Przedmiotowe zasady oceniania w oddziałach gimnazjalnych matematyka

Podobne dokumenty
REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM

PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot

WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka

Wymagania edukacyjne klasa trzecia.

ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

Przedmiotowe zasady oceniania matematyka

Wymagania edukacyjne klasa druga.

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

1. Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi 1 LICZBA GODZIN LEKCYJNYCH

TEMAT 1. LICZBY I DZIAŁANIA Liczby Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

Wymagania edukacyjne klasa pierwsza.

TEMAT 1. LICZBY I DZIAŁANIA Liczby Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

Przedmiotowy system oceniania matematyka

MATEMATYKA KLASA III GIMNAZJUM

MATEMATYKA - gimnazjum - cele i wymagania z podstawy programowej

Wymagania edukacyjne na poszczególne oceny

Matematyka Wymagania edukacyjne, kryteria oceniania i sposoby sprawdzania osiągnięć edukacyjnych uczniów

Regulamin XVI Regionalnego Konkursu Matematycznego "Czas na szóstkę"

Regulamin XV Regionalnego Konkursu Matematycznego Czas na szóstkę

Egzamin gimnazjalny 2015 część matematyczna

Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania

Wymagania edukacyjne z matematyki - gimnazjum

Wyniki procentowe poszczególnych uczniów

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012. CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE

III etap edukacyjny MATEMATYKA

WYMAGANIA EDUKACYJNE Z MATEMATYKI MATEMATYKA WOKÓŁ NAS WSiP

Rozkład wyników ogólnopolskich

KONKURSY PRZEDMIOTOWE MKO DLA UCZNIÓW WOJEWÓDZTWA MAZOWIECKIEGO

KONKURSY PRZEDMIOTOWE MKO DLA UCZNIÓW WOJEWÓDZTWA MAZOWIECKIEGO w roku szkolnym 2013/2014. Program merytoryczny konkursu z matematyki dla gimnazjum

Lista działów i tematów

Rozkład łatwości zadań

ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości;

MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI.

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum

Przedmiotowe System Oceniania z matematyki na podstawie programu "Matematyka z plusem"

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:

ZESPÓŁ SZKÓŁ W OBRZYCKU

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania edukacyjne szczegółowe w Gimnazjum

WYMAGANIA EDUKACUJNE Z MATEMATYKI Z PLUSEM DLA KLASY VIII WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ TEMAT

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania

Wymagania na poszczególne oceny szkolne Klasa 7

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) dopełniające (ocena bardzo dobra) rozszerzające (ocena dobra)

rozszerzające (ocena dobra) podstawowe (ocena dostateczna)

Ułamki i działania 20 h

konieczne (ocena dopuszczająca) Temat rozszerzające (ocena dobra)

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb

WYMAGANIA EDUKACYJNE

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) dopełniające (ocena bardzo dobra) rozszerzające (ocena dobra)

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) rozszerzające (ocena dobra) dopełniające (ocena bardzo dobra)

Wymagania dla klasy siódmej. Treści na 2 na 3 na 4 na 5 na 6 Uczeń: Uczeń: Uczeń: Uczeń: Uczeń: DZIAŁ 1. LICZBY

Karty diagnozy osiągnięć ucznia

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 2

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka

ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI

Wymagania edukacyjne na poszczególne stopnie szkolne klasa III

Wymagania edukacyjne z matematyki w klasie 7 szkoły podstawowej

Wymagania programowe na poszczególne oceny. Klasa 2. Potęgi o wykładnikach naturalnych i całkowitych. Poziom wymagań edukacyjnych:

Szkoła podstawowa. podstawowe (ocena dostateczna) rozszerzające (ocena dobra) I PÓŁROCZE

REGULAMIN WOJEWÓDZKIEGO KONKURSU MATEMATYCZNEGO DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA WIELKOPOLSKIEGO NA ROK SZKOLNY 2011/2012

REGULAMIN WOJEWÓDZKIEGO KONKURSU MATEMATYCZNEGO DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA WIELKOPOLSKIEGO NA ROK SZKOLNY 2011/2012

