SYSTEM POMIAROWY DO MONITOROWANIA PĘKANIA POŁĄCZEŃ MONTAŻOWYCH STOSOWANYCH W PRZEMYŚLE LOTNICZYM



Podobne dokumenty
Wymagane parametry dla platformy do mikroskopii korelacyjnej

Andrzej Zbrowski 1), Tomasz Wolszakiewicz 2) 1. Wprowadzenie

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

2.2 Wyznaczanie modułu Younga na podstawie ścisłej próby rozciągania

STATYCZNA PRÓBA ROZCIĄGANIA

Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH. Nr 2

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

STRUKTURA SYSTEMU STEREOWIZYJNEGO W BADANIACH ZMĘCZENIOWYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Spis treści Przedmowa

ĆWICZENIA LABORATORYJNE Z KONSTRUKCJI METALOWCH. Ć w i c z e n i e H. Interferometria plamkowa w zastosowaniu do pomiaru przemieszczeń

Badanie współczynników lepkości cieczy przy pomocy wiskozymetru rotacyjnego Rheotest 2.1

PL B1. POLITECHNIKA WARSZAWSKA, Warszawa, PL INSTYTUT TECHNOLOGII EKSPLOATACJI. PAŃSTWOWY INSTYTUT BADAWCZY, Radom, PL

ScrappiX. Urządzenie do wizyjnej kontroli wymiarów oraz kontroli defektów powierzchni

PhoeniX. Urządzenie do wizyjnej kontroli wymiarów oraz kontroli defektów powierzchni

Spis treści. Przedmowa 11

ZMĘCZENIE MATERIAŁU POD KONTROLĄ

Próby ruchowe dźwigu osobowego

ME 405 SERIA ME-405. Maszyny do badań na rozciąganie/ściskanie/zginanie kn.

Problematyka budowy skanera 3D doświadczenia własne

Metody badań materiałów konstrukcyjnych

Postępowanie WB RM ZAŁĄCZNIK NR Mikroskop odwrócony z fluorescencją

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

ĆWICZENIE 15 WYZNACZANIE (K IC )

Temat 1 (2 godziny): Próba statyczna rozciągania metali

(13)B1 PL B1. (54) Sposób oraz urządzenie do pomiaru odchyłek okrągłości BUP 21/ WUP 04/99

Zapytanie ofertowe nr 5/2014

Ćw. 18: Pomiary wielkości nieelektrycznych II

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 51: Współczynnik załamania światła dla ciał stałych

PL B1. Stół obrotowy zwłaszcza do pozycjonowania próbki w pomiarach akustycznych w komorze pogłosowej

Laboratoria badawcze

Maszyny wytrzymałościowej o maksymalnej obciążalności 5kN z cyfrowym systemem sterującym

Integralność konstrukcji

Załącznik Nr 1 do SIWZ MIKROSKOPY. opis i rozmieszczenie

OPIS PRZEDMIOTU ZAMÓWIENIA WYMAGANIA TECHNICZNE

Nowa metoda pomiarów parametrów konstrukcyjnych hełmów ochronnych z wykorzystaniem skanera 3D

1. MIKROSKOP BADAWCZY (1 SZT.) Z SYSTEMEM KONTRASTU NOMARSKIEGO DIC ORAZ CYFROWĄ DOKUMENTACJĄ I ANALIZĄ OBRAZU WRAZ Z OPROGRAMOWANIEM

ME 402 SERIA ME-402. Maszyny do badań na rozciąganie/ściskanie/zginanie 1-300kN.

Obrabiarki CNC. Nr 10

POMIARY METODAMI POŚREDNIMI NA MIKROSKOPIE WAR- SZTATOWYM. OBLICZANIE NIEPEWNOŚCI TYCH POMIARÓW

Wyboczenie ściskanego pręta

DOTYCZY: Sygn. akt SZ /12/6/6/2012

Politechnika Białostocka

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Metrologia: charakterystyki podstawowych przyrządów pomiarowych. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

MUE 404 SERIA MUE-404. Maszyny do badań wytrzymałości na rozciąganie/ściskanie/zginanie 600 kn- 2 MN.

MUF 404 SERIA MUF-404. Dynamiczne maszyny do badań wytrzymałościowych na rozciąganie i ściskanie.

