IMAGE TEXTURE ANALYSIS IN BIOMEDICAL APPLICATIONS

Podobne dokumenty
Michał Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (3)

MoA-Net: Self-supervised Motion Segmentation. Pia Bideau, Rakesh R Menon, Erik Learned-Miller

Medical electronics part 9a Electroencephalography (EEG)

Medical Electronics: Imaging (2)

BIOPHYSICS. Politechnika Łódzka, ul. Żeromskiego 116, Łódź, tel. (042)

Hard-Margin Support Vector Machines

Medical Imaging. Politechnika Łódzka, ul. śeromskiego 116, Łódź, tel. (042)

Activities Performed by prof. Tadeusiewicz in Books and Journals Editorial Boards

Auditorium classes. Lectures

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

tum.de/fall2018/ in2357

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Kierunek: Informatyka rev rev jrn Stacjonarny EN 1 / 6

Probabilistic Methods and Statistics. Computer Science 1 st degree (1st degree / 2nd degree) General (general / practical)

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Microsystems in Medical Applications Liquid Flow Sensors

DEFINING REGIONS THAT CONTAIN COMPLEX ASTRONOMICAL STRUCTURES

Michał Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (1)

Forested areas in Cracow ( ) evaluation of changes based on satellite images 1 / 31 O

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

Inverse problems - Introduction - Probabilistic approach

HARMONOGRAM GODZINOWY ORAZ PUNKTACJA ECTS CZTEROLETNICH STUDIÓW DOKTORANCKICH

PLAN STUDIÓW Wydział Elektroniki, Telekomunikacji i Informatyki, Wydział Zarządzania i Ekonomii Inżynieria danych

Zastosowanie sztucznej inteligencji w testowaniu oprogramowania

Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia. Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia

Neural Networks (The Machine-Learning Kind) BCS 247 March 2019

An evaluation of GoldAnchor intraprostatic fiducial marker stability during the treatment planning

Matematyka Stosowana na Politechnice Wrocławskiej. Komitet Matematyki PAN, luty 2017 r.

Course syllabus. Mathematical Basis of Logistics. Information Technology in Logistics. Obligatory course. 1 1 English

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Zastosowanie sieci neuronowych w problemie klasyfikacji wielokategorialnej. Adam Żychowski

GMWØJCIK Publications

Badania w sieciach złożonych

Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

Zagadnienia egzaminacyjne INFORMATYKA. Stacjonarne. II-go stopnia. (INT) Inżynieria internetowa STOPIEŃ STUDIÓW TYP STUDIÓW SPECJALNOŚĆ

DIAGNOSIS OF WORKING MECHANISMS IN MACHINERY AND EQUIPMENT

The Overview of Civilian Applications of Airborne SAR Systems

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

deep learning for NLP (5 lectures)

STATISTICAL METHODS IN BIOLOGY

Wprowadzenie do programu RapidMiner Studio 7.6, część 9 Modele liniowe Michał Bereta

Rada do spraw cyfryzacji Zespół: Edukacja cyfrowa

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

3.

POLITECHNIKA KOSZALIŃSKA. Zbigniew Suszyński. Termografia aktywna. modele, przetwarzanie sygnałów i obrazów

Has the heat wave frequency or intensity changed in Poland since 1950?

DETECTION OF MATERIAL INTEGRATED CONDUCTORS FOR CONNECTIVE RIVETING OF FUNCTION-INTEGRATIVE TEXTILE-REINFORCED THERMOPLASTIC COMPOSITES

ANALIZA WŁAŚCIWOŚCI FILTRU PARAMETRYCZNEGO I RZĘDU

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Medical electronics part 9b Electroencephalography (EEG)

Wymiar godzin Pkt Kod Nazwa przedmiotu Egz. ECTS W C L P S P Physics I E P Mathematical analysis I P Linear algebra and analytic E 2 2 7

4. EKSPLOATACJA UKŁADU NAPĘD ZWROTNICOWY ROZJAZD. DEFINICJA SIŁ W UKŁADZIE Siła nastawcza Siła trzymania

Wprowadzenie do programu RapidMiner, część 5 Michał Bereta

LISTA KURSÓW PLANOWANYCH DO URUCHOMIENIA W SEMESTRZE ZIMOWYM 2015/2016

Uwaga wstępna: Kognitywne Systemy Wspomagające Zarządzanie

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Wydział Informtyki i Nauki o Materiałach Kierunek Informatyka

