BIOGAS YIELD OF MAIZE STRAW

Podobne dokumenty
GLOBAL METHANE INITIATIVE PARTNERSHIP-WIDE MEETING Kraków, Poland

Equipment for ultrasound disintegration of sewage sludge disseminated within the Record Biomap project (Horizon 2020)

Biogasplant in Poldanor

BIOGAS YIELD FROM SORGHUM BICOLOR OF BIOMASS 140 VARIETY

ROZDROBNIENIE SUBSTRATÓW WYKORZYSTYWANYCH DO PRODUKCJI BIOGAZU

Exposure assessment of mercury emissions

TRANSPORT W RODZINNYCH GOSPODARSTWACH ROLNYCH

Current state of biogas production in Poland

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

INŻYNIERIA ROLNICZA AGRICULTURAL ENGINEERING

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

POTENCJAŁ UZYSKU BIOGAZU Z SORGO CUKROWEGO (SORGHUM BICOLOR) ODMIANY RÓD J1052

LIGNOCELLULOSIC BIOMASS PRODUCTION AND DELIVER FOR BIOREFINERIES

Ocena koncepcji BIOrafinerii i ich powiązanie z POLitykami rolną i leśną.

Streszczenie rozprawy doktorskiej

PORÓWNANIE UZYSKU BIOGAZU Z TRZECH RODZAJÓW KISZONEK: Z KUKURYDZY, LUCERNY I TRAWY*

KOMBAJNY ZBOŻOWE W ROLNICTWIE POLSKIM W LATACH

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

Has the heat wave frequency or intensity changed in Poland since 1950?

INSTYTUT GENETYKI I HODOWLI ZWIERZĄT POLSKIEJ AKADEMII NAUK W JASTRZĘBCU. mgr inż. Ewa Metera-Zarzycka

KOSZTY UŻYTKOWANIA MASZYN W STRUKTURZE KOSZTÓW PRODUKCJI ROŚLINNEJ W WYBRANYM PRZEDSIĘBIORSTWIE ROLNICZYM

OCENA TRWAŁOŚCI BRYKIETÓW WYTWORZONYCH Z MASY ROŚLINNEJ KUKURYDZY PASTEWNEJ

Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc

TYRE PYROLYSIS. REDUXCO GENERAL DISTRIBUTOR :: ::

Odnawialne źródła energii. Renewable Energy Resources. Energetics 1 st degree (1st degree / 2nd degree) General (general / practical)

Ekologiczna uprawa malin jako alternatywa Organic raspberry cultivation as an alternative

OCENA ENERGETYCZNA PROCESU ZAGĘSZCZANIA WYBRANYCH SUROWCÓW ROŚLINNYCH W BRYKIECIARCE ŚLIMAKOWEJ*

Thermooxidative stability of frying oils and quality of snack products

Conception of reuse of the waste from onshore and offshore in the aspect of

Introduction. Agricultural Engineering w ww.wir.ptir.org ASSESSMENT OF SELECTED TECHNICAL PARAMETERS OF SOYA SEEDS OIL PRESSING PROCESS

Organic plant breeding: EU legal framework and legislative challenges Ekologiczna hodowla roślin: ramy prawne UE i wyzwania legislacyjne

Wojciech Budzianowski Consulting Services

Economical utilization of coal bed methane emitted during exploitation of coal seams energetic and environmental aspects

Euro Oil & Fuel Biokomponenty w paliwach do silników Diesla wpływ na emisję i starzenie oleju silnikowego

Perspectives of photovoltaics in Poland

EGARA Adam Małyszko FORS. POLAND - KRAKÓW r

Działania w dziedzinie klimatu, środowisko, efektywna gospodarka zasobami i surowce

Final LCP TWG meeting, Sewilla

WPŁYW AKTUALIZACJI NIEKTÓRYCH WSKAŹNIKÓW EKSPLOATACYJNO-EKONOMICZNYCH NA KOSZTY EKSPLOATACJI CIĄGNIKÓW ROLNICZYCH NOWEJ GENERACJI

Analiza porównawcza zmian w rozbiorach wody z uwzględnieniem sposobu jej dostarczania do odbiorców

The shape of and the challenges for the Polish EO sector initial findings of the SEED EO project

Agricultural Engineering 2014: 2(150):

