PROBLEMY Z SILOKSANAMI W INSTALACJACH BIOGAZOWYCH CZ. I. ZAGROŻENIA STWARZANE PRZEZ SPALANIE BIOGAZU ZAWIERAJĄCEGO ORGANICZNE ZWIĄZKI KRZEMU



Podobne dokumenty
PRODUKCJA I WYKORZYSTANIE ENERGII W GRUPOWEJ OCZYSZCZALNI ŚCIEKÓW W ŁODZI

PODSTAWOWE INFORMACJE DOTYCZĄCE WDRAŻANIA INSTALACJI BIOGAZOWYCH W POLSCE

5. REEMISJA ZWIĄZKÓW RTĘCI W CZASIE UNIESZKODLIWIANIA OSADÓW ŚCIEKOWYCH

Biogaz i biomasa -energetyczna przyszłość Mazowsza

Energia z odpadów komunalnych. Karina Michalska Radosław Ślęzak Anna Kacprzak

Dr Sebastian Werle, Prof. Ryszard K. Wilk Politechnika Śląska w Gliwicach Instytut Techniki Cieplnej

Przedsiębiorstwa usług energetycznych. Biomasa Edukacja Architekci i inżynierowie Energia wiatrowa

SEMINARIUM. Produkcja energii z odpadów w technologii zgazowania Uwarunkowania prawne i technologiczne

efekty kształcenia grupa zajęć** K7_K03 K7_W05 K7_U02 K7_W05 A Z K7_K02 K7_W05 K7_U02 A Z K7_U03 K7_U04 K7_W01

Dr inż. Jacek Wereszczaka

Element budowy bezpieczeństwa energetycznego Elbląga i rozwoju rozproszonej Kogeneracji na ziemi elbląskiej

Opłacalność energetycznego wykorzystania biogazu ze składowisk odpadów komunalnych

PODSTAWOWE INFORMACJE DOTYCZĄCE WDRAŻANIA INSTALACJI BIOGAZOWYCH W POLSCE

Laboratorium z Konwersji Energii. Ogniwo Paliwowe PEM

TECHNOLOGIA PLAZMOWA W ENERGETYCZNYM ZAGOSPODAROWANIU ODPADÓW

Jan Cebula (Instytut Inżynierii Wody i Ścieków, POLITECHNIKA ŚLĄSKA, Gliwice) Józef Sołtys (PTH Intermark, Gliwice)

TECHNOLOGIE OCHRONY ŚRODOWISKA (studia I stopnia) Mogilniki oraz problemy związane z ich likwidacją prof. dr hab. inż.

Zielone Technologie i Monitoring (l) Efekty Kształcenia. Semestr. Grupy. zajęć

Targi POL-EKO-SYSTEM. Strefa RIPOK NANOODPADY JAKO NOWY RODZAJ ODPADÓW ZAGRAŻAJĄCYCH ŚRODOWISKU

PRZYKŁADY INSTALACJI DO SPALANIA ODPADÓW NIEBEZPIECZNYCH

Środowiskowe aspekty wykorzystania paliw metanowych w transporcie

1. W źródłach ciepła:

Potencjał biomasy nowe kierunki jej wykorzystania

IV. PREFEROWANE TECHNOLOGIE GENERACJI ROZPROSZONEJ

Metan z procesów Power to Gas - ekologiczne paliwo do zasilania silników spalinowych.

Odpady komunalne jako źródło biogazu

GLOBAL METHANE INITIATIVE PARTNERSHIP-WIDE MEETING Kraków, Poland

Zespół C: Spalanie osadów oraz oczyszczania spalin i powietrza

KATALIZATOR DO PALIW

ANALIZA EFEKTYWNOŚCI TECHNICZNEJ I OPŁACALNOŚCI AGREGATÓW DO SKOJARZONEGO WYTWARZANIA CIEPŁA I PRĄDU Z BIOGAZU W OCZYSZCZALNI ŚCIEKÓW W OPOLU

Kongres Innowacji Polskich KRAKÓW

CENTRUM CZYSTYCH TECHNOLOGII WĘGLOWYCH CLEAN COAL TECHNOLOGY CENTRE. ... nowe możliwości. ... new opportunities

Kontrolowane spalanie odpadów komunalnych

PIROLIZA BEZEMISYJNA UTYLIZACJA ODPADÓW

Koncepcja gospodarki opartej na wodorze

POTENCJAŁ WYKORZYSTANIA ODPADÓW BIODEGRADOWALNYCH NA CELE ENERGETYCZNE W WOJEWÓDZTWIE POMORSKIM

Wprowadzenie. Systemy ochrony powietrza. Wstęp do systemów redukcji emisji zanieczyszczeń powietrza. 1. Techniczne. 2.

