Z-ZIP-1010 Techniki Wytwarzania II Manufacturing Techniques II

Podobne dokumenty
Obróbka ubytkowa Material Removal Processes. Automatyka i robotyka I stopień Ogólno akademicki Studia stacjonarne

Obróbka ubytkowa Material Removal Processes. Automatyka i robotyka I stopień Ogólno akademicki Studia stacjonarne

Obróbka Ubytkowa Metal removal process. MiBM I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Obróbka Ubytkowa Metal removal process. MiBM I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Techniki Wytwarzania II Manufacturing Techniques II

Obróbka skrawaniem Machining Processes

Komputerowe wspomaganie procesów technologicznych I Computer Aided Technological Processes

Semestr letni Metrologia, Grafika inżynierska Nie

technologicznych Wzornictwo przemysłowe I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Semestr zimowy Metrologia, Grafika inżynierska Tak

Modelowanie i budowa maszyn. Wzornictwo I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Obrabiarki Specjalizowane II Specialized Machine Tools. MiBM II stopień (I stopień / II stopień) akademicki (ogólno akademicki / praktyczny)

Obróbka erozyjna Erosion Machining. Mechanika i Budowa Maszyn II stopień ogólnoakademicki Stacjonarne. Kierunkowy obowiązkowy polski pierwszy

Obróbki powierzchniowe Surface Treatment

Techniki wytwarzania. Wzornictwo przemysłowe I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

MiBM II stopień (I stopień / II stopień) akademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)

Mechanika i Budowa Maszyn II stopień ogólnoakademicki Stacjonarne. Kierunkowy obowiązkowy polski drugi

Wzornictwo I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

MiBM_IMMiS_1/6. Obróbki wykończeniowe. Mechanika i Budowa Maszyn I stopień ogólnoakademicki Niestacjonarne

MiBM I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)

kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) polski VI letni (semestr zimowy / letni)

kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) Polski semestr pierwszy

Mechanika i Budowa Maszyn I stopień ogólnoakademicki

Budowa amunicji i zapalników Construction of ammunition and detonators

specjalnościowy obowiązkowy polski semestr pierwszy

Wzornictwo przemysłowe I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) Stacjonarne (stacjonarne / niestacjonarne)

Praktyka zawodowa. Mechanika i Budowa Maszyn I stopień ogólnoakademicki studia stacjonarne wszystkie. Dr inż. Tomasz Miłek

Metrologia II Metrology II

Semestr zimowy Brak Nie

Z-ZIP-0101 Metrologia. Zarządzanie i Inżynieria Produkcji I stopień Ogólnoakademicki. Kierunkowy Obowiązkowy Polski Semestr czwarty

Technologia i organizacja robót. Inżynieria Środowiska I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Z-LOG-1070 Towaroznawstwo Science of commodities. Przedmiot podstawowy Obowiązkowy polski Semestr V

Maszynoznawstwo Theory of machines

Inżynieria Bezpieczeństwa I stopień ogólnoakademicki stacjonarne. wspólny obowiązkowy polski czwarty. semestr letni. nie

Metrologia II Metrology II. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Zarządzanie Projektami Project Management

Maszynoznawstwo. Wzornictwo przemysłowe I stopnia (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Podstawy normalizacji INŻYNIERIA ŚRODOWISKA. I stopień. Ogólno akademicki. Humanistyczny Obowiązkowy Polski Semestr 2.

Inżynieria Środowiska II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Inżynieria Jakości Quality Engineering. Inżynieria Bezpieczeństwa I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny)

Metrologia. Zarządzanie i Inżynieria Produkcji I stopień Ogólnoakademicki

Inżynieria Jakości. Wzornictwo przemysłowe I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Konstrukcje spawane Welded constructions

Praktyka zawodowa. Automatyka i Robotyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Transport I stopień Ogólnoakademicki. Studia stacjonarne. Kierunkowy. Obowiązkowy Polski Semestr V. Semestr Zimowy