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

STATYCZNA PRÓBA ROZCIĄGANIA

Zmęczenie Materiałów pod Kontrolą

WYDZIAŁ ELEKTRYCZNY. Optoelektroniczne pomiary aksjograficzne stawu skroniowo-żuchwowego człowieka

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

MatliX + MatliX MS. Urządzenie do wizyjnej kontroli wymiarów oraz kontroli defektów powierzchni

Metody optyczne z wykorzystaniem światła koherentnego do monitorowania i wysokoczułych pomiarów inżynierskich obiektów statycznych i dynamicznych

1.Wstęp. Prąd elektryczny

Temat: Zaprojektowanie procesu kontroli jakości wymiarów geometrycznych na przykładzie obudowy.

Zadanie 1 Zadanie 2 tylko Zadanie 3

TECHNOLOGIA MASZYN. Wykład dr inż. A. Kampa

Katalog zbędnych środków produkcji 2016

Dobór materiałów konstrukcyjnych cz. 10

System automatycznego odwzorowania kształtu obiektów przestrzennych 3DMADMAC

Projekt nr POIG /09. Tytuł: Rozbudowa przedsiębiorstwa w oparciu o innowacyjne technologie produkcji konstrukcji przemysłowych

Laboratorium Wytrzymałości Materiałów

Wyznaczanie modułu Younga metodą strzałki ugięcia

Politechnika Białostocka

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania. Studia: I stopnia (inżynierskie)

Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R 0,05, umownej granicy plastyczności R 0,2 oraz modułu sprężystości podłużnej E

Temat 2 (2 godziny) : Próba statyczna ściskania metali

Laboratorium Maszyny CNC. Nr 4

Cel i zakres ćwiczenia

PL B1. Sposób i urządzenie do porównania i pomiaru parametrów figur płaskich, zwłaszcza arkuszy blachy

WYBÓR PUNKTÓW POMIAROWYCH

Podstawy technik wytwarzania PTWII - projektowanie. Ćwiczenie 4. Instrukcja laboratoryjna

KATEDRA TECHNOLOGII MASZYN I AUTOMATYZACJI PRODUKCJI ĆWICZENIE NR 2 POMIAR KRZYWEK W UKŁADZIE WSPÓŁRZĘDNYCH BIEGUNOWYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

Katedra Inżynierii Materiałów Budowlanych

OBLICZANIE NADDATKÓW NA OBRÓBKĘ SKRAWANIEM na podstawie; J.Tymowski Technologia budowy maszyn. mgr inż. Marta Bogdan-Chudy

PL B BUP 13/ WUP 01/17

PR kwietnia 2012 Mechanika Strona 1 z 5. XTS (extended Transport System) Rozszerzony System Transportowy: nowatorska technologia napędów

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

14th Czech Polish Workshop ON RECENT GEODYNAMICS OF THE SUDETY MTS. AND ADJACENT AREAS Jarnołtówek, October 21-23, 2013

MUF 401 SERIA MUF-401. Maszyny do badań dynamicznych do 100 Hz kn.

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Stanowisko do pomiaru fotoprzewodnictwa

SquezeeX. Urządzenie do wizyjnej kontroli wymiarów oraz kontroli defektów powierzchni

MiAcz3. Elektryczne maszynowe napędy wykonawcze

INSTYTUT LOTNICTWA. Al. Krakowska 110/ Warszawa Tel.: Fax.:

DOKŁADNOŚĆ POMIARU DŁUGOŚCI

Badania właściwości zmęczeniowych bimetalu stal S355J2- tytan Grade 1

Cena netto (zł) za osobę. Czas trwania. Kod. Nazwa szkolenia Zakres tematyczny. Terminy

Załącznik nr 8. UNIA EUROPEJSKA Europejski Fundusz Rozwoju Regionalnego

WYZNACZANIE PROMIENIA KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

MG-02L SYSTEM LASEROWEGO POMIARU GRUBOŚCI POLON-IZOT

Statyczna próba rozciągania - Adam Zaborski

Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia I stopnia (inżynierskie)

Lista zagadnień kierunkowych pomocniczych w przygotowaniu do egzaminu dyplomowego magisterskiego Kierunek: Mechatronika

LABORATORIUM OPTYKI GEOMETRYCZNEJ

PRACA PRZEJŚCIOWA SYMULACYJNA. Zadania projektowe

Transkrypt:

SYSTEM POMIAROWY DO MONITOROWANIA PĘKANIA POŁĄCZEŃ MONTAŻOWYCH STOSOWANYCH W PRZEMYŚLE LOTNICZYM Andrzej ZBROWSKI, Tomasz SAMBORSKI, Tomasz GIESKO, Dariusz BOROŃSKI, Tomasz MACHNIEWICZ Połączenia nitowe należą do najstarszych metod łączenia elementów cienkościennych i są najbardziej rozpowszechnioną techniką łączenia konstrukcji stosowanych w przemyśle lotniczym. Nitowanie jest nadal szeroko wykorzystywane zarówno w dużych samolotach pasażerskich i transportowych (gdzie liczba nitów określana jest w milionach, a ich masa może dochodzić do kilku ton), jak i w lekkich samolotach szkolnych bojowych i transportowych oraz w kadłubach wielu konstrukcji śmigłowców (rys. 1). a) b) Rys. 1. Nitowe połączenia struktur lotniczych: a) fragment poszycia kadłuba bojowego śmigłowca Mi 24, b) fragment poszycia samolotu transportowego DC 3 Nawet w najnowszej konstrukcji samolotu pasażerskiego Airbus 380, w połączeniach części metalowych kadłuba, nitowanie jest nadal podstawowym sposobem łączenia elementów konstrukcyjnych [1]. Połączenia nitowe są krytycznymi miejscami struktury samolotu i w zasadniczym stopniu decydują o jej trwałości zmęczeniowej. Pod wpływem okresowo lub nieokresowo zmiennych naprężeń i odkształceń następuje obniżenie wytrzymałości oraz trwałości połączeń. Jego efektem jest zniszczenie połączenia w wyniku procesu pękania. Zmęczenie materiału w strefie połączeń w początkowej fazie jest zjawiskiem lokalnym w zakresie mikrostruktury; w końcowej fazie jest zjawiskiem globalnym, związanym z całkowitym zniszczeniem często złożonych, wielkogabarytowych struktur (rys. 2). Rys. 2. Połączenie nitowe zniszczone na skutek pękania zmęczeniowego O wytrzymałości połączeń (w tym wytrzymałości zmęczeniowej) decyduje wiele czynników konstrukcyjnych, technologicznych i materiałowych [2, 3]. Czynniki konstrukcyjne to: typ połączenia (np. zakładkowe, nakładkowe jedno- lub dwustronne), wielkość szwu nitowego, grubości łączonych blach, średnica nitów, typ nitów oraz podziałka rozmieszczenia nitów. Decydujący wpływ na trwałość zmęczeniową ma także technologia zamykania nitu. Liczne przypadki awarii spowodowanych pękaniem zmęczeniowym wskazują, że spełnienie wymagań w zakresie odpowiedniego poziomu niezawodności, trwałości i bezpieczeństwa eksploatacji zależy od pełnego poznania zagadnień dotyczących zmęczenia materiałów i konstrukcji. Prowadzone prace badawcze decydują o rozwoju metod pomiarowych oraz aparatury stosowanej w badaniach laboratoryjnych oraz eksploatacyjnych. Prawidłowa ocena stanu obiektu technicznego, narażonego na wystąpienie pęknięcia zmęczeniowego, zależy w znacznym stopniu od skutecznego wykrywania i monitorowania przebiegu procesu pękania. W diagnostyce zmęczeniowej materiałów i konstrukcji wykorzystywane są metody obserwacji bezpośredniej, pośredniej, techniki defektoskopowe oraz rozwijające się obecnie metody hybrydowe [4]. Niektóre znalazły szerokie zastosowanie praktyczne, pozostałe znajdują się w różnych stadiach rozwoju [5, 6]. W zaawansowanych badaniach konstrukcji lotniczych wykorzystywane są metody prądów wirowych do wykrywania w poszyciu płatowców mikropęknięć ukrytych pod łbami nitów [7, 8]. Ograniczona rozdzielczość, dokładność oraz brak możliwości obserwacji on-line rozwoju pęknięcia klasyfikują te rozwiązania do grupy metod pozwalających jedynie diagnozować z wyróżnieniem dwóch stanów: zdatności i niezdatności. Analiza zastosowań metod do kontroli pęknięć [9] potwierdza znaczne ograniczenie możliwości automatyzacji procesu pomiarowego. Są to w większości metody pośrednie niedające możliwości pracy 5

