Analysis of moisture change process in the maize grain with the use of statistical methods

Podobne dokumenty
MODELOWANIE REGRESYJNE PROCESU ZMIANY WILGOTNOŚCI ZIARNA PSZENICY PODCZAS PRZECHOWYWANIA

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

ROZPRAWY NR 128. Stanis³aw Mroziñski

Streszczenie rozprawy doktorskiej

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Hard-Margin Support Vector Machines

BŁĘDY OKREŚLANIA MASY KOŃCOWEJ W ZAKŁADACH SUSZARNICZYCH WYKORZYSTUJĄC METODY LABORATORYJNE

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Tychy, plan miasta: Skala 1: (Polish Edition)

ZASTOSOWANIE APLIKACJI KOMPUTEROWEJ TRACE DO OCENY IDENTYFIKACJI OBIEKTÓW RUCHOMYCH

WSPOMAGANIE PROCESU MIESZANIA NIEJEDNORODNYCH UKŁADÓW ZIARNISTYCH WKŁADKĄ TYPU DOUBLE CONE


Krytyczne czynniki sukcesu w zarządzaniu projektami

ZALEŻNOŚĆ WSPÓŁCZYNNIKA DYFUZJI WODY W KOSTKACH MARCHWI OD TEMPERATURY POWIETRZA SUSZĄCEGO

Akademia Morska w Szczecinie. Wydział Mechaniczny

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Patients price acceptance SELECTED FINDINGS

DOI: / /32/37

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

BARIERA ANTYKONDENSACYJNA

Demand Analysis L E C T U R E R : E W A K U S I D E Ł, PH. D.,

Knovel Math: Jakość produktu



Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

TRANSPORT W RODZINNYCH GOSPODARSTWACH ROLNYCH

ROZPRAWA DOKTORSKA. Model obliczeniowy ogrzewań mikroprzewodowych

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

STATYSTYKA OD PODSTAW Z SYSTEMEM SAS. wersja 9.2 i 9.3. Szkoła Główna Handlowa w Warszawie

KOMPUTEROWA ANALIZA OBRAZU W OCENIE MIESZANIA JEDNORODNEJ MIESZANINY ZIARNISTEJ

TEMPERATURA ZIARNA PSZENICY W CZASIE MAGAZYNOWANIA

WPŁYW CZASU PRZECHOWYWANIA ZIARNA PSZENICY NA ZMIANĘ JEGO CECH JAKOŚCIOWYCH

2 nd ClimMani EU COST Action Meeting Poznań, Poland September, 2015

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

ENERGIA MIESZANIA WYBRANYCH MATERIAŁÓW ZIARNISTYCH W MIESZALNIKU Z MIESZADŁEM ŚLIMAKOWYM PIONOWYM

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

European Crime Prevention Award (ECPA) Annex I - new version 2014

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015

Course syllabus. Mathematical Basis of Logistics. Information Technology in Logistics. Obligatory course. 1 1 English

Revenue Maximization. Sept. 25, 2018

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

ZASTOSOWANIE SPLOTU FUNKCJI DO OPISU WŁASNOŚCI NIEZAWODNOŚCIOWYCH UKŁADÓW Z REZERWOWANIEM

Opis Przedmiotu Zamówienia oraz kryteria oceny ofert. Części nr 10

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

OCENA MOśLIWOŚCI WYKORZYSTANIA HODOWLI ŚWIŃ RASY ZŁOTNICKIEJ

Convolution semigroups with linear Jacobi parameters

Zmiany techniczne wprowadzone w wersji Comarch ERP Altum

ANALIZA ZMIAN JAKOŚCI WIELOSKŁADNIKOWEJ MIESZANINY ZIARNISTEJ W PRZEMYSŁOWYM MIESZALNIKU PASZ

WPŁYW TEMPERATURY W POMIESZCZENIACH POMOCNICZYCH NA BILANS CIEPŁA W BUDYNKACH DLA BYDŁA

Zaliczenie na ocenę 0,5 0,5

Sargent Opens Sonairte Farmers' Market

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Probabilistic Methods and Statistics. Computer Science 1 st degree (1st degree / 2nd degree) General (general / practical)

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

deep learning for NLP (5 lectures)

Warsztaty Ocena wiarygodności badania z randomizacją

Selection of controller parameters Strojenie regulatorów

PRACA DYPLOMOWA Magisterska

Extraclass. Football Men. Season 2009/10 - Autumn round

Marek Tukiendorf, Katarzyna Szwedziak, Joanna Sobkowicz Zakład Techniki Rolniczej i Leśnej Politechnika Opolska. Streszczenie