Inżynieria Jakości Quality Engineering. Transport I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Inżynieria Bezpieczeństwa I stopień Ogólnoakademicki. Studia stacjonarne. inny. obowiązkowy polski Semestr V. Semestr Zimowy

Konstrukcje spawane. Mechanika i Budowa Maszyn I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Semestr zimowy Techniki wytwarzania I Nie

Ekonomia menedżerska Managerial Economics

Semestr zimowy Podstawy marketingu Nie

Z-LOGN Towaroznawstwo Science of commodities. Logistyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Inżynieria warstwy wierzchniej Engineering of surface layer

Teoria sterowania Control theory. Elektrotechnika I stopień ogólnoakademicki. niestacjonarne. przedmiot kierunkowy

Metrologia II Metrology II. Automatyka i Robotyka I stopień (I stopień / II stopień) akademicki (ogólno akademicki / praktyczny)

Technologia budowy maszyn. Mechanika i Budowa Maszyn I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Z-ID-604 Metrologia. Podstawowy Obowiązkowy Polski Semestr VI

Zarządzania i Inżynieria Produkcji I stopień Ogólnoakademicki. Specjalnościowy Obowiązkowy Polski Semestr piąty

Metrologia II. Mechanika i Budowa Maszyn I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

E-ID2G-09-s2, E-ID2S-17-s2. Zarządzanie Projektami

Mikroskopia optyczna i elektronowa Optical and electron microscopy

Metrologia. Inżynieria Bezpieczeństwa I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny)

Metrologia. Wzornictwo Przemysłowe I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Z-0476z Analiza matematyczna I

Mechanika i Budowa Maszyn II stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny)

Semestr letni Brak Nie

Miernictwo dynamiczne Dynamic Measurement. Elektrotechnika I stopnia (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Podstawy Recyklingu Recycling Principles

Semestr zimowy Brak Nie

Technologia spawalnictwa Welding technology

Defektoskopia Non-destructive testing. Inżynieria Bezpieczeństwa I stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny)

Serwis maszyn Service machines. Zarządzanie i Inżynieria Produkcji I stopnia Ogólnoakademicki. Specjalnościowy Obowiązkowy Polski Semestr szósty

Inżynieria Jakości Quality Engineering. Zarządzanie i Inżynieria Produkcji II stopień Ogólnoakademicki

Mechanika i Budowa Maszyn II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Zarządzanie środowiskiem Environmental management

E-E-1004-s4. Elektrotechnika I stopień ogólnoakademicki. stacjonarne

Mechanika i Budowa Maszyn II stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny)

E-2EZA-01-S1. Elektrotechnika II stopień ogólnoakademicki. niestacjonarne. przedmiot kierunkowy. obowiązkowy polski semestr I semestr zimowy.

Mechanika i Budowa Maszyn I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Transport II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)

Projektowanie inżynierskie Engineering Design

Metrologia II Metrology II. TRANSPORT I stopień (I stopień / II stopień) akademicki (ogólno akademicki / praktyczny)

Z-ZIP-169z Zarządzanie usługami Servieces Management. Stacjonarne Wszystkie Katedra Ekonomii i Zarządzania Dr Dorota Miłek

Etyka inżynierska Engineering Ethics

Mechanika i Budowa Maszyn II stopień Ogólnoakademicki. Studia stacjonarne. inny. obowiązkowy polski Semestr drugi. Semestr Zimowy

E-2IZ s3. Podstawy przedsiębiorczości. Informatyka II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

E-IZ1-02-s1 FIZYKA. INFORMATYKA I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Bezpieczeństwo i higiena pracy. Zarządzanie i Inżynieria Produkcji I stopień Ogólnoakademicki

Napędy elektryczne robotyki Electric Drives in Robotics

Z-ZIPN Fizyka II. Zarządzanie i Inżynieria Produkcji I stopień Ogólnoakademicki

Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)

System Labview The Labview System. Elektrotechnika II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Obróbka bezubytkowa Chipless forming. Automatyka i Robotyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Podstawy Konstrukcji Maszyn II Machine Desing. podstawowy obowiązkowy polski V