DZIAŁ II: PIERWIASTKI

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ

PLAN WYNIKOWY Z ROZKŁADEM MATERIAŁU klasa 3

klasa I Dział Główne wymagania edukacyjne Forma kontroli

Nie tylko wynik Plan wynikowy dla klasy 2 gimnazjum

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Wymagania na poszczególne stopnie szkolne

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016

wymagania programowe z matematyki kl. III gimnazjum

Wymagania edukacyjne matematyka klasa VII

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy VII szkoły podstawowej

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015

Wewnątrzszkolne kryteria ocen z matematyki Klasa VIII

KONKURS MATEMATYCZNY CONTINUUM

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Temat lekcji Zakres treści Wymagania podstawowe Wymagania ponadpodstawowe

Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum

WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII

Mgr Kornelia Uczeń. WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa

Matematyka z kluczem. Szkoła podstawowa nr 18 w Sosnowcu. Przedmiotowe zasady oceniania klasa 7

Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej

MATEMATYKA DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016

Wymagania edukacyjne dla klasy drugiej POTĘGI I PIERWIASTKI

Transkrypt:

Przedmiotowe zasady oceniania w oddziałach gimnazjalnych matematyka Ogólne cele oceniania z matematyki w gimnazjum: - informowanie ucznia o stopniu opanowania przez niego umiejętności matematycznych w zakresie wykonywania działań na liczbach wymiernych, logicznego myślenia oraz rozwiązywania zadań problemowych. - motywowania do dalszego rozwijania swoich umiejętności, - inspirowanie do samokształcenia. I. Formy i zasady oceniania stosowane na lekcji matematyki Skrót Forma oceniania Waga PK Praca klasowa 3 S Sprawdzian 2,5 K Kartkówka 2 ZD Zadanie domowe 1 O Odpowiedź ustna 2 A Aktywność na lekcji 1 D Diagnoza 2 TZ Test zewnętrzny 3 TW Test wewnętrzny 3 praca w grupach; dodatkowe prace (udział w projekcie edukacyjnym, wykonanie modelu bryły, napisanie referatu, udział w konkursach, udział w zajęciach rozwijających zainteresowania, udział w konkursach itp.); inne, wynikające z potrzeb klasy. 1. Minimalna liczba ocen. Do wystawienia oceny klasyfikacyjnej na I semestr lub oceny końcoworocznej uczeń powinien uzyskać oceny za:

Formy aktywności Klasa II Klasa III 5h 5h 5h 5h Prace klasowe 4 4 3 0 Sprawdziany 1 1 2 5 Kartkówki 4 4 4 3 Razem 9 9 9 8 2. Sprawdzane osiągniecia uczniów- wymagania KLASA II- 1 okres Sposób sprawdzania Nazwa Sprawdzane wiadomości i umiejętności Praca klasowa 1 - PK1 Potęgi. 1) oblicza potęgi liczb wymiernych o wykładnikach naturalnych; 2) zapisuje w postaci jednej potęgi: iloczyny i ilorazy potęg o takich samych podstawach, iloczyny i ilorazy potęg o takich samych wykładnikach oraz potęgę potęgi (przy wykładnikach naturalnych); 3) porównuje potęgi o rosnących wykładnikach naturalnych i takich samych podstawach oraz porównuje potęgi o takich samych wykładnikach naturalnych i rosnących dodatnich podstawach; 4) zamienia potęgi o wykładnikach całkowitych ujemnych na odpowiednie potęgi o wykładnikach naturalnych; 5) zapisuje liczby w notacji wykładniczej, tzn. w postaci a 10k, gdzie 1 a<10 oraz k jest liczbą całkowitą. Praca klasowa 2 PK2 2. Pierwiastki 1) oblicza wartości pierwiastków drugiego i trzeciego stopnia z liczb, które są odpowiednio kwadratami lub sześcianami liczb wymiernych;