BARIERA ANTYKONDENSACYJNA

EFFECT OF INHIBITORS USED IN LIVESTOCK PRODUCTION ON FERMENTATE QUALITY AND BIOGAS PRODUCTION

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Sargent Opens Sonairte Farmers' Market

Akademia Morska w Szczecinie. Wydział Mechaniczny

MULTI-MODEL PROJECTION OF TEMPERATURE EXTREMES IN POLAND IN

Ekonomika Produkcji maliny (Raspberry economic production)

PORTS AS LOGISTICS CENTERS FOR CONSTRUCTION AND OPERATION OF THE OFFSHORE WIND FARMS - CASE OF SASSNITZ

Institutional Determinants of IncomeLevel Convergence in the European. Union: Are Institutions Responsible for Divergence Tendencies of Some

POTENTIAL OF USING RENEWABLE ENERGY SOURCES AND PLANS FOR FUTURE IN ECOLOGICAL FARMS IN FARMERS'OPINIONS *

Patients price acceptance SELECTED FINDINGS

Unit of Social Gerontology, Institute of Labour and Social Studies ageing and its consequences for society

System optymalizacji produkcji energii

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

Ocena potrzeb pacjentów z zaburzeniami psychicznymi

WPŁYW CZYNNIKÓW AGROTECHNICZNYCH NA WŁAŚCIWOŚCI ENERGETYCZNE SŁOMY 1

Doœwiadczenia zwi¹zane z energetycznym wykorzystaniem biogazu ze sk³adowisk odpadów komunalnych

INSTALACJE AGROENERGETYCZNE ASPEKTY ŚRODOWISKOWY I LOGISTYCZNY

WULS Plant Health-Warsaw Plant Health Initiative Regpot (EU FP7)

Evaluation of the main goal and specific objectives of the Human Capital Operational Programme

Cracow University of Economics Poland

PROJECT. Syllabus for course Global Marketing. on the study program: Management

Produkcja i zużycie energii odnawialnej w Polsce ze szczególnym uwzględnieniem rolnictwa

Formularz recenzji magazynu. Journal of Corporate Responsibility and Leadership Review Form

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

WYKORZYSTANIE KOLEKTORÓW SŁONECZNYCH W SUSZARNICTWIE PRODUKTÓW ROLNYCH UTILIZATION OF SOLAR COLLECTORS FOR DRYING OF AGRICULTURAL PRODUCTS

DETECTION OF MATERIAL INTEGRATED CONDUCTORS FOR CONNECTIVE RIVETING OF FUNCTION-INTEGRATIVE TEXTILE-REINFORCED THERMOPLASTIC COMPOSITES

SZACOWANIE POTENCJAŁU ENERGETYCZNEGO BIOMASY RO LINNEJ POCHODZENIA ROLNICZEGO W WOJEWÓDZTWIE KUJAWSKO-POMORSKIM

Allocation of elements in former farmland afforestation with birch of varying age

Reporting on dissemination activities carried out within the frame of the DESIRE project (WP8)

SWPS Uniwersytet Humanistycznospołeczny. Wydział Zamiejscowy we Wrocławiu. Karolina Horodyska

BLACKLIGHT SPOT 400W F

Nauka Przyroda Technologie

OCENA WYDAJNOŚCI BIOGAZU DLA PLANOWANEJ BIOGAZOWNI PRZY FERMIE KRÓW MLECZNYCH

Will Renevable energy save and. Dr inż. Jacek Wereszczaka University of Agriculture in Szczecin, POLAND

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

THE IMPACT OF FERTILIZATION USING NATURAL FERTILIZERS ON THE QUALITY OF GRASS SILAGE

Financial results of Apator Capital Group in 1Q2014


WPŁYW NAKŁADÓW MATERIAŁOWO- -ENERGETYCZNYCH NA EFEKT EKOLOGICZNY GOSPODAROWANIA W ROLNICTWIE

Wpływ wybranych parametrów technologicznych na zawartość estrów glicydylowych w tłuszczach i smażonych produktach

Use of Polish-bred maize hybrids for biogas production Wykorzystanie mieszańców kukurydzy polskiej hodowli do produkcji biogazu

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

Country fact sheet. Noise in Europe overview of policy-related data. Poland

Wytwarzanie energii elektrycznej i ciepła z odpadów Wartość dodana

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Employment. Number of employees employed on a contract of employment by gender in Company