Elektrotechnika II stopień ogólnoakademicki. stacjonarne. przedmiot specjalnościowy. obowiązkowy polski semestr I semestr zimowy

Niekonwencjonalne systemy cieplne. Inżynieria Środowiska I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

dr hab. inż. Beata Hejmanowska prof. PŚk dr hab. Lidia Dąbek, prof. PŚk

Z-LOGN1-072 Zarządzanie produkcją Production Management. Logistyka I stopień Ogólnoakademicki. Niestacjonarne

Transkrypt:

KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-ZIP-1010 Techniki Wytwarzania II Manufacturing Techniques II A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek studiów Poziom kształcenia Profil studiów Forma i tryb prowadzenia studiów Specjalność Jednostka prowadząca moduł Koordynator modułu Zarządzanie i Inżynieria Produkcji I stopień Ogólnoakademicki Stacjonarne Wszystkie Katedra Technologii Mechanicznej i Metrologii Dr hab. inż. Edward Miko prof. PŚk Zatwierdził: B. OGÓLNA CHARAKTERYSTYKA PRZEDMIOTU Przynależność do grupy/bloku przedmiotów Status modułu Język prowadzenia zajęć Usytuowanie modułu w planie studiów - semestr Usytuowanie realizacji przedmiotu w roku akademickim Wymagania wstępne Egzamin Liczba punktów ECTS 3 Kierunkowy Obowiązkowy Polski Semestr trzeci Semestr zimowy Brak Nie Forma prowadzenia zajęć wykład ćwiczenia laboratorium projekt inne w semestrze 15 h 15 h

C. EFEKTY KSZTAŁCENIA I METODY SPRAWDZANIA EFEKTÓW KSZTAŁCENIA Cel modułu Nabycie wiedzy z obróbki ubytkowej. Zapoznanie się z obróbką wiórową i ścierną oraz obróbką elektroerozyjną. Nabycie praktycznych umiejętności z zakresu obróbek ubytkowych oraz budowy wybranych maszyn technologicznych. Symbol efektu Efekty kształcenia Student ma wiedzę w zakresie budowy, możliwości technologicznych i zastosowania obrabiarek konwencjonalnych i CNC. Student ma wiedzę w zakresie technik wytwarzania sposobami obróbki wiórowej i ściernej. Student potrafi dobrać parametry obróbki i narzędzia do określonego zdania technologicznego. Student potrafi dobrać materiał wyjściowy i obrabiarkę do wykonania określonego zadania produkcyjnego. Student rozumie potrzebę osobistego rozwoju w zakresie technik wytwarzania związanego z ciągłym rozwojem tego obszaru działalności wytwórczej. Ma świadomość ważności i rozumie powiązania pomiędzy działalnością w zakresie technik wytwarzania a pozatechniczną w aspekcie skutków oddziaływania na środowisko naturalne i odpowiedzialności za podejmowane decyzję. Forma prowadzenia zajęć (w/ć/l/p/inne) odniesienie do efektów kierunkowych K_W09 K_W06 K_W09 K_U01 K_U03 K_U09 K_U01 K_U03 K_U09 odniesienie do efektów obszarowych Inż. A_W04 Inż. A_W05 Inż. A_W02 Inż. A_W04 Inż. A_W05 TA1_U01 TA1_U03 TA1_U08 Inż. A_01 TA1_U01 TA1_U03 TA1_U08 Inż. A_01 K_K01 T1A_K01 K_K02 T1A_K02 Inż. A_K01 Treści kształcenia: 1. Treści kształcenia w zakresie wykładu Nr wykładu Treści kształcenia 1 Budowa, możliwości technologiczne i zastosowanie obrabiarek ogólnego przeznaczenia. 2 Budowa, możliwości technologiczne, zastosowanie i programowanie obrabiarek CNC. Komputerowe wspomaganie wytwarzania. 3 Znaczenie i rola obróbki ubytkowej w procesach produkcyjnych. Istota obróbki wiórowej i ściernej, obróbki erozyjnej i hybrydowej, metody obróbki materiałów. Kierunki rozwoju obróbki ubytkowej. 4 Podstawowe technologiczne, geometryczne i kinematyczne pojęcia i wielkości charakteryzujące proces obróbki wiórowej i ściernej. Związek obróbki skrawaniem z jakością technologiczną wyrobów. Odniesienie do efektów kształcenia dla modułu