Praca klasowa 3 PK3 Praca klasowa 4 PK4 Długość okręgu, pole koła. Wyrażenia algebraiczne. 2) wyłącza czynnik przed znak pierwiastka oraz włącza czynnik pod znak pierwiastka; 3) mnoży i dzieli pierwiastki drugiego stopnia; 4) mnoży i dzieli pierwiastki trzeciego stopnia. 1) rozpoznaje kąty środkowe; 2) oblicza długość okręgu i łuku okręgu; 3) oblicza pole koła, pierścienia kołowego, wycinka kołowego. 1) opisuje za pomocą wyrażeń algebraicznych związki między różnymi wielkościami; 2) oblicza wartości liczbowe wyrażeń algebraicznych; 3) redukuje wyrazy podobne w sumie algebraicznej; 4) dodaje i odejmuje sumy algebraiczne; 5) mnoży jednomiany, mnoży sumę algebraiczną przez jednomian oraz, w nietrudnych przykładach, mnoży sumy algebraiczne; 6) wyłącza wspólny czynnik z wyrazów sumy algebraicznej poza nawias. Sprawdzian- S1 Układy równań. 3) rozwiązuje układy równań stopnia pierwszego z dwiema niewiadomymi; Kartkówka 1- K1 Działania na potęgach 2) zapisuje w postaci jednej potęgi: iloczyny i ilorazy potęg o takich samych podstawach, iloczyny i ilorazy potęg o takich samych wykładnikach oraz potęgę potęgi (przy wykładnikach naturalnych); Kartkówka 2- K2 Kartkówka 3- K3 Kartkówka 4- K4 Działania na pierwiastkach. Obliczania pola i obwodu koła. Przekształcanie wyrażeń algebraicznych. 1) oblicza wartości pierwiastków drugiego i trzeciego stopnia z liczb, które są odpowiednio kwadratami lub sześcianami liczb wymiernych; pierwiastka; 3) mnoży i dzieli pierwiastki drugiego stopnia i trzeciego stopnia. 2) oblicza długość okręgu i pole koła; 1) opisuje za pomocą wyrażeń algebraicznych związki między różnymi wielkościami; 5) mnoży jednomiany, mnoży sumę algebraiczną przez jednomian oraz, w nietrudnych przykładach, mnoży sumy algebraiczne;

KLASA II- 2 okres Sposób sprawdzania Nazwa Sprawdzane wiadomości i umiejętności Praca klasowa 5 PK5 Układy równań. 1) zapisuje związki między nieznanymi wielkościami za pomocą układu dwóch równań pierwszego stopnia z dwiema niewiadomymi; 2) sprawdza, czy dana para liczb spełnia układ dwóch równań stopnia pierwszego z dwiema niewiadomymi; 3) rozwiązuje układy równań stopnia pierwszego z dwiema niewiadomymi; 4) za pomocą równań lub układów równań opisuje i rozwiązuje zadania osadzone Praca klasowa 6 PK6 Praca klasowa 7 PK7 Praca klasowa 8 PK8 Trójkąty prostokątne. Wielokąty i okręgi. Graniastosłupy w kontekście praktycznym. 1) stosuje twierdzenie Pitagorasa; 2) stosuje twierdzenie odwrotne do twierdzenie Pitagorasa; 3) stosuje zależności miedzy długościami boków w trójkątach o kątach 30 o, 60 o, 90 o oraz 45 o, 45 o, 90 o ; 4) zna wzór na przekątną kwadratu i wysokość trójkąta równobocznego. 1) rozpoznaje wzajemne położenie prostej i okręgu, rozpoznaje styczną do okręgu; 2) korzysta z faktu, że styczna do okręgu jest prostopadła do promienia poprowadzonego do punktu styczności; 3) konstruuje okrąg opisany na trójkącie oraz okrąg wpisany w trójkąt; 4) rozpoznaje wielokąty foremne i korzysta z ich podstawowych własności. 1) rozpoznaje graniastosłupy prawidłowe; 2) oblicza pole powierzchni i objętość graniastosłupa prostego (także w zadaniach osadzonych w kontekście praktycznym); 3) zamienia jednostki objętości. Sprawdzian- S2 Ostrosłupy. 1) rozpoznaje ostrosłupy prawidłowe; 2) oblicza pole powierzchni i objętość ostrosłupa (także w zadaniach osadzonych