Potencjał metanowy wybranych substratów

Najlepsze dostępne technologie i wymagania środowiskowe w odniesieniu do procesów termicznych. Adam Grochowalski Politechnika Krakowska

PLAN DZIAŁANIA KT 137. ds. Urządzeń Cieplno-Mechanicznych w Energetyce

NISKOTEMPERATUROWA TERMOLIZA SPOSOBEM NA OGRANICZANIE ZAWARTOŚCI RTĘCI W SUBSTANCJACH STAŁYCH

WZBOGACANIE BIOGAZU W METAN W KASKADZIE MODUŁÓW MEMBRANOWYCH

Bezpieczeństwo użytkowania samochodów zasilanych wodorem

Exposure assessment of mercury emissions

BIOGAZOWNIA JAKO ROZWIĄZANIE PROBLEMU OGRANICZENIA ODPADÓW BIODEGRADOWALNYCH W GMINIE

Każdego roku na całym świecie obserwuje się nieustanny wzrost liczby odpadów tworzyw sztucznych pochodzących z różnych gałęzi gospodarki i przemysłu.

PGNiG TERMIKA nasza energia rozwija miasta

Inżynieria Środowiska II stopień (I stopień/ II stopień) ogólnoakademicki (ogólnoakademicki/praktyczny)

Bezemisyjna energetyka węglowa

Wykład 5. Metody utylizacji odpadów (część 2) Opracowała E. Megiel, Wydział Chemii UW

Biogaz z odpadów jako alternatywne paliwo dla pojazdów. Biogas from wastes as an alternative fuel for vehicles

Biogazownie w energetyce

Krzysztof Stańczyk. CZYSTE TECHNOLOGIE UśYTKOWANIA WĘGLA

Opracował: Marcin Bąk

Możliwości wykorzystania potencjału biomasy odpadowej w województwie pomorskim. Anna Grapatyn Korzeniowska Gdańsk, 10 marca 2011 r.

Wpływ rodzaju paliwa gazowego oraz warunków w procesu spalania na parametry pracy silnika spalinowego mchp

Perspektywy rozwoju energetycznego wykorzystania odpadów w ciepłownictwie VIII Konferencja Techniczna

grupa a Człowiek i środowisko

Spotkanie Eksploatatorów dotyczące wytwarzania energii w kogeneracji na Oczyszczalni Ścieków Klimzowiec.

Polskie technologie stosowane w instalacjach 1-50 MW

2.4 Plan studiów na kierunku Technologie energetyki odnawialnej I-go stopnia

WYZWANIA EKOLOGICZNE XXI WIEKU

OZE - ODNAWIALNE ŹRÓDŁA ENERGII

Energia w Szwecji. Warszawa, 5 maja 2011r. Józef Neterowicz Radscan Intervex/ Związek Powiatów Polskich jozef.neterowicz@radscan.

Wykorzystanie biogazu w systemach kogeneracyjnych

Język obcy (2) JZL100400BK. Zarządzanie środowiskiem (3) ISS202006

NOVAGO - informacje ogólne:

Odnawialne Źródła Energii (OZE)

ENERGETYCZNE WYKORZYSTANIE BIOGAZU

Biogas buses of Scania

Lp. TYTUĹ PRACY (wybranie TYTUĹ U z listy przenosi do karty opisu pracy) REZ. oznacza Ĺźe temat po uzgodnieniu ze studentem zostaĺ zarezerwowany

Gaz składowiskowy jako źródło energii odnawialnej. Instalacja odgazowania w Spółce NOVA w Nowym Sączu. dr inż. Józef Ciuła NOVA Spółka z o.o.

Energia ukryta w biomasie

M.o~. l/i. Liceum Ogólnokształcące im. Jana Kochanowskiego w Olecku ul. Kościuszki 29, Olecko

Wpływ składu mieszanki gazu syntetycznego zasilającego silnik o zapłonie iskrowym na toksyczność spalin

Polityka energetyczna w UE a problemy klimatyczne Doświadczenia Polski

Biogaz składowiskowy jako źródło alternatywnej energii

Układ ORC jako system poprawy efektywności energetycznej w instalacji turbiny gazowej zasilanej z układu beztlenowej stabilizacji osadów ściekowych

ZAGROŻENIA ZWIĄZANE Z EMISJĄ PYŁÓW GAZÓW DLA ŚRODOWISKA. Patr

CHP z ogniwem paliwowym Przegląd rynku

LABORATORIUM PRZEMIAN ENERGII

JEDNOKOMOROWE OGNIWA PALIWOWE

ZINTEGROWANA GOSPODARKA ODPADAMI KOMUNALNYMI WOJEWÓDZTWO ŚLĄSKIE MIEJSCOWOŚĆ TŁO PRZEDSIĘWZIĘCIA

Wykorzystajmy nasze odpady!