5 Współczesne narzędzia skrawające do obróbki materiałów. Nowoczesne materiały na ostrza skrawające oraz tendencje rozwojowe w konstrukcji narzędzi. 6 Sposoby i zastosowanie obróbki wiórowej w produkcji części maszyn i urządzeń: toczenie, frezowanie, wiercenie i rozwiercanie, przeciąganie. Obróbka wiórowa szybkościowa. 7 Sposoby i zastosowanie obróbki ściernej w produkcji części maszyn i urządzeń: szlifowanie, gładzenie, dogładzanie oscylacyjne i docieranie. 8 Zaliczenie 2. Treści kształcenia w zakresie zadań laboratoryjnych Nr zajęć lab. Treści kształcenia 1 Wprowadzenie do ćwiczeń. Omówienie zasad realizacji i zaliczenia ćwiczeń. Zapoznanie z przepisami BHP, obowiązującymi w laboratorium. Omówienie tematyki ćwiczeń. Budowa, możliwości technologiczne i zastosowanie obrabiarek 2 Technologia prac tokarskich z wykorzystaniem tokarek konwencjonalnych i sterowanej numerycznie. Technologia wykonywania gwintów. 3 Technologia prac tokarskich z wykorzystaniem tokarek konwencjonalnych i sterowanej numerycznie. Technologia wykonywania stożków 4 Technologia prac frezarskich z wykorzystaniem frezarek konwencjonalnych i sterowanej numerycznie. Wykorzystanie prac frezarskich z wykorzystaniem podzielnicy. 5 Technologia wykonywania uzębień kół zębatych walcowych. Wykonywanie uzębień metodą kształtową i obwiedniową. Odniesienie do efektów kształcenia dla modułu 6 Szlifierki do wałków i otworów. Technologia prac szlifierskich. 7 Szlifierki do płaszczyzn i ostrzarki. Technologia szlifowania płaszczyzn i ostrzenia narzędzi skrawających 8 Zaliczenie.