3/2010 TECHNOLOGIA I AUTOMATYZACJA MONTAŻU w trybie czasu rzeczywistego. Duża liczba przypadków, w których istnieje potrzeba diagnozowania złożonych elementów konstrukcyjnych o zróżnicowanej geometrii, wykonanych z różnych materiałów sprawia, że opracowanie uniwersalnej metody badań diagnostycznych jest trudne. Konieczne jest opracowanie, dla poszczególnych przypadków, odpowiednich metod diagnozowania, technik pomiarowych i projektowania specjalizowanej aparatury badawczej. Wymogiem podstawowym jest możliwie pełne monitorowanie połączenia z uwzględnieniem jak największej liczby czynników wpływających na powstawanie i propagację pęknięcia zmęczeniowego. W Instytucie Technologii Eksploatacji Państwowym Instytucie Badawczym w Radomiu opracowano system pomiarowy umożliwiający inspekcję i monitorowanie pękania zmęczeniowego w strefie połączeń montażowych stosowanych w przemyśle lotniczym. W urządzeniu wykorzystano technikę maszynowego widzenia do obserwacji powierzchni próbki poddawanej działaniu obciążeń mechanicznych na maszynie wytrzymałościowej. Opracowanie systemu wymagało rozwiązania zagadnień z zakresu metodyki pomiarowej oraz konstrukcji systemów mechatronicznych, w tym: algorytmów detekcji pęknięcia i pomiaru jego długości w czasie rzeczywistym, przy zapewnieniu wysokiej dokładności i rozdzielczości pomiarowej oraz procedury zautomatyzowanego procesu kalibracji. STRUKTURA SYSTEMU Opracowany system jest przeznaczony do pomiarów długości pęknięć w próbkach materiałów poddawanych obciążeniom mechanicznym. System posiada strukturę modułową (rys. 3), której zasadniczymi elementami są: mechatroniczny układ pozycjonowania, wizyjna głowica pomiarowa, zespół urządzeń sterujących oraz specjalistyczne oprogramowanie komputerowe. Wynik pomiaru długości pęknięcia jest wyznaczany na podstawie zmierzonych wartości przemieszczeń napędów liniowych stolika X-Y głowicy wizyjnej i pomiaru optycznego na obrazie pęknięcia wyświetlanym na monitorze. Zespół pozycjonowania, wyposażony w napędy liniowe z enkoderami optycznymi, wraz z głowicą jest zamontowany na kolumnach maszyny wytrzymałościowej. Zadania sterujące układami wykonawczymi wykonuje zespół urządzeń sterujących komunikujący się z komputerem. W skład zespołu urządzeń sterujących wchodzą sterowniki elektroniczne silników krokowych, sterownik elektroniczny oświetlacza oraz układy zasilania urządzeń. Sterowanie przebiegiem procesu pomiarowego jest realizowane z poziomu komputera klasy PC z zainstalowanym specjalistycznym oprogramowaniem dedykowanym dla opracowanego urządzenia. Zapewnienie wysokiej dokładności pomiaru przy jednocześnie dużym zakresie pomiarowym realizowano poprzez zastosowanie koncepcji układu nadążnego, pozycjonującego głowicę nad bieżącym położeniem końca pęknięcia (rys. 4). Start Ustalenie położenia głowicy pomiarowej nad czołem pęknięcia zmęczeniowego Określenie współrzędnych końca pęknięcia Wyznaczenie przyrostu długości pęknięcia i wektora przemieszczenia wierzchołka pęknięcia Określenie współrzędnych końca pęknięcia Rys. 4. Schemat metodyki pomiaru pęknięcia zmęczeniowego Położenie głowicy względem obiektu badań korygowane jest po każdej zaobserwowanej zmianie długości pęknięcia zmęczeniowego na podstawie wyznaczonych wartości wektora przemieszczenia czoła pęknięcia. Analiza odbywa się z zastosowaniem trzech parametrów określających: długość wektora, promień pola analizy i kąt pola analizy. Wartość wymienionych parametrów zależy od charakteru pęknięcia. Na rys. 5 przedstawiono schematycznie przebieg skanowania obrazu w poszukiwaniu kolejnych punktów trajektorii pęknięcia. Rys. 3. Schemat ogólny przedstawiający strukturę systemu pomiaru długości pęknięcia Rys. 5. Schematyczne ujęcie metody skanowania obrazu pęknięcia 6