MECHANISATION COSTS IN FAMILY FARMS OF VARIED PRODUCTION

BILANS ENERGETYCZNY. Wykorzystanie energii. Przepływ energii. Barbara Pietrzak, Ekologia 2018, Wydział Biologii UW

OCENA JAKOŚCI BRYKIETÓW Z BIOMASY ROŚLINNEJ WYTWORZONYCH W ŚLIMAKOWYM ZESPOLE ZAGĘSZCZAJĄCYM

Autorzy: Instytut Inżynierii Wody i Ścieków Wydział Inżynierii Środowiska i Energetyki Politechnika Śląska w Gliwicach

REHABILITATION OF MEDIUM-HEAD HYDROPOWER PLANTS WITH EXPLOITED TWIN-FRANCIS TURBINES.


Design of Digester Biogas Tank Part 1: Biogas Calculator Tool to Perform Biogas Energy Calculations

Transkrypt:

A GRICULTURAL E NGINEERING 2013: Z. 4(148) T.2 S. 103-111 ISSN 1429-7264 Polish Society of Agricultural Engineering http://www.ptir.org BIOGAS YIELD OF MAIZE STRAW Jacek Przybył, Wioleta Kot, Dawid Wojcieszak, Natalia Mioduszewska, Karol Durczak Institute of Biosystems Engineering, University of Natural Sciences in Poznań Abstract. The paper presents the results of laboratory research of the effectiveness of biogas production from silage of maize straw with addition of the fermentation inoculum, which was postfermentation pulp from agricultural biogas plant. Maize straw was ensiled naturally and with the use of artificial additives, the task of which was to ensure correct fermentation process. Two preparations were used for ensilage: Silomax (bacteria of lactic fermentation) and Labacsil Acid (the set of organic acids and potassium sorbate). The experiment was conducted in a multi-chamber biofermentator, monitoring biogas production and the minimum level of methane. It was found out that silage from maize straw without the ensiling preparations was characterised with the highest biogas yield. Whereas, with regard to methane production, maize straw silage with Labacsil Acid preparations was the most efficient. Key words: maize straw, substrate, biogas, methane Introduction On the national market, there is an insufficient supply of cheap biomass, which will remain a renewable energy source, which brings the best effects with regard to production costsfor several years. It results from the limited resources of the national water power industry, average conditions for the development of wind energy and photovoltaics, which is low-efficient in the Polish conditions. It may also be assumed that the demand for biomass will rise in the near future. Pursuant to obligations written down in the Directive of the European Parliament 2009/28/EC on promoting the use of energy from renewable sources in 2020, Poland must achieve 15% participation of original energy from RES in the total use of energy, in total in heavy current engineering, heat engineering and refrigeration and transport (Directive, 2009). Moreover, there are additional objectives related to the development of renewable energy sources in the resolution of the Council of Ministers on energy policy of Poland to 2030, which lead to inter alia: achieving in 2020 10% participation of biofuels int he market of transport fuels, increasing the use of 2nd generation biofuels and creating conditions for the development of dispersed power industry, based on the locally available raw materials (Polityka, 2009; Prognoza, 2009). In order to implement directive 2009/28/ EC governments of the European countries were obliged to prepare National Action Plans (NAP, 2010) for renewable energy sources.