Zarządzanie sieciami telekomunikacyjnymi

OpenPoland.net API Documentation

Effective Governance of Education at the Local Level

Redukcja wymiarowości i selekcja cech w zadaniach klasyfikacji i regresji z wykorzystaniem uczenia maszynowego

STUDY AND ADJUSTMENT OF DERMOSCOPIC IMAGE PROCESSING ALGORITHMS FOR LESION BORDER DETECTION 1

Maszyny wektorów podpierajacych w regresji rangowej

Analiza sygnału EKG i modelowanie pracy serca

Label-Noise Robust Generative Adversarial Networks

ARMAX (ANN) : :. (ANN) ARMAX.... ARMAX ARMA :..Q47 E27 C53 C45 :JEL

Medical electronics part 10 Physiological transducers

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

RAPORT Z PIERWSZEGO ETAPU REALIZACJI PROJEKTU POLONIUM

Previously on CSCI 4622

Strata barwności obrazu w procesie kwantyzacji barwy

IDENTYFIKACJA I ANALIZA PARAMETRÓW GEOMETRYCZNYCH I MECHANICZNYCH KOŚCI MIEDNICZNEJ CZŁOWIEKA

Statystyki teoriografowe grafów funkcjonalnych w sieciach neuronowych

Środowisko badawcze metod segmentacji bazujących na modelach odkształcalnych w obrazowaniu biomedycznym

Suplement do dyplomu

I II III IV V VI VII VIII

Życiorys. Wojciech Paszke. 04/2005 Doktor nauk technicznych w dyscyplinie Informatyka. Promotor: Prof. Krzysztof Ga lkowski

OSI Data Link Layer. Network Fundamentals Chapter 7. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

Learning about Language with Normalizing Flows Graham Neubig Language Technologies Institute, Carnegie Mellon University

Układy reprogramowalne i SoC Język VHDL (część 4)

Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH

The shape of and the challenges for the Polish EO sector initial findings of the SEED EO project

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

MATLAB Neural Network Toolbox przegląd

EUROPEJSKI PROGRAM COST B11 ILOŚCIOWA ANALIZA TEKSTUR OBRAZÓW TOMOGRAFICZNYCH REZONANSU MAGNETYCZNEGO

System biometryczny bazujący na rozpoznawaniu ust

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

Kombinacja jądrowych estymatorów gęstości w klasyfikacji - przegląd literatury

Mikrosystemy Wprowadzenie. Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt.

PLANY I PROGRAMY STUDIÓW

Podstawy automatyki. Energetics 1 st degree (1st degree / 2nd degree) General (general / practical) Full-time (full-time / part-time)

Profil Czasopisma / The Scope of a Journal

Internet of Things Devices

Camspot 4.4 Camspot 4.5

Podejście agentowe w projektowaniu sieci RBF Agent-based approach to design of the RBFNs. I.Czarnowski

Teoria sygnałów. Signal Theory. Electrical Engineering 1 st degree (1st degree / 2nd degree) General (general / practical)

Spis treści. Wprowadzenie 13

Transkrypt:

IMAGE TEXTURE ANALYSIS IN BIOMEDICAL APPLICATIONS Michal Strzelecki Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie Innowacyjna dydaktyka bez ograniczeń zintegrowany rozwój Politechniki Łódzkiej zarządzanie Uczelnią, nowoczesna oferta edukacyjna i wzmacniania zdolności do zatrudniania osób niepełnosprawnych Institute of Electronics, Technical University of Lodz, Poland Division of Electronics and Information Engineering, Chonbuk National University, Jeonju, Korea 90-924 Łódź, ul. śeromskiego 116, tel. 042 631 28 83 www.kapitalludzki.p.lodz.pl

Presentation outline Introduction Image texture Image analysis flowchart Medical applications MaZda - software for image analysis Conclusion 2

Introduction Last decades of 20. century: development of microelectronics and computer science advances in medical imaging medical diagnosis: qualitative description -> quantitative analysis It is based on image analysis (projections or cross-sections) 3

Texture definition Texture complex visual patterns, composed of spatially organized entities that have characteristic brightness, color, shape, size. This local sub-patterns are characterized by given coarseness, roughness, regularity, contrast etc. Texture is homogeneous for human visual system. 4

Texture properties One of the first qualitative/quantitative texture description: Tamura et al. 1978 Texture features that correspond to human visual perception: coarseness, contrast, directionality, line-likeness, regularity, roughness coarse fine correlation (human perception, mathematical definition): 0.83 5

Texture properties corr = 0.94 high-contrast low-contrast corr = 0.82 directional non-directional 6