PROBLEMY Z SILOKSANAMI W INSTALACJACH BIOGAZOWYCH CZ. II. POBÓR REPREZENTATYWNEJ PRÓBKI

Stechiometria. Nauka o ilościach materiałów zużywanych i otrzymywanych w reakcjach chemicznych

Stechiometria. Pojęcie mola. Liczba Avogadry. Liczba atomów zawarta w 12 g czystego 12 C. 1 mol =

Emisja pyłu z instalacji spalania paliw stałych, małej mocy

BEZTLENOWE OCZYSZCZANIE ŚCIEKÓW Z ZAKŁADU PRZETWÓRSTWA ZIEMNIAKÓW Z WYKORZYSTANIEM POWSTAJĄCEGO BIOGAZU DO PRODUKCJI PRĄDU, CIEPŁA I PARY

Ekonomiczno-techniczne aspekty wykorzystania gazu w energetyce

Spalarnia. odpadów? jak to działa? Jak działa a spalarnia

Elektrociepłownie w Polsce statystyka i przykłady. Wykład 3

Rodzaj nadawanych uprawnień: obsługa, konserwacja, remont, montaż, kontrolnopomiarowe.

Technologie oczyszczania biogazu

Moduł II GOSPODARKA ŚRODOWISKIEM (GiGO)

Wykaz ważniejszych oznaczeń i jednostek Przedmowa Wstęp 1. Charakterystyka obecnego stanu środowiska1.1. Wprowadzenie 1.2. Energetyka konwencjonalna

Gospodarka odpadami. Wykład Semestr 1 Dr hab. inż. Janusz Sokołowski Dr inż. Zenobia Rżanek-Boroch

Dyrektywa IPPC wyzwania dla ZA "Puławy" S.A. do 2016 roku

Kryteria oceniania z chemii kl VII

Transkrypt:

biogaz, siloksany, spalanie Anna PAKULUK, Joanna CIOŁEK* PROBLEMY Z SILOKSANAMI W INSTALACJACH BIOGAZOWYCH CZ. I. ZAGROŻENIA STWARZANE PRZEZ SPALANIE BIOGAZU ZAWIERAJĄCEGO ORGANICZNE ZWIĄZKI KRZEMU W pracy przedstawiono problemy związane z energetycznym spalaniem biogazu zawierającego organiczne związki krzemu siloksany. Omówiono ich właściwości i źródła występowania w biogazie. Przedstawione zostały zagrożenia wynikające ze spalania biogazu zanieczyszczonego siloksanami i zwrócono uwagę na istotę problemu oraz konieczność opracowania skutecznych metod poboru i analizy siloksanów w celu utrzymania sprawności i wydłużenia żywotności urządzeń przystosowanych do energetycznego spalania biogazu. 1. WPROWADZENIE Biogaz powstaje w wyniku beztlenowej fermentacji materii organicznej i ze względu na zawartość metanu stanowi alternatywne odnawialne źródło energii. Materią organiczną mogą być osady ściekowe [1, 2], odpady komunalne [3, 4] lub obornik i inne odpady rolnicze [5]. Głównym składnikiem biogazu, decydującym o jego wartości użytkowej, jest metan CH 4. W zależności od składu substratów i warunków procesu fermentacji metan stanowi 55-70% obj. biogazu. W skład biogazu wchodzą także ditlenek węgla (CO 2 ) w ilości 32-37% obj., para wodna w ilości kilku % obj. oraz azot (N 2 ), wodór (H 2 ), siarkowodór (H 2 S) i inne substancje śladowe, które łącznie stanowią 1-2% jego objętości [6]. Dyrektywa Parlamentu Europejskiego i Rady 2009/28/WE z dnia 23 kwietnia 2009 r. w sprawie promowania stosowania energii ze źródeł odnawialnych narzuca krajom członkowskim Unii Europejskiej zwiększenie udziału energii ze źródeł odna- * Instytut Inżynierii Ochrony Środowiska, Politechnika Wrocławska, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, e-mail: anna.pakuluk@pwr.wroc.pl, joanna.ciolek@pwr.wroc.pl