J. Przybył, W. Kot, D. Wojcieszak, N. Mioduszewska, K. Durczak Presently, approx. 92% of energy generated in Poland from RES constitutes heat, produced in majority of biomass, electric energy constitutes 5% and transport fuels 3%. In the scenario for 2020 according to the NAP, heat participation in the production of energy of RES is going to constitute only 55%, of electric energy 26% and transport fuels 19%. However, as much as 78% of thermal energy and 32% of electric energy is going to be produced of solid biomass (Prognoza, 2009) Straw is the basic source of biomass. On account of quickly increasing demand for straw by producers of briquettes, mushroom base, users of straw boilers, municipal waste composting plant, agricultural distilleries, which compost stillage on biological deposits and other subjects, on one side there is a deficiency of this raw material; on the other hand in conditions of unsatisfied demand, a price increase of the grain straw took place. Therefore, attention has been paid to the biomass source unused so far, that is maize straw and after-harvest remains after harvesting maize for seeds. The content of dry mass in the maize straw is approx. 50% (Niedziółka et al. 2007) and may be subject to some oscillations on account of the time limit of harvesting, weather conditions and the type of the hybrid. Therefore, after-harvest remains of maize in a fresh state may not be managed with the methods used at the harvest of the grains straw. On account of the above, in order to ensure biogas production, permanent supply in raw material, straw should be preserved after harvesting. Ensilaging of the fragmented straw seems to be the most appropriate method of preservation. On account of the lack of scientific works concerning the technology of biogas production from maize straw stored in anaerobic conditions, laboratory conditions concerning different methods of ensilaging straw and their impact on biogas and methane yield were took up. The objective of the paper The objective of the paper was to assess the possibility of using the side crop in maize production for seeds, that is maize straw as a substrate for biogas production after previous preservation through ensilaging also with the use of ensilaging additives. Material and research methods Maize straw (after-harvest remains) after harvest of maize for seeds cultivar LG3612 number FAO 250 was used for research. Research material was obtained from Seed and Agricultural Farm in Chodów in Wielkopolskie voivodeship. Maize was cultivated on the soil class IIIa of low content K 2 O and MgO and average content of P 2 O 5. Plantation stock before harvest was 88.1 thousand of plants ha -1. Harvest of seeds of 31% moisture was 12 Mg ha -1. The structure of the maize harvest referred to dry matter was as follows: cobs 54%, stalks 26%, leaves 11% and covering leaves of cobs 9%. Mass relation of dry mass of the seeds yield to dry mass of the post-harvest remains was 1:1,3. The content of dry substance in ensiled post-harvest remains was 66.13% and the content of mineral substance was 6%. Maize seeds harvesting was carried out with the combine harvester Claas Lexion 580 equipped with 8-row adapter Geringhoff Mais Star Horizon 800/B placing a ground straw in a roller. Harvesting of maize straw and the remaining post-harvest remains was carried out with self-propelled chaff-cutter Class Jaguar 860 with a pick-up assembly. 104

Biogas yield... Ensilaging the maize straw was carried out in a natural way and with the use of additives for ensilaging, which limit development of undesired bacteria, cause fast decrease of ph reaction and increase stability of silage after opening the silo. Two preparations were used for ensilage: Silomax including bacteria of lactic acid and Labacsil Acid which includes the set of organic acids and potassium sorbate. Bacteria in Silomax formula causes high production of lactic acid in silage, whereas acids included in Labacsil Acid limit the growth and activity of undesired bacteria, mould and yeast (Sano, 2010). Post-harvest remains were ensiled in tightly closed mini-silos of 4 dm 3 volume in three repeats. After 160 days of ensiling, physical and chemical analysis from silages was carried out, and then tests on their biogas performance were carried out. The physical and chemical analysis of silages was carried out in the Laboratory of the Department of Feeding Animals and Fodder Management of the University of Natural Sciences in Poznań. The analysis included determination of dry mass, total protein, ph, gross energy and volatile fatty acids. Laboratory research of biogas yield of the ensiled maize straw was carried out in the Laboraotry of Ecotechnology of the Institute of Biosystems Engineering of the University of Natural Sciences in Poznań according to the norm DIN 38 414 S8: 1985 based on eudometric measurement of the biogas yield. Biofermentators were located in the water jacket, enabling fixed temperature in the chamber that is approx. 38ºC proper for mesophile fermentation (fig. 1). Figure 1. Biofermentator for testing efficiency of the methane fermentation process Readouts of the produced biogas were carried out with daily frequency. Analysis of emission of biogas composing gases (CH 4, CO 2, O 2, NH 3, H 2 S) was carried out with Microprocessor Monitoring-Recording System MSMR-4 by Alter company. 105