Kartkówka 5- K5 Kartkówka 6- K6 Kartkówka 7- K7 Kartkówka 8- K8 Zastosowanie twierdzenie Pitagorasa i twierdzenia odwrotnego. Konstruowanie okręgu opisanego na trójkącie i wpisanego w trójkąt. Obliczanie pola powierzchni i objętości graniastosłupów. Obliczanie pola powierzchni i objętości ostrosłupów. w kontekście praktycznym); 3) zamienia jednostki objętości. 1) stosuje twierdzenie Pitagorasa; 2) stosuje twierdzenie odwrotne do twierdzenie Pitagorasa; 3) konstruuje okrąg opisany na trójkącie oraz okrąg wpisany w trójkąt; 2) oblicza pole powierzchni i objętość graniastosłupa prostego (także w zadaniach osadzonych w kontekście praktycznym); 3) zamienia jednostki objętości. 2) oblicza pole powierzchni i objętość ostrosłupa (także w zadaniach osadzonych w kontekście praktycznym); 3) zamienia jednostki objętości. KLASA III- 1 okres Sposób sprawdzania Nazwa Sprawdzane wiadomości i umiejętności Praca klasowa 1 - PK1 Funkcje 1) zaznacza w układzie współrzędnych na płaszczyźnie punkty o danych współrzędnych; 2) odczytuje współrzędne danych punktów; 3) odczytuje z wykresu funkcji: wartość funkcji dla danego argumentu, argumenty dla danej wartości funkcji, dla jakich argumentów funkcja przyjmuje wartości dodatnie, dla jakich ujemne, a dla jakich zero; 4) odczytuje i interpretuje informacje przedstawione za pomocą wykresów funkcji (w tym wykresów opisujących zjawiska występujące w przyrodzie, gospodarce, życiu codziennym); 5) oblicza wartości funkcji podanych nieskomplikowanym wzorem i zaznacza punkty należące do jej wykresu.

Praca klasowa 2 PK2 Praca klasowa 3 PK3 Figury podobne Bryły 1) oblicza wymiary wielokąta powiększonego lub pomniejszonego w danej skali; 2) oblicza stosunek pól i obwodów wielokątów podobnych; 3) rozpoznaje wielokąty przystające i podobne; 4) korzysta z własności trójkątów prostokątnych podobnych. 2) oblicza pole powierzchni i objętość walca, stożka, kuli (także w zadaniach osadzonych w kontekście praktycznym); 3) zamienia jednostki objętości Sprawdzian- S1 Statystyka. 1) interpretuje dane przedstawione za pomocą tabel, diagramów słupkowych i kołowych, wykresów; 2) wyszukuje, selekcjonuje i porządkuje informacje z dostępnych źródeł; 3) przedstawia dane w tabeli, za pomocą diagramu słupkowego lub kołowego; 4) wyznacza średnią arytmetyczną i medianę zestawu danych; 5) analizuje proste doświadczenia losowe (np. rzut kostką, rzut monetą, wyciąganie losu) i określa prawdopodobieństwa najprostszych zdarzeń w tych doświadczeniach (prawdopodobieństwo wypadnięcia orła w rzucie monetą, dwójki lub szóstki w rzucie kostką, itp.). Sprawdzian- S2 Liczby i działania 1) odczytuje i zapisuje liczby naturalne dodatnie w systemie rzymskim (w zakresie do 3000); 2) wykonuje działania na liczbach wymiernych i niewymiernych; 3) wykonuje działania na potęgach i pierwiastkach; Kartkówka- K1 Kartkówka- K2 Kartkówka- K3 Odczytywania własności funkcji z wykresu Rysowanie wykresów funkcji Obliczanie wymiarów figur podobnych 3) odczytuje z wykresu funkcji: wartość funkcji dla danego argumentu, argumenty dla danej wartości funkcji, dla jakich argumentów funkcja przyjmuje wartości dodatnie, dla jakich ujemne, a dla jakich zero; 5) oblicza wartości funkcji podanych nieskomplikowanym wzorem i zaznacza punkty należące do jej wykresu. 1) oblicza wymiary wielokąta powiększonego lub pomniejszonego w danej skali; 3) rozpoznaje wielokąty przystające i podobne,