Texture examples MRF models artificial foam brain (MRI) bone (X-ray) skin mast cells derma and epidermis tooth enamel plastic potato (MRI) apple (MRI) soft cheese (MRI) 7

Example of biomedical image analysis detection of skin mast cells calculation of their parameters (eg. area, distance from D-E junction) skin mast cells derma dermalepidermis junction epidermis 8

Computer system for image processing and analysis Image preprocessing Segmentation Feature extraction Image acquisition Computer + program + knowledge geometrical parameters, texture features, Analysis of extracted image data decision: melanoma 9

Image analysis flowchart - splitting of the image into disjoint, homogeneous regions IMAGE ACQUISITION, PREPROCESSING TEXTURE FEATURE ESTIMATION SEGMENTATION QAUNTITATIVE IMAGE ANALYSIS f 11 =(f 1, f 2,,f n ) f 21 =(f 1, f 2,,f n ) f 31 =(f 1, f 2,,f n ) f 12 =(f 1, f 2,,f n ) f 22 =(f 1, f 2,,f n ) f 32 =(f 1, f 2,,f n ) texture feature map (texture feature estimated for each image point) 10

Texture feature extraction o statistical image intensity domain mathematical models transform based o structural o signal processing 11

Statistical approach feature extraction in image intensity domain histogram co-occurrence matrix 2nd order histogram [Haralick et al.1973] higher order statistics [Kovalev & Petrou 1996] run-length matrix [Haralick 1979] 800 600 gradient matrix 400 200 0 0 50 100 150 200 250 12

Statistical approach mathematical model parameter estimation Markov random fields [Geman & Geman 1984] autoregressive models [Chelappa et al. 1985] fractals [Chen et al. 1990] bone tissue GMRF model 13

Statistical approach input image transform output image Fourier transform Gabor filters [Dunn et al. 1994] Wavelet transform [Choi & Baraniuk 2001] 14

Structural approach texel a basic, repetitive texture element placement rules [Haralick 1979] 15

Feature selection for further analysis feature evaluation g 2 g 1 g 3 g 4 g 5 feature selection: Fisher, POE, MI g 6 g n F=1056 f 2 f 1 F=107 feature projection: LDA, PCA, NDA 16

Texture classification Texture classification wrist bone X-ray images healthy (1) osteopenia (2) osteoporosis (3) 2 nd order MRF features LDA class. err.: 2/27 [7.4%] class. err.: 0/27 [0%] 17

Texture classification Heart masses (ultrasound images) test set trombi (1) class. errors: train.: 10/108 [9%] test: 5/55 [9%] malignant (2) NDA: f 1 f 2 f 3 benign (3) statistical features g 1 g 2 g 3 g 4 18

Texture classification Breast tumors (thermograms) 1-NN classifier Control (false positive) Diseased (false negative) Raw data 2/10 3/30 LDA 1/10 1/30 normal histogram, co-occurrence matrix tumor (left) reference method: mammography and/or biopsy 19

Texture classification Liver diseases (3D MR images) 3D co-occurrence matrix features NDA class. errors: train.: 6/80 [7%] test: 5/60 [8%] 20

Approaches to imagei segmentation PIXEL BASED REGION BASED Thresholding (global, local, multi-level) INTERIOR BOUNDARIES Region growing Region splitting Edge detection 21

Image thresholding 2500 2000 1500 1000 500 0 T1 T2 T3 0 50 100 150 200 250 22

Region growing based on neighbor similarity seed points 23

Image segmentation methods artificial neural networks (Hopfield, multilayer perceptrons, network of synchronized oscillators) Bayes estimation (MRF models) deformable models (active contours, snakes, deformable greeds) Level set approach unsupervised segmentation (k-means, Kohonen neural networks, AHC) 24

Texture segmentation Texture segmentation MR image of foot cross-section statistical features GMRF model parameters multilayer perceptron (MLP) segmentation results 25

Texture segmentation Texture segmentation Heart mass echocardiogram (benign tumor) statistical features, NDA NDA feature map MLP oscillator network 26

Texture segmentation Texture segmentation Detection of texture edges oscillator network weights set to detect texture boundaries 27

Brain vessel modeling MRI BOLD images Segmentation, tracking, modelling 3D MRI data (MIP, raster) OBJECTIVES: Simulation of flow of blood, drug, contrast medium, pressure drop Surface of vessels model (triangulation) M. Kocinski, IE, TUL 28