J. Przybył, W. Kot, D. Wojcieszak, N. Mioduszewska, K. Durczak Before testing the biogas performance of maize straw inoculum parameters were determined, that is dry mass (measurement with drying method PN-75 C-04616/01), ph (measurement with electrometric method PN-90 C-04540/01), conductivity (PN-EN 27888: 1999), organic matter and ash (through combustion according to PN-Z-15011-3). Parameters of inoculum were as follows: ph 7.25, conductivity 4.76 ms, dry mass 1.33% and dry organic mass 72.9%. Research results and their analysis Quality of maize straw silage. Based on the analysis of the chemical composition, comparison of the quality of maize straw silage produced with ensilaging additives with the naturally prepared silage was carried out (tab. 1). Naturally produced silage included the highest number of protein that is 3.03% and was characterised with the highest gross energy, which was 2800 Kcal kg -1 and the highest content of dry mass 64.40%. In the silage with Silomax preparation, lower content of dry mass of silage was reported that is 61.19%, protein content decrease by 0.5%, gross energy by 81 Kcal kg -1 and decrease of ph reaction to the level of 4.46. Also in silage with Labacsil Acid preparation in comparison to naturally prepared silage, decrease of the dry mass content by 2.24%, lower protein value by 0.3% and lower value of gross energy by 48 Kcal kg -1 and 0.04% higher ph reaction were determined. According to Flieg-Zimmer scale, based on the content of volatile fatty acids, produced silages may be classified as good. Table 1 Physical and chemical analysis of the tested silage Silage Maize straw naturally ensilaged Maize straw ensilaged with Labacsil Acid preparation Maize straw ensilaged with Silomax preparation Dry mass Organic dry mass Total protein ph reaction (-) Gross energy (Kcal kg -1 ) Lactic acid Acetic acid Butyric acid 64.40 95.31 3.03 4.56 2,800 1.60 0.77 no 62.16 94.18 2.70 4.60 2,752 1.35 0.87 0.21 61.19 95.18 2.53 4.46 2,719 1.27 0.52 0.13 Results of the above analysis coincide with data in the scientific literature. According to Wróbel (2012) the use of microbiological preparations influences decrease of the dry mass content in silage. Whereas Bodarski et al. (2005) indicate that the additive of organic preparation to the maize silage influences decrease of the total protein content. Kowalik and Michalski (2009) state that the silage energy increases along with the dry mass content, which is confirmed by the tests, which were carried out. 106

Biogas yield... Biogas yield of maize straw. Results of the experiment, which was carried out, proved that maize straw silage is useful for effective methane fermentation. The highest amount of biogas that is 433.78 m 3 t -1 of dry organic mass was obtained from the maize straw naturally ensiled. Silages with ensilaging additives were characterised with lower biogas efficiency than 1.0-2.8%. Addition of Labacsil Acid preparation caused decrease of the biogas efficiency of silage by 4.19 m 3 t -1 of dry organic mass and by 11.97 m 3 t -1 of dry organic mass of Silomax preparation. (fig. 2). 435 ) VS 430-1 3 M g (m 425 ld y ie a s g420 io B 433,78 429,59 421,81 415 Type of the investigated object maize straw silage without ensilaging additive maize straw silage + Labacsil Acid maize straw silage + Silomax Figure 2. Biogas yield of maize straw silage without and with ensiling preparation Biogas is a flammable gas mixture, the main component of which is methane (Janowicz, 2008). The highest methane flow rate amounting to 228.58 m 3 t -1 of dry organic mass was obtained from maize straw ensilaged with additive of Labacsil Acid preparation. From the maize straw ensiled with additive of Silomax preparation 217.73 m 3 t -1 of dry organic mass was obtained and 219.24 m 3 t -1 of dry organic mass from silage without ensilaging additives. fig. 3). The analysis of the biogas composition shows that the higher participation of methane took place in the biogas obtained from silage withensilaging additives. The highest participation of methane, amounting to 53.2% was reported in biogas from silage with Labacsil Acid preparation. In the biogas from maize straw ensilaged with addition of Silomas preparation, methane constituted 51.6% of the biogas volume. Whereas, biogas of lower methane content, amounting to 50.5% was obtained from maize straw naturally ensilaged. However, total methane participation in biogas from the tested silages was low, since, biogas contains from 55 to 80% of methane (Głaszczka, 2010; Jędrczak, 2008). 107

J. Przybył, W. Kot, D. Wojcieszak, N. Mioduszewska, K. Durczak Figure 3. Methane yield of silage from maize straw without and with ensiling preparation The obtained results indicate therefore that the use of ensilaging additive to maize straw in the form of Labascil Acid increases the flow rate of biomethane. The use of inoculants, which direct biochemical changes during ensilaging for limiting the formation of lactic acid and on the increase of the amount of acetic acid are recommended by Podkówka et al. (2010). Results of chemical analysis of the silage composition indicate that the activity occurred in case of silage with addition of Labascil Acid preparation (tab. 1). Assessment of the possibility of use of maize straw as a substrate for biogas production requires referring the biogas efficiency to biomethane yield from all maize plants. According to Fugol et al. (2011) relative to the degree of maize fragmentation, biogas yield is from 544 to 635 m 3 t -1 of dry organic mass and the methane participation is 82% that is from 446 to 520 m 3 t -1 of dry organic mass According to Podkówka et al. (2010) relative to the content of dry mass, the amount of the obtained methane from whole maize plants is from 323 to 380 m 3 t -1 of dry organic mass. In the tests carried out by Bauer et al. (2010) methane yield was 345 m 3 t -1 of dry organic mass and according to Schittenhalm (2010), methane yield from maize silage was from 291 to 309 m 3 t -1 of dry organic mass. Referring to the above data, results of the own tests of ensilaged maize straw, which show that the methane yield was from 217.73 to 228.58 m 3 t -1 of dry organic mass, one may state that methane efficiency of silage from whole maize plants is higher by approx. 35%. This result is similar to the one given by Amon et al. (2007a), who stated, during investigation of the biogas efficiency of maize that the biogas yield from plants devoid of cobs is by approx. 30% lower than from whole plants. 108