484 A. PAKULUK, J.CIOŁEK wialnych w roku 2020 r. do poziomu 20%, dla Polski natomiast udział ten ma wynieść 15% [7]. Wymogi te oraz potencjał biogazu jako alternatywnego źródła energii powodują wzrost jego zużycia. W Polsce w roku 2002 wyprodukowano z biogazu 48,0 GWh energii elektrycznej i 246 TJ energii cieplnej [8]. W roku 2011 było to odpowiednio 451,1 GWh i 986 TJ. Dane dotyczą łącznie biogazu pochodzącego z oczyszczalni ścieków, składowisk odpadów i biogazowi rolniczych. Energia chemiczna biogazu może zostać przekształcona w energię cieplną poprzez spalenie w kotle, energię elektryczną bezpośrednio w ogniwach paliwowych lub pośrednio w generatorach napędzanych silnikiem spalinowym, turbinami lub w energię mechaniczną. Biogaz wykorzystuje się także w jednostkach skojarzonego wytwarzania energii lub wprowadza do sieci gazowej. Konwersja biogazu na energię zdaje się być najlepszym sposobem jego utylizacji, przynoszącym korzyści finansowe i środowiskowe. Dzięki uzyskaniu energii cieplnej czy elektrycznej z biogazu zmniejszeniu mogą ulec koszty zakupu energii na potrzeby oczyszczalni ścieków. Ponadto eliminuje się emisję metanu do atmosfery i ogranicza uciążliwość odorową, związaną z powstawaniem biogazu jako produktu ubocznego oczyszczania ścieków lub składowania odpadów [6, 9]. Ze względu na znaczną zawartość innych niż metan gazów, biogaz wymaga wzbogacenia, polegającego na usunięciu składników zanieczyszczających. O ile usunięcie występującego w największej ilości CO 2 wskazane jest ze względu na wartość opałową biogazu, o tyle inne związki należy wyeliminować z uwagi na ich zazwyczaj negatywny wpływ na stan urządzeń spalających i instalacji oraz emisję do atmosfery. Spalanie biogazu zawierającego siarkowodór i inne związki siarki oraz chlorowcopochodne związki organiczne grozi korozją chemiczną urządzeń i emisją kwaśnych gazów, dioksyn i furanów do atmosfery. Ponadto biogaz może zawierać ok. 500 innych substancji występujących w ilościach śladowych, które mimo to mają istotny wpływ na jego jakość [10]. Wśród nich największe zagrożenie stanowią siloksany, a ich rosnąca zawartość w biogazie wynika z coraz bardziej powszechnego zużycia i związanej z nim obecności w ściekach i odpadach. 2. ŹRÓDŁA SILOKSANÓW W BIOGAZIE I ICH WŁAŚCIWOŚCI Siloksany są to syntetyczne organiczne związki krzemu. Ich nazwa stanowi skrót od angielskich wyrazów silicon, oxygen i alcany. Potoczna nazwa silikony pochodzi z czasów, gdy siloksanom przypisywano strukturę podobną do ketonów z wiązaniem podwójnym Si=O. Dziś wiadomo, że krzem (Si) nie tworzy trwałych wiązań podwójnych, a siloksany zbudowane są z ułożonych naprzemiennie atomów krzemu i tlenu oraz przyłączonej do atomu Si grupy funkcyjnej metylowej, etylowej lub fenylowej