Kartkówka- K4 Obliczanie pola powierzchni i objętości brył obrotowych 4) korzysta z własności trójkątów prostokątnych podobnych. 2) oblicza pole powierzchni i objętość walca, stożka, kuli (także w zadaniach osadzonych w kontekście praktycznym); KLASA III- 2 okres Sposób sprawdzania Nazwa Sprawdzane wiadomości i umiejętności Sprawdzian 2- S2 Liczby rzeczywiste i procenty 1. Liczby wymierne dodatnie 1) odczytywanie i zapisywanie liczb naturalnych dodatnich w systemie rzymskim w zakresie do 3000, 2) dodawanie i odejmowanie, mnożenie i dzielenie liczb wymiernych zapisanych w postaci ułamków zwykłych lub liczb o rozwinięciach dziesiętnych skończonych zgodnie z własną strategią obliczeń oraz z wykorzystaniem kalkulatora, 3) zamiana ułamków zwykłe na liczby dziesiętne (skończone i okresowe) i na odwrót, 4) zaokrąglanie rozwinięć dziesiętnych liczb z zadaną dokładnością, 5) obliczanie wartości nieskomplikowanych wyrażeń arytmetycznych zawierających ułamki zwykłe i liczby dziesiętne, 6) szacowanie wartości wyrażeń arytmetycznych, 7) obliczenia na liczbach wymiernych z zastosowaniem rozwiązywania problemów w kontekście praktycznym, w tym do zamiany jednostek (prędkości, gęstości itp.). 2. Liczby wymierne 1) interpretacja liczb wymiernych na osi liczbowej, obliczanie odległości między dwiema liczbami na osi, 2) wskazywanie na osi liczbowej zbiorów liczb spełniających warunki typu: x 3, x<5; 3) dodawanie, odejmowanie, mnożenie i dzielenie liczb wymiernych, 4) obliczanie wartości nieskomplikowanych wyrażeń arytmetycznych zawierających liczby wymierne. 5. Procenty 1) przedstawianie części pewnej wielkości jako procentu lub promila tej wielkości i odwrotnie, 2) obliczanie procentu danej liczby, 3) obliczanie liczby na podstawie danego jej procentu,

4) stosowanie obliczeń procentowych do rozwiązywania problemów w kontekście praktycznym, np. obliczanie ceny po podwyżce lub obniżce o dany procent, obliczenia związane z podatkiem VAT, obliczanie odsetek dla lokaty rocznej. Sprawdzian 3- S3 Potęgi i pierwiastki 3. Potęgi 1) obliczanie potęg liczb wymiernych o wykładnikach naturalnych, 2) zapisywanie w postaci jednej potęgi iloczynów i ilorazów potęg o takich samych podstawach lub o takich samych wykładnikach oraz potęg potęgi (przy wykładnikach naturalnych), 3) porównywanie potęg o różnych wykładnikach naturalnych i takich samych podstawach oraz o takich samych wykładnikach naturalnych i różnych dodatnich podstawach, 4) zamiana potęg o wykładnikach całkowitych ujemnych na odpowiednie potęgi o wykładnikach naturalnych, 5) zapisywanie liczb w notacji wykładniczej, tzn. w postaci a 10 k, gdzie 1 α<10 i k jest liczbą całkowitą. 4. Pierwiastki 1) obliczanie wartości pierwiastków drugiego i trzeciego stopnia z liczb, które są odpowiednio kwadratami lub sześcianami liczb wymiernych, 2) wyłączanie czynnika przed znak pierwiastka oraz włączanie go pod znak pierwiastka, 3) mnożenie i dzielenie pierwiastków drugiego i trzeciego stopnia. Sprawdzian 4- S4 Wyrażenia algebraiczne i równania 6. Wyrażenia algebraiczne 1) opisywanie za pomocą wyrażeń algebraicznych związków między różnymi wielkościami, 2) obliczanie wartości liczbowych wyrażeń algebraicznych, 3) redukcja wyrazów podobnych w sumie algebraicznej, 4) dodawanie i odejmowanie sum algebraicznych, 5) mnożenie jednomianów, mnożenie sumy algebraicznej przez jednomian oraz w nietrudnych przykładach mnożenie sum algebraicznych, 6) wyłączanie wspólnego czynnika wyrazów sumy algebraicznej przed nawias, 7) wyznaczanie wskazanej wielkości z podanych wzorów, w tym geometrycznych i fizycznych. 7. Równania 1) zapisywanie związków między wielkościami za pomocą równania pierwszego