Agricultural Engineering

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

POLITECHNIKA WARSZAWSKA. Wydział Zarządzania ROZPRAWA DOKTORSKA. mgr Marcin Chrząścik

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

STATISTICAL METHODS IN BIOLOGY

MS Visual Studio 2005 Team Suite - Performance Tool

TYRE PYROLYSIS. REDUXCO GENERAL DISTRIBUTOR :: ::

P R A C A D Y P L O M O W A

Formularz recenzji magazynu. Journal of Corporate Responsibility and Leadership Review Form

STEROWANIA RUCHEM KOLEJOWYM Z WYKORZYSTANIEM METOD SYMULACYJNYCH

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ MECHANICZNY ROZPRAWA DOKTORSKA. mgr inż. Piotr Smurawski

ANALYSIS OF VOLUME CHANGES OF SELECTED CEREAL GROUND GRAIN IN RESULT OF LOADING*

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

OPTYMALIZACJA STEROWANIA MIKROKLIMATEM W PIECZARKARNI

KOMITET TECHNIKI ROLNICZEJ PAN POLSKIE TOWARZYSTWO INŻYNIERII ROLNICZEJ INŻYNIERIA ROLNICZA. Rok XIII 4(113)

PRZEWODNIK PO PRZEDMIOCIE. Negotiation techniques. Management. Stationary. II degree

WPŁYW WYBRANYCH ELEMENTÓW OTOCZENIA OBSZARÓW WIEJSKICH NA ICH ROZWÓJ WIELOFUNKCYJNY

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

APLIKACJE KOMPUTEROWE DO OCENY WYBRANYCH PARAMETRÓW SENSORYCZNYCH PRODUKTÓW ROLNO-SPOŻYWCZYCH

OCENA MIESZANINY NIEJEDNORODNEJ Z BIOMASĄ ZA POMOCĄ KOMPUTEROWEJ AKWIZYCJI OBRAZU

Forested areas in Cracow ( ) evaluation of changes based on satellite images 1 / 31 O

PORÓWNANIE ALGORYTMÓW OPTYMALIZACJI GLOBALNEJ W MODELOWANIU ODWROTNYM PROCESÓW SUSZENIA PRODUKTÓW ROLNICZYCH

Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX


THEORETICAL STUDIES ON CHEMICAL SHIFTS OF 3,6 DIIODO 9 ETHYL 9H CARBAZOLE

OKREŚLENIE PRĘDKOŚCI PORUSZANIA SIĘ SZKODNIKÓW Z WYKORZYSTANIEM KOMPUTEROWEJ ANALIZY OBRAZU


Zarządzanie sieciami telekomunikacyjnymi

Ankiety Nowe funkcje! Pomoc Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to students

W trzech niezależnych testach frezy z powłoką X tremeblue typu V803 był w każdym przypadku prawie 2 razy bardziej wydajne niż wersja niepowlekana.

dawniej Tom

OKREŚLENIE WPŁYWU NAWOŻENIA I ZAGĘSZCZENIA FASOLI NA WZROST ROŚLIN

UMOWY WYPOŻYCZENIA KOMENTARZ

Has the heat wave frequency or intensity changed in Poland since 1950?

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

Transkrypt:

Annals of Warsaw University of Life Sciences SGGW Agriculture No 54 (Agricultural and Forest Engineering) 2009: 65 70 (Ann. Warsaw Univ. of Life Sci. SGGW, Agricult. 54, 2009) Analysis of moisture change process in the maize grain with the use of statistical methods KATARZYNA SZWEDZIAK, JOANNA RUT Department of Agricultural and Forest Technology, Opole University of Technology Abstract: Analysis of moisture change process in the maize grain with the use of statistical methods. Investigations on specification of moisture change process in the maize grain are presented. A statistical data analysis was carried out with the use of the multiple, linear and non-linear regression models, enabling to determine degree of connection between particular variables. The obtained models were compared with the use of comparative statistics. Key words: statistical modeling, regression, sorbent, moisture content, maize grain. INTRODUCTION Majority of phenomena, such as moisture exchange or heat exchange influence substantially the mass of grain. Proper storing of grain is determined by excellent knowledge of its physical and biological properties. The basic aim of grain storage is preserving the grain usability over the longest possible time. This aim can be achieved by creating the conditions, which reduce the vital processes of grain and preclude development of pests and microorganisms [Pabis et al. 1974]. The storage of dry grain (of moisture reduced to 10 14%) has bin used most often. At this moisture the grain physiological processes are very slow, and no mould, bacteria or mites can be developed. To preclude development of insects in the grain mass, one should reduce moisture to 8 10%. Usually, drying of grain is applied, which is practically not economical, but sometimes essential. Another method is storing of cool grain, by decreasing its temperature. The development of insects in the stored grain is reduced at temperature below 17 C, thus, the grain cooling method can be used to prevent development of pests. Another method involves the grain storage in anaerobic conditions, when the vital activity of grain mass is maximally restricted (anabiosis) by cutting off the oxygen [Pohorecki et al. 1979]. The grain drying process calls for a big amount of expensive thermal energy, therefore, knowledge of moisture change process with the use of a natural sorbent (grain of the same species) can contribute to proper and economical drying of agricultural products [Hart 1967]. In scientific references there were proposed several models of moisture transport in the cereal grain, based on the models of Strumiłło or Pabis [Strumiłło 1975; Pabis et al. 1974], with the use of various functions describing course of the process. It was proved experimentally, that application of a harmonic function with