Metody sprawdzania efektów kształcenia: Symbol efektu Metody sprawdzania efektów kształcenia (sposób sprawdzenia, w tym dla umiejętności odwołanie do konkretnych zadań projektowych, laboratoryjnych, itp.) Kolokwium zaliczeniowe, opracowanie sprawozdania z laboratorium i sprawdzian końcowy. Student, aby uzyskać ocenę dobrą, powinien znać ogólną budowę i możliwości technologiczne obrabiarek. Aby uzyskać ocenę bardzo dobrą, powinien dodatkowo znać i rozumieć strukturę kinematyczną obrabiarek i zastosowanie tych obrabiarek do poszczególnych zadań technologicznych. Kolokwium zaliczeniowe, opracowanie sprawozdania z laboratorium i sprawdzian końcowy. Student, aby uzyskać ocenę dobrą, powinien mieć podstawową wiedzę nt. najważniejszych technik wytwarzania sposobami obróbki wiórowej i ściernej. Aby uzyskać ocenę bardzo dobrą, student powinien dodatkowo znać i rozumieć rolę i znaczenie technik wytwarzania w procesach wytwórczych oraz dodatkowo znać sposoby obróbki erozyjnej i hybrydowej. Kolokwium, aktywność na laboratorium, samodzielne opracowanie sprawozdania i sprawdzian końcowy. Student, aby uzyskać ocenę dobrą, powinien umieć wykorzystać podstawową wiedze teoretyczną zdobytą na wykładach i laboratoriach w celu doboru parametrów obróbki i narzędzi do określonego zdania technologicznego. Aby uzyskać ocenę bardzo dobrą, powinien dodatkowo umieć korzystać z katalogów producentów narzędzi skrawających. Kolokwium, aktywność na laboratorium, samodzielne opracowanie sprawozdania i sprawdzian końcowy. Student, aby uzyskać ocenę dobrą, powinien umieć dobrać materiał wyjściowy i obrabiarkę do prostego zadania produkcyjnego. Aby uzyskać ocenę bardzo dobrą, powinien dodatkowo umieć wykonać rysunek materiału wyjściowego i korzystać z katalogów branżowych. Obserwacja postawy studenta podczas zajęć dydaktycznych, dyskusja podczas zajęć laboratoryjnych. Student aby uzyskać ocenę dobrą powinien rozumieć potrzebę ciągłego rozwoju w zakresie technik wytwarzania sposobami obróbki ubytkowej i na bieżąco ją uzupełniać. Aby uzyskać oceną bardzo dobrą, powinien uzupełniać tę wiedzę w zakresie szerszym od członków grupy np. korzystać materiałów publikacyjnych. Obserwacja postawy studenta podczas zajęć dydaktycznych, dyskusja podczas zaliczenia sprawozdania z laboratorium. Student, aby uzyskać ocenę dobrą powinien rozumieć znaczenie oddziaływania technik wytwarzania na środowisko naturalne. Aby uzyskać ocenę bardzo dobrą, powinien umieć dokonać analizy wpływu konkretnego procesu wytwarzania na środowisko naturalne. D. NAKŁAD PRACY STUDENTA Rodzaj aktywności Bilans punktów ECTS obciążenie studenta 1 Udział w wykładach 15 h 2 Udział w ćwiczeniach 3 Udział w laboratoriach 15 h 4 Udział w konsultacjach (2-3 razy w semestrze) 10 h 5 Udział w zajęciach projektowych 6 Konsultacje projektowe 7 Udział w egzaminie 8 9 Liczba godzin realizowanych przy bezpośrednim udziale nauczyciela akademickiego (suma) 40 h 10 Liczba punktów ECTS, którą student uzyskuje na zajęciach 1,3 ECTS

wymagających bezpośredniego udziału nauczyciela akademickiego (1 punkt ECTS=25-30 godzin obciążenia studenta) 11 Samodzielne studiowanie tematyki wykładów 8 h 12 Samodzielne przygotowanie się do ćwiczeń 13 Samodzielne przygotowanie się do kolokwiów 10 h 14 Samodzielne przygotowanie się do laboratoriów 12 h 15 Wykonanie sprawozdań 10 h 15 Przygotowanie do kolokwium końcowego z laboratorium 6 h 17 Wykonanie projektu lub dokumentacji 18 Przygotowanie do egzaminu 19 20 Liczba godzin samodzielnej pracy studenta 21 Liczba punktów ECTS, którą student uzyskuje w ramach samodzielnej pracy (1 punkt ECTS=25-30 godzin obciążenia studenta) (suma) 46 h 1,7 ECTS 22 Sumaryczne obciążenie pracą studenta 86 h 23 Punkty ECTS za moduł 1 punkt ECTS=25-30 godzin obciążenia studenta 3 ECTS 24 Nakład pracy związany z zajęciami o charakterze praktycznym Suma godzin związanych z zajęciami praktycznymi 25 Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym 1 punkt ECTS=25-30 godzin obciążenia studenta 15+12+10+6=43h 1,5 ECTS E. LITERATURA Wykaz literatury Witryna WWW modułu/przedmiotu 1. Feld M., Technologia budowy maszyn. PWN, Warszawa 1995 2. Karpiński T., Inżynieria produkcji, WNT, Warszawa 2004 3. Grzesik W., Podstawy obróbki skrawaniem materiałów metalowych. WNT, Warszawa 2010 4. Poradnik Inżyniera" Obróbka Skrawaniem". Tl, TM, TIN. WNT Warszawa 1994 5. Ruszaj A., Niekonwencjonalne metody wytwarzania elementów maszyn i narzędzi. I.O.S, Kraków 1999