Do wykrywania końca pęknięcia zastosowano statystyczne parametry oceny intensywności obrazu w otoczeniu pęknięcia zmęczeniowego. Spełnienie warunków wystąpienia końca pęknięcia powoduje zakończenie analizy w pojedynczym kroku pomiarowym. Otrzymane w wyniku przeprowadzonej analizy obrazu rastrowego linie pęknięcia, opisane za pomocą dwuwymiarowej tablicy, poddawane są dalszej analizie w celu wyznaczenia współrzędnych położenia końca pęknięcia oraz przyrostu długości pęknięcia względem poprzednio zrealizowanego pomiaru. Na rys. 6 pokazano przykładowe okno monitorowania pomiaru oraz wstępnego pozycjonowania głowicy pomiarowej z wyznaczonym zarysem i końcem pęknięcia zmęczeniowego. a) b) moduł ustawień i wstępnego pozycjonowania głowicy pomiarowej, moduł ustawień trybu i sposobu rejestracji danych pomiarowych, moduł pomiaru i sterowania pracą systemu, moduł prezentacji wyników pomiarów. Poszczególne funkcje są wywoływane w oddzielnych oknach oprogramowania. BUDOWA MODUŁÓW MECHATRONICZNYCH Główny układ konstrukcyjny systemu (rys. 7) tworzy zespół pozycjonowania X-Y-Z, którego zadaniem jest przemieszczanie głowicy wizyjnej względem próbki badanej na maszynie wytrzymałościowej. Zespół pozycjonowania posiada konstrukcję modułową, wykonaną z aluminiowych elementów profilowych. Na ramie zespołu pozycjonowania (1) jest zamocowany moduł pozycjonera liniowego osi O-X (5). Pozycjoner liniowy osi O-Y (4) zamocowano poprzecznie do modułu liniowego (5) i dodatkowo podparto na prowadnicy (6). Układ wymienionych modułów tworzy mechatroniczny, krzyżowy zespół pozycjonowania w układzie współrzędnych X-Y. Sprzężenie zwrotne realizowane jest z zastosowaniem enkoderów liniowych określających położenie suportu każdego modułu liniowego. Napęd modułów liniowych jest realizowany z zastosowaniem silnika krokowego z luzownikiem i mechanizmu śrubowo-tocznego. Mechatroniczny zespół pozycjonowania umożliwia manewrowanie wizyjną głowicą pomiarową (2) w płaszczyźnie X-Y. Głowica wizyjna jest zamocowana w stoliku justerskim (3) osadzonym na suporcie modułu (4). Układ mechaniczny stolika umożliwia precyzyjny przesuw głowicy wizyjnej wzdłuż osi O-Z. Zespół pozycjonowania jest mocowany na kolumnach maszyny wytrzymałościowej za pomocą obejm (7) i (8). Obejmy umożliwiają obustronny montaż systemu na maszynie wytrzymałościowej bez konieczności demontażu obserwowanej próbki. a) b) Rys. 6. Obraz obiektu: a) widok w oknie pomiaru z wyznaczonym czołem pęknięcia zmęczeniowego, b) widok w oknie ustawień głowicy pomiarowej Analiza obrazu pęknięcia oraz sterowanie pracą systemu odbywa się za pomocą oprogramowania zawierającego następujące moduły funkcjonalne: moduł kalibracji głowicy pomiarowej, Rys. 7. System monitorowania pękania: a) zespół pozycjonowania, b) montaż systemu na maszynie wytrzymałościowej Obserwacja powierzchni badanej próbki jest realizowana przez wizyjną głowicę pomiarową (rys. 8). 7

