Remote Sensing Centre, Institute of Geodesy and Cartography, Warsaw, Poland 2

Podobne dokumenty
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

Forested areas in Cracow ( ) evaluation of changes based on satellite images 1 / 31 O

Program III krajowej konferencji sieci badawczej Poland-AOD pt. Rola aerozoli w systemie klimatycznym Warszawa, 3-4 lipca 2017r.

Has the heat wave frequency or intensity changed in Poland since 1950?

Hard-Margin Support Vector Machines

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

MoA-Net: Self-supervised Motion Segmentation. Pia Bideau, Rakesh R Menon, Erik Learned-Miller

Fizyka Procesów Klimatycznych Wykład 11 Aktualne zmiany klimatu: atmosfera, hydrosfera, kriosfera

Previously on CSCI 4622

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

Dominika Janik-Hornik (Uniwersytet Ekonomiczny w Katowicach) Kornelia Kamińska (ESN Akademia Górniczo-Hutnicza) Dorota Rytwińska (FRSE)

Label-Noise Robust Generative Adversarial Networks

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

deep learning for NLP (5 lectures)

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Revenue Maximization. Sept. 25, 2018

Tychy, plan miasta: Skala 1: (Polish Edition)

KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y. 2. Współczynnik korelacji Pearsona

Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Streszczenie rozprawy doktorskiej

Country fact sheet. Noise in Europe overview of policy-related data. Poland

SNP SNP Business Partner Data Checker. Prezentacja produktu

PORTS AS LOGISTICS CENTERS FOR CONSTRUCTION AND OPERATION OF THE OFFSHORE WIND FARMS - CASE OF SASSNITZ

tum.de/fall2018/ in2357

INSTITUTE OF METEOROLOGY AND WATER MANAGEMENT NATIONAL RESEARCH INSTITUTE

PIĄTY RAPORT IPCC KAZIMIERZ RÓŻAŃSKI

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

Lecture 18 Review for Exam 1

BULLETIN 2 II TRAINING CAMP POLISH OPEN MTBO CHAMPIONSHIPS MICHAŁOWO TRAINING CAMP WORLD MTB ORIENTEERING CHAMPIONSHIPS

The Overview of Civilian Applications of Airborne SAR Systems

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

Few-fermion thermometry

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12

Typ TFP FOR CRITICAL AIR CLEANLINESS AND VERY CRITICAL HYGIENE REQUIREMENTS, SUITABLE FOR CEILING INSTALLATION


Helena Boguta, klasa 8W, rok szkolny 2018/2019

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

EN/PL COUNCIL OF THE EUROPEAN UNION. Brussels, 29 August /13 Interinstitutional File: 2013/0224 (COD)

Remote Sensing & Photogrammetry L6. Beata Hejmanowska Building C4, room 212, phone:

TYRE PYROLYSIS. REDUXCO GENERAL DISTRIBUTOR :: ::

SNP Business Partner Data Checker. Prezentacja produktu

Goodman Poznań Airport Logistics Centre 16,734 sqm warehouse space available as from Q Best placed for business+

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

The impact of the global gravity field models on the orbit determination of LAGEOS satellites

Admission to the first and only in the swietokrzyskie province Bilingual High School and European high School for the school year 2019/2020

U3000/U3100 Mini (Dla Komputera Eee na systemie operacyjnym Linux) Krótka Instrukcja

Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2)

Electromagnetism Q =) E I =) B E B. ! Q! I B t =) E E t =) B. 05/06/2018 Physics 0

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application


Temporal identification of poppy fields on high resolution satellite imagery

03 April kwietnia 2015 r. Zmiana satelity dostarczającego sygnał Animal Planet HD. Change of Delivery Satellite for Animal Planet HD

Program szkolenia: Fundamenty testowania

Inverse problems - Introduction - Probabilistic approach

Łukasz Reszka Wiceprezes Zarządu

OBWIESZCZENIE MINISTRA INFRASTRUKTURY. z dnia 18 kwietnia 2005 r.

Goodman Kraków Airport Logistics Centre. 62,350 sqm available. Units from 1,750 sqm for immediate lease. space for growth+

Umowa Licencyjna Użytkownika Końcowego End-user licence agreement

LEARNING AGREEMENT FOR STUDIES

Menu. Do badań zabarwienia oceanów,

17-18 września 2016 Spółka Limited w UK. Jako Wehikuł Inwestycyjny. Marek Niedźwiedź. InvestCamp 2016 PL

Knovel Math: Jakość produktu

Zarządzanie sieciami telekomunikacyjnymi

Economical utilization of coal bed methane emitted during exploitation of coal seams energetic and environmental aspects

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

DELTIM Sp. z o.o. S.K.A ul. Rząsawska 30/38; Częstochowa. Bumper bar X-Lander X-Move

January 1st, Canvas Prints including Stretching. What We Use

Extraclass. Football Men. Season 2009/10 - Autumn round

PROGRAM STAŻU. Nazwa podmiotu oferującego staż / Company name IBM Global Services Delivery Centre Sp z o.o.

Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc

Strategic planning. Jolanta Żyśko University of Physical Education in Warsaw

Evaluation of the main goal and specific objectives of the Human Capital Operational Programme

ekonomiczne przyjazne łatwe w obsłudze Październik 2012 October 2012 ENERGY SAVING EYE-fRIENdlY EASY TO USE

Medical electronics part 10 Physiological transducers

[ROBOKIDS MANUAL] ROBOROBO

III Krajowa Konferencja Sieci Badawczej Poland-AOD

SPITSBERGEN HORNSUND

GLOBAL METHANE INITIATIVE PARTNERSHIP-WIDE MEETING Kraków, Poland

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

you see decision. oznacza to, Whenever kiedy widzisz biznes, someone once made Za każdym razem, który odnosi sukces,

Zmiany techniczne wprowadzone w wersji Comarch ERP Altum

Patients price acceptance SELECTED FINDINGS

PX101A. Frezy do PLEXI/ Router bits for Plexi Acrylic ALU Z= str. 122

Investment expenditures of self-governement units in percentage of their total expenditure

VFR SUP 37/11 (VFR ENR) Obowiązuje od / Effective from 01 SEP 2011 Obowiązuje do / Effective to 29 NOV 2011 EST

kdpw_stream Struktura komunikatu: Status komunikatu z danymi uzupełniającymi na potrzeby ARM (auth.ste ) Data utworzenia: r.

TELEDETEKCJA ŚRODOWISKA dawniej FOTOINTERPRETACJA W GEOGRAFII. Tom 51 (2014/2)

PARAMETRY TECHNICZNE DEKLAROWANE PRZEZ PRODUCENTA POTWIERDZONE BADANIAMI / RATINGS ASSIGNED BY THE MANUFACTURER AND PROVED BY TESTS

TEORIA CZASU FUTURE SIMPLE, PRESENT SIMPLE I CONTINOUS ODNOSZĄCYCH SIĘ DO PRZYSZŁOŚCI ORAZ WYRAŻEŃ BE GOING TO ORAZ BE TO DO SOMETHING

IBM Skills Academy SZKOLENIA I CERTYFIKATY

An employer s statement on the posting of a worker to the territory of the Republic of Poland

SPITSBERGEN HORNSUND

Wyniki Finansowe Grupy Kapitałowej Private Equity Managers S.A. za Warszawa, 29 Marca 2017

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

Transkrypt:

A Meteosat Bayesian Cloud Fractional Cover Climate Data Record: evaluation, homogeneity assessment and intercomparison with existing climate data records 1,2, Reto Stöckli 2, Anke Duguay-Tetzlaff 2, Stephan Finkensieper 3 1 Remote Sensing Centre, Institute of Geodesy and Cartography, Warsaw, Poland 2 Federal Office of Meteorology and Climatology MeteoSwiss, Zurich, Switzerland 3 German Weather Service DWD, Offenbach, Germany

What is a cloud and why to study clouds? 2

What is a cloud? A collection of liquid or frozen particles floating in the atmosphere and sustained by vertical motion (updrafts) We identify clouds by their ability to reflect sunlight and by the temperature of their cloud tops, i.e., their brightness in visible and thermal imagery 3

From Wild et al., 2013 Radiation budget 40 22% (76 Wm -2 ) of incoming solar radiation is reflected by clouds and atmosphere this is 76% of the total radiation reflected back to space Clouds double Earth s albedo from 0.15 (no clouds) to 0.31 (including clouds) Cooling effect Only 10% (40 Wm -2 ) of infrared radiation emitted from Earth s surface is not trapped by the greenhouse gases 65-85% of the trapped radiation is intercept by water vapour and cloud droplets Warming effect 4

Cloud forcing (IPCC, 2013) warming cooling The most uncertain component of climate models is cloud feedback For all cloud types, it has been estimated at 0.6 Wm -2 for 1 C of air temperature increase, but with weighty uncertainty ranging from -0.2 to 2.0 Wm -2 (IPCC, 2013) 5

Rationale The net radiative feedback due to all cloud types combined is likely positive. Uncertainty in the sign and magnitude of the cloud feedback is due primarily to continuing uncertainty in the impact of warming on low clouds. Cloud properties are within a list of essential climate variables (ECVs) (with a special emphasis on satellite-based retrievals) of the Global Climate Observing System (GCOS), a part of the United Nations Framework Convention on Climate Change (UNFCCC) The ultimate projects objective has been to deliver cloud climate data records that can contribute to the better understanding of cloudclimate interactions and cloud feedbacks, and in turn to reduction of uncertainty in future climate projections. 6

