ > while ς means values of individual characteristics, which means: in the case of energy log, whereas in the case of time E E u intervals between effects. u The distribution of probability density is described by the formulas (Cianciara et al., 25): for f ( ) (2.2) ( ) exp[ ( ) ] for

And the expected value of the random variable ζ is expressed as follows (Cianciara at al., 25): 27 M [ ] ( ) (2.3) where: Γ is the Euler gamma function. In the case of time intervals between effects (ζ = U) the window size T divided by the expected value M[U] represents the expected number of effects Nˆ T of the stream of events concerned, that is: 1 ˆ T ˆ ˆ N T ˆ (2.4) ( ˆ ) In consequence a model is defined, which describes the measure of non-homogeneity of the cracking process (Cianciara et al., 24). In conditions of copper ore mines good results are obtained by using measures in the form of a quotient of emission stream expected values to the Poisson process expected value treated as the standard. In this case the numeric value of non-homegeneity degree ϑ(t) is estimated on the basis of emission characteristics ς according to the following model: NT ( T) (2.5) T M [] where: M the functional determining the value, T the information window, N T the number of effects registered in the window T. The numeric values of this measure are determined on the basis of emission registered in the information window T. Moving this window by a step we obtain the course of the degree of non-homogeneity in the form of time-dependent function. This function reflects the tendencies in rockmass cracking process development. An example graph of this function is presented in fig. 1. Calculations have been made on the basis of emission registered in the G-22/4 ZG Rudna Branch. It appears from the analysis of the experimental material registered in conditions of copper ore mines that the emission is well described by a model of non-homogeneous and locally stationary stream of events. In the case of locally homogeneous stream its parameter λ is variable in time λ(t) and it reflects the geomechanical condition of the rockmass. Therefore a correlation function describing grouping of effects (Takuska-Węgrzyn, 1999) has been used for examination of emission nature in terms of its connection with geomechanical parameters. The following dependency (Takuska-Węgrzyn, 1999) was used to develop the correlation function K(T) estimation algorithm: K( T) M ( ; T ) M ( T) los (2.6)

28 29 27 1.8E9 25 23 7.E7 21 19 Degree of in homogeneity 17 15 13 11 9 7 2.3E6 5.1E4 8.8E5 1.3E5 5.8E3 5 3 1-1 -3 4-8-8 4-8-11 4-8-14 4-8-17 4-8-2 4-8-23 Time [yr-m-d] 4-8-25 4-8-29 4-9-1 4-9-4 4-9-7 Fig. 1. The course of function describing the non-homogeneity degree of the cracking process ϑ(t; T) determined in the form of the expected value of sizes of seismoacoustic effects. Estimations have been performed on the basis of emission registered in the G-22/4 ZG Rudna Branch Rys. 1. Przebieg funkcji opisującej stopień niejednorodności procesu pękania ϑ(t,t) wyznaczonej w formie wartości oczekiwanej rozmiarów zjawisk sejsmoakustycznych. Estymacje prowadzono na podstawie emisji rejestrowanej w Oddziale G-22/4 ZG Rudna In practice this parameter can be estimated in accordance to this algorithm, selecting signals in a specific time window T (of N T size) out of the data sequence and next moving it with the inflow of measurement information along the data sequence by a step. This way the continuous change of value of this parameter in the form of time-dependent function is obtained. The problem of determination of the K(T) parameter basically comes down to estimation of disturbances in distributions of time intervals between effects in the T window in relation to a purely random process (Poisson s). An example course of the correlation function is presented in fig. 2. Calculations have been performed on the basis of emission registered in the G-22/4 ZG Rudna Branch.

29.6.55.5.45 1.9E6 Correlation coefficient.4.35.3.25 1.2E4 1.3E3.2.15.1. 4-3-22 4-3-29 4-4-5 4-4-12 Time [yr-m-d] Fig. 2. The graph of the course of the correlation function K(t;T) describing the non-homogeneity degree of the cracking process estimated on the basis of the seismoacoustic emission stream registered in the G-22/4 ZG Rudna Branch Rys. 2. Wykres przebiegu funkcji korelacyjnej K(t,T) opisującej stopień niejednorodności procesu pękania estymowanej na podstawie strumienia emisji sejsmoakustycznej rejestrowanej w Oddziale G-22/4 ZG Rudna 3. Conclusion According to the applicable geomechanical theories, rock-burst risk and in consequence occurence of tremors is caused by adequate increases in the state of stress. Increases in stress in turn cause rockmass cracking, which proceeds in compliance with specific laws. For instance crack sizes comply with the exponential Gutenberg-Richter s law (Gutenberg & Richter, 1954). Also time intervals between cracks are subject to specific changes. It causes disturbances in the distribution of seismic effects in the registered stream of emissions. These disturbances can be followed systematically by analysing of the non-homogeneity degree of the registered stream of seismoacoustic emission. The non-homogeneity degree concerned is a probabilistic notion and cannot be estimated by means of statistical analysis. This study confirms practical possibility of concluding on

3 the rockmass condition in circumstances of copper ore mines on the basis of an analysis of the non-homogeneity degree of the registered seismoacoustic emission. It is illustrated by fig. 1 and 2, which present the courses of the non-homogeneity degree estimated by two methods, on the basic of analysis of the expected value of emissions and grouping of seismoacoustic effects. The figures show that the times of tremor occurrences are preceded by increases in the course of the function. REFERENCES Cianciara B., 1999. Emisja sejsmiczna jako nośnik informacji o rozwoju procesu pękania górotworu. Geoinformatica Polonica no. 1. Cianciara A., 2. System monitorowania zagrożenia wystąpieniem silnych wstrząsów w oparciu o analizę emisji sejsmoakustycznej. Doctoral dissertation. Biblioteka Główna AGH. Kraków. Cohen A.C., 1965. Maximum likelihood estimation in the Weibull distribution based on complete and on censored samples. Technometrics 7, 579-588. Cox D.R., 1955. Some statistical methods related with series of event. J. Roy. Soc. B, 17, 2. Goszcz A., 1999. Elementy mechaniki skał oraz tąpania w polskich kopalniach węgla i miedzi. PAN IGSMiE Kraków. Gutenberg B., Richter C.F., 1954. Seismicity of the earth and associated phenomenon. 2nd edition, Princeton University Press, Princeton. Kowalenko I.N., Kuzniecow N.J., Szurienkow W.M., 1989. Procesy stochastyczne. Poradnik PWN. Warszawa. Lasocki S., 1993. Weibull distribution as a model for sequense of seismic events induced by mining. Acta Geophys. Pol. 41, no. 2. Lehmann E.L., 1991. Teoria estymacji punktowej. PWN Warszawa. Marcak H., 1985. Geofizyczne modele rozwoju procesu niszczenia górotworu poprzedzające tąpnięcia i wstrząsy w kopalniach. Publs. Inst. Geophys. Pol. Ac. Sc. M-6 (176) s. 317-332. Marcak H., 1995. Wpływ struktury górotworu naruszonego robotami górniczymi na tworzenie sekwencji wstrząsów górniczych. Biblioteka Szkoły Eksploatacji Podziemnej, Seria Wykłady nr 8, CPPGSMiE PAN Kraków. Nur A., 1972. A Note of the Constitutive Law for Dilatancy. Pageoph. Vol. 113. Takuska-Węgrzyn E., 1999. A method ofevalution of the threat of bursts based on an analysis of the concentration of seismoacustic phenomen (in Polish). Quarterly, AGH-UST. Geology, vol. 24, Bull. 2. Received: 26 June 27