stopnia z jedną niewiadomą, w tym związków między wielkościami wprost i odwrotnie proporcjonalnymi, 2) sprawdzanie, czy dana liczba spełnia równanie stopnia pierwszego z jedną niewiadomą, 3) rozwiązywanie równań stopnia pierwszego z jedną niewiadomą, 4) zapisywanie związków między nieznanymi wielkościami za pomocą układu dwóch równań pierwszego stopnia z dwiema niewiadomymi, 5) sprawdzanie, czy dana para liczb spełnia układ dwóch równań stopnia pierwszego z dwiema niewiadomymi, 6) rozwiązywanie układów równań stopnia pierwszego z dwiema niewiadomymi, 7) opisywanie za pomocą równań lub układów równań zadań osadzone w kontekście praktycznym i ich rozwiązywanie. Sprawdzian 5- S5 Bryły i figury płaski 10. Figury płaskie 1) korzystanie ze związków między kątami utworzonymi przez prostą przecinającą dwie proste równoległe, 2) rozpoznawanie wzajemnego położenia prostej i okręgu, rozpoznawanie stycznej do okręgu, 3) prostopadłość stycznej do okręgu do promienia poprowadzonego do punktu styczności, 4) rozpoznawanie kątów środkowych, 5) obliczanie długości okręgu i jego łuku, 6) oblicza pole koła, pierścienia kołowego, wycinka kołowego, 7) stosowanie twierdzenia Pitagorasa, 8) własności kątów i przekątnych w prostokątach, równoległobokach, rombach i trapezach, 9) obliczanie pól i obwodów trójkątów i czworokątów, 10) zamiana jednostek pola, 11) obliczanie wymiarów wielokąta powiększonego lub pomniejszonego w danej skali, 12) obliczanie stosunku pól i obwodów wielokątów podobnych, 13) rozpoznawanie wielokątów przystających i podobnych, 14) stosowanie cech przystawania trójkątów, 15) korzystanie z własności trójkątów prostokątnych podobnych, 16) rozpoznawanie pary figur symetrycznych względem prostej i względem punktu, 17) rysowanie par figur symetrycznych,

18) rozpoznawanie figur, które mają oś lub środek symetrii, wskazywanie osi i środka symetrii figur, 19) rozpoznawanie symetralnej odcinka i dwusiecznej kąta, 20) konstrukcja symetralnej odcinka i dwusiecznej kąta, 21) konstrukcje kątów o miarach 60, 30, 45, 22) konstrukcja okręgu opisanego na trójkącie i wpisanego w trójkąt, 23) rozpoznawanie wielokątów foremnych i korzystanie z ich podstawowych własności. 11. Bryły 1) rozpoznawanie graniastosłupów i ostrosłupów prawidłowych, 2) obliczanie pola powierzchni i objętości graniastosłupa prostego, ostrosłupa, walca, stożka, kuli (także w zadaniach osadzonych w kontekście praktycznym), 3) zamiana jednostek objętości. Sprawdzian 6- S6 Statystyka i funkcje 8. Wykresy funkcji 1) zaznaczanie w układzie współrzędnych na płaszczyźnie punktów o danych współrzędnych, 2) odczytywanie współrzędne danych punktów, 3) odczytywanie z wykresu funkcji wartości funkcji dla danego argumentu, argumentu dla danej wartości funkcji, ustalanie, dla jakich argumentów funkcja przyjmuje wartości dodatnie lub ujemne, ustalanie miejsc zerowych funkcji, 4) odczytywanie i interpretacja informacji przedstawionych za pomocą wykresów funkcji (w tym opisujących zjawiska występujące w przyrodzie, gospodarce, życiu codziennym), 5) obliczanie wartości funkcji podanych nieskomplikowanym wzorem i zaznaczanie punktów należących do jej wykresu. 9. Statystyka opisowa i wprowadzenie do rachunku prawdopodobieństwa. 1) interpretacja danych przedstawione za pomocą tabel, diagramów słupkowych i kołowych oraz wykresów, 2) wyszukiwanie, selekcjonowanie i porządkowanie informacji źródłowych, 3) przedstawianie danych w tabeli oraz za pomocą diagramu słupkowego lub kołowego, 4) wyznaczanie średniej arytmetycznej i mediany zestawu danych, 5) analiza prostych doświadczeń losowych (np. rzutu kostką lub monetą, wyciągania losu) i określanie prawdopodobieństwa najprostszych zdarzeń w tych doświadczeniach (wypadnięcie orła w rzucie monetą, wypadnięcie dwójki lub