Biogas yield... The other publication of this Austrian team (Amon et al. 2007b) says that the biogas production potential from 1 ha of maize amounting to 7,500-10,200 m 3 is 2-2.5 times higher that potential of grains (3200-4500 m 3 ), sunflower (2600-4550 m 3 ) and almost 3 times higher than grasses (3200-3500 m 3 ). Based on the obtained results one may state that maize straw devoid of cobs, having even 30% lower potential of producing from biogas in comparison to the material of whole plants, has as much as almost 2 times higher yield from one hectare of grains, sunflower or grass. Therefore, maize straw collected as substrate for biogas production may replace, to high degree, more expensive silage from maize. Conclusions Based on the research results and analysis carried out, the following conclusions have been formulated: 1. Maize straw silage is useful for effective methane fermentation. 2. Higher participation of methane took place in the biogas obtained from silage withensilaging additives. 3. Out of two investigated inoculants, on account of methane participation in biogas, Labacsil Acid preparation was more advantageous. It directs biochemical changes during ensilaging to limitation of lactic acid formation and to increase the amount of acetic acid. 4. Maize straw devoid of cobs, having approximately 30% lower potential of biogas production in comparison to material from whole plants, has almost 2-times higher efficiency from one hectare than grains, sunflower or grasses. References Amon, T.; Amon, B.; Kryvoruchko, V.; Zollitsch, W.; Mayer, K.; Gruber, L. (2007a). Biogas production from maize and dairy cattle manure influence of biomass composition on the methane yield. Agriculture, Ecosystems & Environment, Volume 118, Issues 1-4, 173-182. Amon, T.; Amon, B.; Kryvoruchko, V.; Machmuller, A.; Hopfner-Sixt, K.; Bodiroza, V.; Hrbek, R.; Friedel, J.; Potsch, E.; Wagentristl, H.; Schreiner, M.; Zollitsch, W. (2007b). Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresource Technology 98, 3204-3212. Bauer, A.; Leonhartsberger, C.; Bosch, B.; Amon, B.; Friedl, A.; Amon, A. (2010). Analysis of methane yields from energy crops and agricultural by-products and estimationof energy potential from sustainable crop rotation systems in EU-27. Clean Technol. Environ. Policy 12, 153-161. Bodarski, R.; Wertelecki, T.; Kowalik, T. (2005). Wpływ chemicznych dodatków na skład chemiczny, jakość i tlenową trwałość kiszonki z całych roślin kukurydzy. Pamiętniki Puławskie, zeszyt 140, 7-14. Dyrektywa Parlamentu Europejskiego i Rady 2009/29/WE z dnia 23 kwietnia 2009 r. zmieniająca dyrektywę 2003/87/WE w celu usprawnienia i rozszerzenia wspólnotowego systemu handlu uprawnieniami do emisji gazów cieplarnianych (2009). Dz.U. L 140 z 5.06.2009, 63-87. Fugol, M.; Prask, H. (2011). Porównanie uzysku biogazu z trzech rodzajów kiszonek: z kukurydzy, lucerny i trawy. Inżynieria Rolnicza, 9 (134), 31-39. Głaszczka, A.; Wardal, W.J.; Romaniuk, W.; Domasiewicz, T. (2010). Biogazownie rolnicze. Warszawa, Multico Oficyna Wydawnicza, ISBN 978-83-7073-423-9. 109