Texture segmentation 3D MR liver images 3D oscillator network Perceptron neural network 29

Texture segmentation 3D MR liver images statistical features 3D oscillator network 30

Conclusion Analysis of medical images significantly improved medical diagnosis (quantitative analysis, objective results, repeatability) Texture analysis is crucial in case of biomedical images Importance of medical imaging will be still increasing in the future (fmri, 3D modeling and analysis, telemedicine) There is a need to develop biomedical image analysis techniques (plenty of algorithms and methods, but the universal solution does not exist st) 31

References http://www.materka.p.lodz.pl/referat/img_isitc07.pdf Brodatz P., Textures - A Photographic Album for Artists and Designers, Dover, 1966. Hajek M., Dezertova M., Materka A., Lerski R. (Ed.), Texture analysis for Magnetic Resonance Imaging, Med4 publishing, 2006. Tamura H., Mori S., Yamawaki T., Textural Features Corresponding to Visual Perception, IEEE Trans. on Systems, Man, and Cybernetics, SMC-8, pp. 460-473, 1978. Haralick R., Statistical and Structural Approaches to Texture, Proc. IEEE, 67, 5, 1979, 786-804. Haralick R., Shanmugan K., Dinstain I., Textural Features for Image Classification, IEEE Transactions on Systems, Man and Cybernetics, 3, 6, 1973, 610-622. Kovalev V., Petrou M., Multidimensional Co-Occurrence Matrices for Object Recognition and Matching, GMIP, 58, 3, 1996, 187-197. Geman S., Geman D., Stochastic Relaxation, Gibbs Distribution and the Bayesian Restoration of Images, IEEE Trans. Pattern Analysis and Machine Intelligence, 6, 11, 1984, 721-741. Chellappa R., Chatterjee S., Bagdazian R., Texture Synthesis and Compression Using Gaussian-Markov Random Field Models, IEEE Trans. on Systems, Man, and Cyber., 15, 2, 1985, 298-303. Dunn D., Higgins W. E., Wakeley J., Texture Segmentation Using 2-D Gabor Elementary Functions, IEEE Trans. on Pattern Analysis and Machine Intelligence, 16, 1994, pp. 130-149. Chen C-C., Daponte J., Fox M., Fractal Feature Analysis and Classification in Medical Imaging, IEEE Trans. Medical Imaging, 8, 2, 1990, 133-142. Choi H., Baraniuk R., Multiscale Image Segmentation Using Wavelet-Domain Hidden Markov Models, IEEE Trans. on Image Processing, 10, 9, 2001, 1309-1321. Randen T., Husoy J., Filtering for Texture Classification: A Comparative Study, IEEE on Pattern Analysis and Machine Intelligence, 21, 4, 1999, 291-310. 32

References Yhann S., Young T., Boundary Localisation in Texture Segmentation, IEEE Trans. Image Processing, 4, 6, 1995, 849-856. Augusteijn M., Texture Segmentation and Classification Using Neural Network Technology, Applied Mathematics and Computer Science, 4, 1995, 353-370 Cohen F., Cooper D., Simple Parallel Hierarchical and Relaxation Algorithms for Segmenting Noncausal Markovian Random Field, IEEE Trans. Pattern Analysis and Machine Intelligence, 9, 2, 1987, 195-219. Wang D., Emergent Synchrony in Locally Coupled Neural Oscillators, IEEE Trans. on Neural Networks, 6, 4, 1995, 941 948. Hu Y., Hwang J. (Ed.) Handbook of Neural Network Signal Processing,, CRC Press, 2002. Reed T., Wechsler H., Werman M., Texture Segmentation Using a Diffusion Region Growing Technique, Pattern Recognition, 23, 9, 1990, 953-990. Raghu P., Yegnanarayana B., Supervised Texture Classification Using a Probabilistic Neural Network and Constraint Satisfaction Model, IEEE Trans. on Neural networks, 9 3, 1998, 516-522. Yin H., Allinson H., Unsupervised Segmentation of textured Images Using a Hierarchical Neural Structure, Electronics Letters, 30, 22, 1994, 1842-1843. Strzelecki M., Materka A., Drozdz J., Krzeminska-Pakula M., Kasprzak J. D., Classification and segmentation of intracardiac masses in cardiac tumor echocardiograms, Computerized Medical Imaging and Graphics, 30, 2, March 2006, pp. 95-107. Klepaczko A., Application of clustering algorithms for feature selection for data classification tasks, Ph. D. Thesis, Technical University of Lodz, 2006 (in Polish). 33