Kartkówka 5- K5 Kartkówka 6- K6 Kartkówka 7- K7 szóstki w rzucie kostką itp.). Zakres sprawdzanych umiejętności według realizowanego materiału, dostosowanego do potrzeb i możliwości klasy. 3. W klasach pierwszych na początku roku szkolnego zostanie przeprowadzona diagnoza wstępna, sprawdzająca stopień opanowania przez uczniów umiejętności i wiadomości wynikających z podstawy programowej szkoły podstawowej. 4. Po zdiagnozowaniu możliwości ucznia nauczyciel wskazuje mu rodzaj zajęć pozalekcyjnych, które pomogą uczniowi rozwijać jego umiejętności, zainteresowania, uzdolnienia bądź wyrównać braki wyniesione ze szkoły podstawowej na: zajęciach koła matematycznego zajęciach dydaktyczno-wyrównawczych indywidualnych konsultacjach, na których uczeń uzupełnia braki lub poszerza swoją wiedzę rozwiązując dodatkowe zadania 5. Ocenę celującą otrzymuje uczeń, który spełnia co najmniej dwa spośród poniższych warunków: - uzyskał ocenę bardzo dobrą w klasyfikacji śródrocznej lub rocznej; - wykazał się indywidualną pracą wykraczającą poza realizowany program w ramach przygotowywania się do konkursów; - osiągnął sukcesy w konkursach matematycznych na szczeblu pozaszkolnym (zdolny Ślązak Gimnazjalista, Liga Naukowa, Olimpiada Matematyczna Gimnazjalistów, Gimnazjalna Olimpiada Matematyczna). 6. Uczniowie są informowani o wymaganiach na poszczególne oceny na początku roku szkolnego i na bieżąco, w trakcie realizacji materiału. Wymagania te są dostępne dla ucznia i rodziców u nauczyciela przedmiotu oraz na stronie internetowej szkoły. 7. Za udział w konkursach uczniowie są oceniani według podanych w poniższej tabeli zasad. Olimpiada Matematyczna Juniorów zdolny Ślązak

Powiatowa Gimnazjalna Olimpiada Matematyczna etap szkolny powiatowy wojewódzki ogólnopolski Kwalifikacja do etapu 6/4 6/5 6/6 Laureat 6/4 6/5 6/6 6/7 8. Dostosowanie Przedmiotowego Systemu Oceniania z matematyki do możliwości uczniów ze specjalnymi wymaganiami edukacyjnymi Uczniowie posiadający pisemną opinię Poradni Psychologiczno-Pedagogicznej o specyficznych trudnościach w uczeniu się oraz uczniowie posiadający orzeczenie o potrzebie nauczania indywidualnego są oceniani z uwzględnieniem zaleceń poradni. Nauczyciel dostosowuje wymagania edukacyjne do indywidualnych potrzeb psychofizycznych i edukacyjnych ucznia posiadającego opinie PPP o specyficznych trudnościach w uczeniu się. W stosunku do wszystkich uczniów posiadających dysfunkcję zastosowane zostaną zasady wzmacniania poczucia własnej wartości, bezpieczeństwa, motywowania do pracy i doceniania małych sukcesów. Obniżenie wymagań nie może zejść poniżej podstawy programowej.