J. Przybył, W. Kot, D. Wojcieszak, N. Mioduszewska, K. Durczak Hothan, A.; Brauckmann H.; Broll, G. (2013). Influence of storage on methane yields of separated pig slurry solids. Biomass & Biotechnology 52, 166-172. Jędrczak, A. (2008). Biologiczne przetwarzanie odpadów. Warszawa, PWN, ISBN 978-83-01-15166-9. Kowalik I.; Michalski T. (2009). Zawartość suchej masy w surowcu jako szacunkowy wskaźnik wartości pokarmowej kiszonki z kukurydzy. Nauka Przyroda Technologie, t. 3, z. 2, 1-10. KPD. Krajowy plan działania w zakresie energii ze źródeł odnawialnych. (2010). Ministerstwo Gospodarki. Warszawa. Niedziółka, I.; Szymanek, M.; Zuchniarz, A. (2007). Ocena właściwości energetycznych i mechanicznych brykietów z masy pożniwnej kukurydzy. Inżynieria Rolnicza, 7(95), 153-159. Olesienkiewicz, A. (2011). Znaczenie badań laboratoryjnych. Czysta Energia, 11, 42-44, ISSN 1643-126XI. Pozyskano z: http://www.biogaz.com.pl/. Podkówka, Z, Podkówka, W. (2010). Substraty dla biogazowni rolniczych. Warszawa, Wydawnictwo Biznes-Press, ISBN 978-83-927966-1-9. Polityka energetyczna Polski do 2030 roku. (2009). Ministerstwo Gospodarki. Załącznik do uchwały nr 202/2009 Rady Ministrów z dnia 10 listopada 2009 r. Pozyskano z: http://www.mg.gov.pl /files/upload/8134/polityka%20energetyczna%20ost.pdf Prognoza zapotrzebowania na paliwa i energię do 2030 roku. (2009). Załącznik 2 do Polityki energetycznej Polski do 2030 roku. Ministerstwo Gospodarki, Warszawa, 10 listopada 2009 r. Pozyskano z: http://www.mg.gov.pl/files/upload/8134/prognoza%20zapotrzebowania%20na %20paliwa %20i%20energie-ost.pdf Schittenhelm, S. (2010). Effect of drought stress on yield and quality of maize/sunflower and maize/sorghum intercrops for biogas production. J. Agron. Crop Sci. 196, 253-261. Wróbel, B. (2012). Jakość kiszonek z runi łąkowej z dodatkiem biologicznych stymulatorów fermentacji. Woda-Środowisko-Obszary Wiejskie, t. 12, z. 3(39), 211-225. Sano (2010). Żywienie zwierząt zdrowie i zysk doskonałe preparaty do zakiszania pasz o podwójnym działaniu. Pozyskano z: http://www.sano.pl/userfiles/file/labacsil-ulotka-2010.pdf. Program Innowacyjna Energetyka Rolnictwo Energetyczne. (2010). Pozyskano z: www.biogaz. com.pl/.../072_programbiogazownie_mg_09072009_km.pd 110

Biogas yield... WYDAJNOŚĆ BIOGAZOWA SŁOMY KUKURYDZIANEJ Streszczenie. W pracy zaprezentowano wyniki laboratoryjnych badań efektywności produkcji biogazu z kiszonki ze słomy kukurydzianej z dodatkiem zaszczepki fermentacyjnej, którą była pulpa pofermentacyjna z biogazowni rolniczej. Słomę kukurydzianą zakiszono w sposób naturalny i z zastosowaniem sztucznych dodatków, których zadaniem było zapewnienie prawidłowego procesu fermentacji. Zastosowano dwa preparaty do zakiszania: Silomax (bakterie fermentacji mlekowej) oraz Labacsil Acid (zestaw kwasów organicznych i sorbinian potasu). Doświadczenie przeprowadzono w wielokomorowym biofermentorze, monitorując produkcję biogazu i minimalny poziom metanu. Stwierdzono, że największą wydajnością biogazową charakteryzowała się kiszonka ze słomy kukurydzianej bez preparatu zakiszającego. Natomiast w odniesieniu do produkcji metanu najbardziej wydajna była kiszonka słomy kukurydzianej z preparatem Labacsil Acid. Słowa kluczowe: słoma kukurydziana, substrat, biogaz, metan Contact details: Wioleta Kot; e-mail: wkot@up.poznan.pl Instytut Inżynierii Biosystemów Uniwersytet Przyrodniczy w Poznaniu ul. Wojska Polskiego 50 60-627 Poznań 111