3/2010 TECHNOLOGIA I AUTOMATYZACJA MONTAŻU a) b) Rys. 8. Stolik justerski z głowicą wizyjną: a) model 3D, b) wykonana konstrukcja W skład głowicy wchodzi monochromatyczna kamera CCD (1) o rozdzielczości 1,3 Mpiksela z interfejsem FireWire, obiektyw mikroskopowy (2) z łamaną osią optyczną i funkcją zoom oraz oświetlacz pierścieniowy LED światła białego (3). Głowica wizyjna jest zamocowana w uchwycie (4), osadzonym na stoliku justerskim (5). Stolik justerski za pomocą czterech podpór mikrometrycznych (6) umożliwia precyzyjne ustawienie czoła kamery względem czoła próbki. Stolik jest osadzony na 2 prowadnicach liniowych (7) umożliwiających przesuw zgrubny głowicy wzdłuż osi O-Z. Przesuw realizowany jest za pomocą ręcznego, mikrometrycznego mechanizmu śrubowego z pokrętłem regulacyjnym (8) i dwoma pokrętłami blokującymi (9). Opracowany system umożliwia monitorowanie pęknięć w obszarze 300 x 300 mm, w którym pole obserwacji wynosi 2,5 x 2,5 mm. Na dokładność pomiaru długości pęknięcia wpływają: dokładność pomiaru przemieszczeń głowicy wizyjnej realizowanych za pomocą napędów liniowych w stoliku X-Y oraz dokładność pomiaru optycznego bezpośrednio na obrazie na monitorze. W napędach stolika X-Y zastosowano liniowe enkodery optyczne o rozdzielczości pomiarowej 1 µm. O dokładności pomiaru optycznego bezpośrednio na obrazie wyświetlanym na monitorze decydują: rozdzielczość monitora, rozdzielczość kamery, dokładność ustawienia kursora oraz błąd prostopadłości osi optycznej obiektywu względem płaszczyzny X-Y. Sensor kamery zapewnia rozdzielczość rejestrowanego obrazu minimum 1000 pikseli. Na zbliżonym poziomie jest rozdzielczość monitora LCD, na którym jest prezentowany obraz z kamery. W pełnoekranowej prezentacji obrazu powierzchni o wymiarach rzeczywistych około 2,5 x 2,5 mm uzyskuje się rozdzielczość około 3 µm/piksel. Odchylenie kątowe osi optycznej względem płaszczyzny X-Y może spowodować powstanie pomijalnego dla opracowanej metody błędu pomiaru optycznego długości pęknięcia, wykonywanego bezpośrednio na wyświetlanym obrazie na monitorze. Przyjmując, że regulacja ustawienia śrub mikrometrycznych jest wykonywana z dokładnością nie gorszą niż 0,1 mm, zapewniona jest dokładność ustawienia osi optycznej około 0,15, co daje pomijalny błąd pomiaru poniżej 0,01 µm w całym zakresie pomiarowym dla prezentowanego okna. DOKŁADNOŚĆ POMIARU DŁUGOŚCI PĘKNIĘCIA Prowadzenie dokładnych badań wymaga uzyskania wysokiej jakości obrazu badanej próbki. W celu uzyskania ostrego obrazu obserwowanej powierzchni należy ustalić odpowiednie położenie głowicy wizyjnej względem czoła próbki. Regulacja położenia głowicy wymaga uruchomienia toru wizyjnego systemu i obserwacji obrazu na monitorze. W pierwszym etapie należy ustalić położenie stolika w prowadnicy liniowej za pomocą pokrętła regulacyjnego. Po uzyskaniu obrazu o wstępnie akceptowalnej ostrości, w drugim etapie należy ustalić położenie głowicy za pomocą śrub mikrometrycznych w celu osiągnięcia maksymalnej ostrości obrazu. Rzeczywisty obraz obiektu z pęknięciem wymaga wstępnego przygotowania przed przeprowadzeniem zasadniczej analizy. W tym celu zastosowano odpowiednie narzędzia sprzętowe i programowe. W pierwszej kolejności jest ustawiany poziom intensywności światła za pomocą oświetlacza pierścieniowego. W następnym kroku należy określić poziomy referencyjne czerni i bieli. Jest to tzw. proces progowania. BADANIA EKSPERYMENTALNE System pomiaru długości pęknięć został przystosowany do współpracy z maszyną zmęczeniową MTS 810 i zainstalowany w Laboratorium Wytrzymałości Zmęczeniowej AGH w Krakowie (rys. 9). System wykorzystano w badaniach zmęczeniowych zakładkowych połączeń nitowych stosowanych w lotnictwie [10, 11]. Próbki (rys. 10), dzięki specjalnym uchwytom, mocowano przegubowo na maszynie wytrzymałościowej w płaszczyźnie czołowej. W wyniku przeprowadzonych badań stwierdzono, że pęknięcia zmęczeniowe pojawiały się zawsze w krytycznym rzędzie nitów, w blasze po stronie łbów fabrycznych, bądź też po stronie zakuwek. Dzięki odpowiedniej konstrukcji układu optycznego pozwalającej instalować go po obydwu stronach maszyny możliwa była obserwacja pęknięć bez konieczności zmiany zamocowania próbki, co jest niedopuszczalne w przypadku badań o dodatnim współczynniku asymetrii cyklu. 8