66 K. Szwedziak, J. Rut damping enabled to illustrate the process of moisture giving up and absorption [Szwedziak 2004]. However, no comprehensive dynamic characteristic of water content change in the mixture of wet grain (sorbate) and dry grain (sorbent) with consideration to temperature have been developed. Advancement of investigations in agriculture makes necessary searching for new solutions and improvement of the existing ones by application of statistical methods as a tool for data analysis. AIM OF INVESTIGATIONS The investigations aimed at determination of statistical solutions describing the change in moisture content in the maize grain mass. The statistical analysis of the multiple, linear and non-linear regression models was used for this purpose. MATERIAL AND METHODS There were carried out 6 series of investigations on the moisture exchange between maize grains in 4 replications, in the mixture of wet grain (sorbate) and dry grain (sorbent) with consideration to temperature. The investigations were performed in the containers of capacity 8 kg, fully filled with the properly mixed material and then closed. Both fractions were mixed by pouring with the use of a pouring mixer, until the state of equilibrium was obtained, i.e. when further mixing did not caused the qualitative changes in the system. It was proved that 10 subsequent pouring resulted in sufficient time of mixing [Boss and Tukiendorf 1989]. The mixture, where a given component particle can be found with the same probability as in all points is called the random mixture [Boss 1987]. The maize of variety Veritis was used in investigations; it is cultivated for grain and silage and has well filled, long-green corn cobs resistant to weather variation. Moisture exchange between the maize grains was investigated basing on the moisture content change in the mixed material. The moisture content was determined by drying method according to PN-ISO 712:2002 Standard in the mixture samples of 50 g, weighed with accuracy of ±0.01 g. The water content was determined in [kg H 2 O/kg d.m.]. The samples were taken every 3 hours over the period of 129 hours. The grain mass temperature was measured during experiment. ANALYSIS OF RESULTS AND DISCUSSION The obtained results were analyzed statistically with the use of multiple, linear and non-linear regression models, using the regression modeling with consideration to temperature (B C model) and also with no consideration to temperature (A D model). The obtained models are presented below: Model A: u = 0.1339 0.00005459τ Model B: u = 0.1136 0.0000389τ + 0.00241t Model C: u = 0.0225 + 0.00067τ 0.00000118τ 2 + + 0.1868τt 0.0821t 2 0.00049τt Model D: u = 0.1177 + 0.00025τ 0.0000009274τ 2 gdzie: u wilgotność, τ czas, t temperatura The obtained models were compared with the use of comparative statistics. The determination coefficient gives no information about significance of particular variables. This value increases constantly when variables are added to

Analysis of moisture change process in the maize grain... 67 the model. However, it is evident that an increase in R 2 is often accompanied by the lack of significance of the added independent variables [Stanisz 2007]. The corrected determination coefficient was not introduced with respect to application of Akaike criterion (AIC), which is a more precise information criterion [Akaike 1973]. This criterion introduces a penalty for the reliability function, so that the simpler models can be preferred. In the case of fitting a model of q parameters to the data, this criterion is defined as D αqφ, where D is deviation, while φ is dispersion parameter [Stanisz 2007]. It can be pointed out that α 2 leads to minimal prediction errors, however, if φ is constant, the value α 4 is more proper, since it corresponds approximately to parameter testing on the level 0.05 [Olson 2002]. We select the model, for which this expression is minimal. The time needed for calculation of AIC statistics can be longer than for other criteria, but usually the obtained results are more precise [Stanisz 2007]. The obtained results are presented in Table 1. All the models are illustrated graphically (Fig. 1) together with empirical data. The best description of the course of moisture change was found for model C of highest value of coefficient R 2 = 0.89 and of the least value of Akaike criterion AIC = 349.6. TABLE 1. Results of calculations Model Type of model R 2 AIC A Linear without temperature 0.35 271.2 B Multiple with temperature 0.43 276.3 C Non-linear with temperature 0.89 349.6 D Non-linear without temperature 0.69 294.7 Empirical data FIGURE 1. Models A, B, C and D Data