Cloud masking 7

Courtesy of Rob Roebeling (EUMETSAT) 8

Meteosat Climate Data Record 9

Meteosat data Geostationary Fixed position ~36,000 km above equator Hemisphere scanned every 15 or 30 minutes Diurnal cycle resolved, no orbital drift issue Limited spatial coverage Different spectral resolution: First Generation / MVIRI (2/3 channels), 1982-2005: 0.5-0.9 µm 11.5 µm Second Generation / SEVIRI (3/12 channels), 2005-2015: 0.6 µm + 0.8 µm broadband 10.8 µm 10

Sensor calibration + HIRS Yves Govaerts & Viju John (EUMETSAT) Reflectance in the dessert (Libya) 1988 2002 M2 M3 M4 M5 M6 M7 Brightness temperature (Libya) 1988 2002 Visible channel stable Thermal channel calibrated after 1991 11

Meteosat data 2005 (Bojanowski et al., 2017) 12

Tests Cloud masking background fields Test name Temperature score Brightness score Spatio-temporal Temprature Variance Score Spatio-temporal Reflactance Variance Score Temporal Temperature Variance Score Day-night separation Day-night regression Test basics T 10.8 vs T cloud-free ρ VIS vs ρ cloud-free STT for cloud boundaries and low level clouds with weak T signature: low for temporarly static, but spatially varying high for temporarly and spatially varying STR same for brightness TV for broken clouds: variability within ±1 hour f night smooth day/night transition = 1 for θ s <85 = 0 for θ s >88 Compensation for less tests during daytime 13

Modeling (self-constrained and self-contained) background fields Clear-sky Brightess Temprerature Clear-sky Reflectance Mannstein et al. (1999) Göttsche and Olesen (2009) ERA-Interim skin temperature used as a first guess The model is built on the Modified Lambert-Beer equations (Müller et al., 2004) for atmospheric scattering, the backscattering properties of land surfaces (Zelenka et al., 1999) and the terrain-dependent illumination conditions (Tan et al., 2010) (Stöckli et al., 2017) 14

Naïve Bayesian classifier Machine learning technique based on probabilistic classifier assuming independence of features (naive), e.g. cloud scores (from tests) Here we apply so-called 2-dimentional histograms to calculate conditional probabilities Supervised training into 7 classes (0-1 okta, 7-8 okta combined) (Stöckli et al., 2017) 15

Evaluation strategy Validation against: 243 SYNOP (1991 2015), L2 daily/monthly means CALIOP (2010), L2 Intercomparison (monthly means) with: MODIS AQUA+TERRA (2004 2015, MOD08/MYD08_M3) PATMOS-x (1991 2015, collocations at L2, then aggregated to monthly) CLARA-A2 (1991 2015, all sensors) CLAAS-A2 (2004 2015) Cloud_cci CC4CL AVHRR_PM (1991 2009) 1143 SYNOP aggregated to monthly at 1 1 (2005) 16

MBE Validation against SYNOP (1991-2015) It complies with the optimal requirements for accuracy and precision for daily and monthly means CFC 0-100% Daily 97% 80% 26% bcrmse (Bojanowski et al., 2017) 17

bcrmse bcrmse Validation against SYNOP (1991-2015) Sun zenith angle (deg) Note: these stats are based on L2 matchups, so precision requirements (bcrmse) defined for L3 do not apply Viewing zenith angle (deg) (Bojanowski et al., 2017) 18

Decadal stability Statistic T of SNHT test SNHT critical value It complies with the optimal requirement of 1% (Bojanowski et al., 2017) 19

MFG vs MSG (Bojanowski et al., 2017) 20

Validation against CALIOP (2010) Stephan Finkensieper It complies with the target requirement of 5% (Bojanowski et al., 2017) 21

Intercomparison (monthly means) (Bojanowski et al., 2017) 22

Intercomparison (Bojanowski et al., 2017) 23

Conclusions Meteosat-based cloud amount climate data record has been produced (1991-2015) MBE and RMSE fulfil optimal requirements as compared to SYNOP It reveals the highest temporal stability among existing cloud CDR s It will be extended back to 1983 upon availability of the Meteosat 2 and 3 calibration It will be available (with full documentation) as daily and monthly means at www.cmsaf.eu References Bojanowski, J.S., Stöckli, R., Duguay-Tetzlaff, A., Finkensieper, S., Hollmann, R., 2017, Meteosat Cloud Fractional Cover Edition 1, Validation Report. Satellite Application Facility for Climate Monitoring, EUMETSAT, Germany. Stöckli, R., Duguay-Tetzlaff, A., Bojanowski, J.S, 2017. Meteosat Cloud Fractional Cover Edition 1, Algorithm Theoretical Basis Document (ATBD). Satellite Application Facility for Climate Monitoring, EUMETSAT, Germany. 24

Comparison with MODIS 25

Comparison with PATMOS-x (L2 L3) 26

Comparison with CLARA-A2 27

Comparison with CLAAS-A2 28

Comparison with CC4CL-AVHRR 29