Rys. 11. Wieloogniskowy charakter rozwoju pęknięć Zastosowanie odpowiednio dużych prędkości przesuwu głowicy umożliwiło sprawne prowadzenie badań pękania wieloogniskowego. Dzięki kalibrowanemu układowi optycznemu nie było konieczne precyzyjne środkowanie głowicy na mierzonym punkcie, a jedynie wskazanie na obserwowanym polu powierzchni próbki (rys. 12). Rys. 9. Aplikacja systemu na maszynie wytrzymałościowej MTS 810 Rys. 12. Pomiar długości pęknięcia przy użyciu systemu optycznego Rys. 10. Geometria badanej próbki Ponieważ w przypadku tego typu połączeń rozwój pęknięć ma na ogół charakter wieloogniskowy (rys. 11), każdorazowo mierzono wymiary wszystkich widocznych pęknięć rozwijających się w okolicach nitów. Przeprowadzone badania umożliwiły rejestrację torów pękania zmęczeniowego oraz budowę wykresów rozwoju pęknięć (rys. 13). Wyniki te dotyczą badania próbki o geometrii jak na rys. 9, wykonanej z platerowanych blach o grubości 2 mm ze stopu aluminium D16, połączonych na zakładkę za pomocą trzech rzędów nitów z materiału PA24 o średnicy 5 mm. System wykorzystano w makroskopowej analizie przełomów zmęczeniowych próbek. Analiza ujawniła, że nukleacja pęknięć (rys. 14) miała miejsce na ogół w pewnej odległości od otworu nitowego i zawsze na styku łączonych blach, co wskazuje, że czynnikiem inicjującym pęknięcie było zjawisko frettingu. cykle Rys. 13. Tor pęknięcia zmęczeniowego oraz wykres rozwoju pęknięć zarejestrowany dla zakładkowego połączenia nitowego, badanego przy obciążeniu stałoamplitudowym o współczynniku R = 0,1 i maksymalnym poziomie naprężenia nominalnego S max = 120 MPa 9

3/2010 TECHNOLOGIA I AUTOMATYZACJA MONTAŻU Rys. 14. Miejsca inicjacji pęknięć zmęczeniowych (zaznaczone strzałkami) obserwowane przy wykorzystaniu systemu optycznego do makroskopowej analizy przełomów zmęczeniowych a) b) c) Rys. 15. Pomiary ekspansji otworów nitowych za pomocą systemu SMP: a) widok próbki z usuniętą warstwą materiału, b), c) pomiar średnicy na zarejestrowanym obrazie System zastosowano także w badaniach ekspansji otworu nitowego. Prowadzono je w celu wyjaśnienia obserwowanych w badaniach zmęczeniowych trendów związanych z wpływem geometrii nitu oraz siły jego zakucia na trwałość zmęczeniową połączeń nitowych. Pomiary ekspansji (rys. 15) polegały na określeniu względnego zwiększenia się otworu nitowego związanego z zakuciem nitu i prowadzone były w wielu płaszczyznach jego przekroju poprzecznego, odsłanianych poprzez usuwanie kolejnych warstw materiału metodą obróbki mechanicznej. Zastosowanie systemu optycznego, zamiast używanego wcześniej mikroskopu warsztatowego, w zasadniczy sposób usprawniło te pomiary, a przede wszystkim zwiększyło ich dokładność. Opracowany system pomiarowy zastosowano także do wyznaczania podatności nitów zainstalowanych w połączeniu zakładkowym. W tym celu mierzony był zakres wzajemnego przemieszczania się połączonych blach (Δy = y max - y min) w trakcie cyklu obciążenia, zgodnie ze schematem pokazanym na rys. 16. Rys. 16. Sposób pomiaru podatności nitów przy użyciu systemu optycznego Odkształcenie nitu δ wyznaczone zostało po uwzględnieniu wydłużenia blachy (Δl 1) na długości l 1. Ponieważ mierzone wielkości Δy były rzędu kilkudziesięciu mikrometrów, wykonanie tych pomiarów uwarunkowane było odpowiednio wysoką dokładnością systemu pomiarowego. W odróżnieniu od proponowanych w literaturze metod, opartych na pomiarze podatności nitu przy użyciu ekstensometru mocowanego do obu blach w rejonie końca zakładki, zastosowanie przedstawionej techniki optycznej pozwoliło uniknąć wpływu na wynik pomiaru, trudnego do oszacowania odkształcenia blach wywołanego efektem wtórnego zginania. 10