68 K. Szwedziak, J. Rut Surface diagram 3D Model C Differential temperature [ C] Time [h] FIGURE 2. Surface diagram of non-linear model with consideration to temperature (C model) Empirical values Model C 95% of confidence Data FIGURE 3. Model C with consideration to 95% of confidence interval

Analysis of moisture change process in the maize grain... 69 As a result of analysis on different forms of multiple, linear and non-linear models, there was selected the C model as a statistical model detecting a systematic trend in the data, and leaving out a random variability [Aczel 2005]. Model C is presented in Figure 2. The confidence interval of C model is presented in Figure 3. The confidence coefficient amounts to 0.95 which means, that the real value of moisture in investigated population is included in the determined confidence interval with probability of 95%. SUMMARY Majority of phenomena occurring in our environment is not isolated, but exists in various connections. The analysis with the use of statistical methods gives tools for verification of these recognized connections and for detection of not recognized hitherto interdependences. The statistical description allows for their better understanding and modification. Following statistical data analysis with the use of multiple, linear and non-linear regression models it was found, that the obtained non-linear model with consideration of temperature best describes the changes in moisture content of the maize grain. The selected model is a statistical model detecting a systematic trend of data, leaving out the random variability. REFERENCES ACZEL A. 2005: Statystyka w zarządzaniu pełny wykład, PWN Warszawa, ISBN 83-01-14548-X, s. 456 615. AKAIKE H. 1973: Information theory and an extension of the maximum likelihood princyple, In Proceedings of the 2nd International Symposium on Information, edited by Petrov B.N., and Czaki F., Budapest. BOSS J. 1987: Mieszanie materiałów ziarnistych, PWN Warszawa, ISBN 83-01-07058-7, s. 16 24. BOSS J., TUKIENDORF M. 1989: Mieszanie systemem funnel-flow układu ziarnistego o różnych średnicach ziaren, Zeszyty Naukowe WSI w Opolu nr.151, z. 37. CIEŚLAK M. 2005: Prognozowanie gospodarcze, metody i prognozowanie, PWN Warszawa, ISBN 83-01-14421-1, s. 139 192. HART J.R. 1967: Hysteresis effect In mixtures of wheat taken from the same sample but having different moisture contents, Cereal Chemistry, Vol. 41. KUFEL T. 2004: Ekonometria rozwiązywanie problemów z wykorzystaniem program GRETL, PWN Warszawa, ISBN 83-01-14284-7, s. 50 62. MAGIERA R. 2007: Modele i metody statystyki matematycznej cz. II Wnioskowanie statystyczne, GiS Wrocław, ISBN: 83-89020-61-1, s. 56 261. OLSON C.L. 1974: Comparative robustness of six tests multivariate analysis of ariance, Journal of the American Satatistical Assocation. PABIS S., PABIS J. 1974: Technologia suszenia i czyszczenia nasion, PWRiL Warszawa. POHORECKI R., WROŃSKI S. 1979: Kinetyka i termodynamika procesów inżynierii chemicznej, WNT Warszawa. STANISZ A. 2007: Przystępny kurs statystyki, modele liniowe i nieliniowe, Tom 2, StatSoft Polska Karków, ISBN 978-83-88724-30-5, s. 59 215. STRUMIŁŁO Cz. 1975: Podstawy teorii i techniki suszenia, WNT Warszawa, s. 59 128. SZWEDZIAK K. 2006: Wpływ temperatury na jakość ziarna w procesie suszenia z wykorzystaniem sorbentów naturalnych, Inżynieria Rolnicza 11(86) Kraków, ISSN 1429-7264, s. 471 477. Streszczenie: Analiza procesu zmiany wilgoci w ziarnie kukurydzy z wykorzystaniem metod statystycznych. W artykule przedstawiono bada-

70 K. Szwedziak, J. Rut nia związane z charakterystyką procesu wilgoci w masie ziarna kukurydzy. Przeprowadzono statystyczną analizę danych za pomocą modeli regresji wielorakiej, liniowej i nieliniowej. Statystyczna metoda regresji pozwala na określenie stopnia, w jakim zmienne są ze sobą powiązane. Uzyskane modele porównano przy pomocy statystyk porównawczych. MS. received February 2009 Authors address: Katedra Techniki Rolniczej i Leśnej Politechnika Opolska Poland k.szwedziak@po.opole.pl j.rut@po.opole.pl