PODSUMOWANIE Wykorzystanie metody maszynowego widzenia w połączeniu z komputerową analizą obrazów umożliwia wykrywanie i monitorowanie pęknięcia zmęczeniowego w skali makro i mikro w strukturach powierzchniowych materiałów konstrukcyjnych. Zastosowany układ wizyjny oraz system pozycjonowania głowicy zapewnia osiągnięcie wysokiej dokładności pomiarowej. Wyróżniającymi walorami urządzenia jest opcja automatycznego śledzenia czoła pęknięcia i pomiaru długości linii pęknięcia, a także prowadzenie obserwacji próbki na obu przeciwnych powierzchniach. Modułowa struktura sprzętowa i programowa umożliwia modyfikację i adaptację systemu na potrzeby różnych procesów badawczych, m.in. poprzez zmianę kamery i obiektywu. Zastosowanie szybkich algorytmów przetwarzania i analizy obrazów umożliwia śledzenie rozwoju pęknięcia zmęczeniowego w czasie rzeczywistym. Wysoki poziom techniczny i funkcjonalny urządzenia został potwierdzony w trakcie badań zmęczeniowych zakładkowych połączeń nitowych stosowanych w lotnictwie. LITERATURA 1. Jachimowicz J., Szymczyk E., Sławiński G.: Analiza wpływu technologii nitowania na stan przemieszczeń, odkształceń i naprężeń wokół nitu. Mechanik nr 4/2008, str. 332 337. 2. Jachimowicz J., Szymczyk E., Sławiński G.: Analiza wpływu luzów technologicznych na pole naprężeń własnych w otoczeniu nitu stożkowego. Mechanik nr 7/2008, str. 629 632. 3. Szymczyk E., Jachimowicz J., Bogdanowicz Z.: Badanie inicjacji pęknięć zmęczeniowych w połączeniach nitowych. Zeszyty naukowe Mechanika. Wydawnictwo Politechniki Świętokrzyskiej. Kielce 2007. 4. Szala J., Boroński D.: Ocena stanu zmęczenia materiału w diagnostyce maszyn i urządzeń. Wydawnictwo Instytutu Technologii Eksploatacji PIB. Bydgoszcz Radom 2009. 5. Giesko T., Zbrowski A., Boroński D.: Metoda i system monitorowania pękania zmęczeniowego elementów konstrukcyjnych. Energetyka. Listopad 2008, s. 52 54. 6. Boroński D., Giesko T.: Monitorowanie i pomiary pękania zmęczeniowego na powierzchniach krzywoliniowych w czasie rzeczywistym. Problemy Eksploatacji nr 1/2005, s. 72 83. 7. Workley J., Wincheski B., Namkung M.: Konstrukcja systemu kontroli nitów poszycia płatowców. http://www.ndt-sysem.eu/pdf/wyniki_rivecheck.pdf. 8. Workley J.: Zalety systemu Rivet Check obrotowej sondy samozerującej do wykrywania małych pęknięć pod nitami. http://www.ndt-system.eu/ Pdf/System_kontroli_nitowRivetCheck.pdf. 9. Szala J.: Przegląd możliwości diagnozowania obiektów technicznych ze względu na zmęczeniowe pękanie. Przegląd Mechaniczny nr 4/03, 4, s. 26 32. 10. Skorupa M., Skorupa A., Machniewicz T., Korbel A.: Effect of production variables on the fatigue behaviour of riveted lap joints, International Journal of Fatigue (online available manuscript accepted on 12 November 2009). 11. Skorupa M., Machniewicz T., Skorupa A., Korbel A.: Wpływ wybranych parametrów konstrukcyjnych i technologicznych na własności zmęczeniowe połączeń nitowych. XII Krajowa Konferencja Naukowo- -Szkoleniowa Mechaniki Pękania, materiały CD, Kraków 2009. Dr inż. Andrzej Zbrowski, dr inż. Tomasz Samborski, dr inż. Tomasz Giesko są pracownikami Instytutu Technologii Eksploatacji PIB w Radomiu. Dr hab. inż. Dariusz Boroński, prof. UTP, jest pracownikiem Uniwersytetu Technologiczno-Przyrodniczego w Bydgoszczy. Dr inż. Tomasz Machniewicz jest pracownikiem Akademii Górniczo-Hutniczej w Krakowie. Z PRASY ZAGRANICZNEJ SBORKA nr 1 (114), 2010 1. Zapewnienie odporności na drgania wału transmisyjnego za pomocą precyzyjnego montażu metody kompensacji błędów w montażu przyrządów optycznych. 2. Elektromechaniczne narzędzia dla prac wykończeniowych: współczesna produkcja i rynek w Rosji. 3. Zależność temperatury lutowania od długości pręta lutowniczego. 4. Ocena błędów montażu maszyn metodą wibracyjno-akustyczną. 5. Wykorzystanie wzbudników drgań do badań, diagnozowania i regulacji agregatów turbinowych. 6. Sterowanie zapewnieniem jakości rakietowo-kosmicznej techniki na etapach prób, eksploatacji i utylizacji. 7. System zasilania kompleksowych produkcyjnych systemów montażu z wykorzystaniem statystycznego sterowania złożonymi procesami technologicznymi. 8. Wykaz artykułów opublikowanych w 2009 roku. ciąg dalszy str. 31 11