Problemy z siloksanami w instalacjach biogazowych. Zagrożenia stwarzane przez 485 [11]. Podstawowym elementem cząsteczki siloksanów jest jednostka [R 2 Si-O], przedstawiona na rysunku 1. Rys. 1. Pojedynczy element cząsteczki siloksanów Siloksany o strukturze łańcuchowej oznacza się skrótowo literą L lub rzadziej literą M, natomiast związki o strukturze pierścieniowej literą D. Do najpowszechniej występujących należą lotne metylosiloksany (VMS volatile methylsiloxanes), wśród których wyróżnia się siloksany o strukturze łańcuchowej: heksametylodisiloksan (L2), oktametylotrisiloksan (L3), dekametylotetrasiloksan (L4) i dodekametylopentasiloksan (L5) oraz siloksany pierścieniowe: heksametylocyklotrisiloksan (D3), oktametylocyklotetrasiloksan (D4), dekametylocyklopentasiloksan (D5) i dodecametylocykloheksasiloksan (D6). W przemyśle powszechnie stosuje się polimery siloksanów polidimetylosiloksany (PDMS polidimethylsiloxanes), w których liczba jednostek n w cząsteczce wynosi od 10 do 10 000. Z charakteru wiązania Si-O wynika unikalna kombinacja właściwości siloksanów, dzięki którym znajdują one zastosowanie w wielu dziedzinach przemysłu. Do najważniejszych właściwości należą: odporność oksydacyjna, słaba rozpuszczalność w wodzie, mała reaktywność i ograniczona palność. Siloksany są ponadto hydrofobowe, ściśliwe i mają właściwości tłumiące, a swoje właściwości zachowują w szerokim zakresie temperatur [11]. Ze względu na dużą lotność, utrudniony jest pobór próbek siloksanów i przez to ograniczone są możliwości kontroli ich stężeń w biogazie [12]. Związki te uznaje się za chemicznie obojętne, natomiast dalszych badań wymaga ustalenie ich wpływu na organizmy żywe [13]. Podejrzewa się, że występujące najpowszechniej siloksany D4 i D5, a także D6, mogą wpływać m.in. na funkcjonowanie wątroby i układu rozrodczego u samic ssaków. Siloksany mają ponadto wysoki potencjał akumulacji w organizmach żywych [14]. Z rosnącego zużycia siloksanów wynika ich zawartość w ściekach i odpadach przemysłowych i komunalnych. Siloksany są powszechnie stosowane w przemyśle kosmetycznym i chemicznym jako składnik dezodorantów, kremów, antyperspirantów, balsamów, lakierów do paznokci, past do zębów, szamponów, odżywek do włosów i detergentów [15, 16, 17], a także środków do pielęgnacji dla dzieci [14]. Stanowią również substrat w produkcji gum, środków zmiękczających i nawilżających, smarów i olejów, past do obuwia, substancji przeciwpianotwórczych, farb, lakierów, tekstyliów, klejów [16]. Metylosiloksany VMS stosuje się jako zamiennik kancerogennych rozpuszczalników typu trichloroetan oraz freonów, eliminując ich wpływ na efekt cieplarniany. W biogazie pochodzącym z oczyszczalni ścieków najczęściej występują siloksany D4 i D5 [9, 18, 19]. Struktura tych związków została przedstawiona na rysunku 2.

486 A. PAKULUK, J.CIOŁEK Rys. 2. Siloksany D4 i D5 Badania składu biogazu z oczyszczalni ścieków przeprowadzone przez Towera [18] wykazały, że może on zawierać także inne organiczne związki krzemu m.in. tetrametylosilan, trimetylosilanol, których spalanie w biogazie niesie takie same zagrożenia jak w przypadku siloksanów. 3. ZAGROŻENIA ZE SPALANIA Siloksany wpływają negatywnie na urządzenia, w których spalany jest biogaz (kotły, turbiny, silniki tłokowe, ogniwa paliwowe), a także na katalizatory spalin. Głównym problemem jest tworząca się w wyniku spalania siloksanów mikrokrystaliczna krzemionka. Podczas spalania biogazu zawierającego siloksany i inne związki krzemoorganiczne uwalniany jest krzem, który reaguje z O 2 i innymi pierwiastkami obecnymi w biogazie. W wyniku reakcji na wewnętrznych powierzchniach urządzeń tworzy się krzemionkowa powłoka, zbudowana głównie z SiO 2 i SiO 3, ale mogąca zawierać także wapń, sód, siarkę, cynk i miedź [18]. Przykładowy skład osadu krzemionkowego z katalizatora przedstawiono na rysunku 3. Rys. 3. Przykładowy skład powłoki krzemionkowej na katalizatorze [18] Powłoka ta ma barwę białą do jasnobrązowej, strukturę od gładkiej pudrowej do gruboziarnistej. Warstwa może osiągnąć grubość kilku milimetrów i ma właściwości

Problemy z siloksanami w instalacjach biogazowych. Zagrożenia stwarzane przez 487 szkła, jest więc odporna mechanicznie i chemicznie. Powstawanie osadów krzemionkowych zależy najprawdopodobniej od parametrów spalania czoła płomienia, powierzchni grzewczej, prędkości obrotowej oraz rodzaju wymiennika ciepła i katalizatorów. Siloksany, które zostały utlenione do krzemionki, trwale przylegają do gorących powierzchni silników tłokowych, kotłów i turbin [20]. Pokrycie powierzchni urządzeń warstwą krzemionki skutkuje zwiększeniem temperatury w kominie i wolniejszą wymianą ciepła w wymiennikach. W turbinach powłoka taka powoduje ścieranie łopatek wirnika i ze względu na właściwości izolacyjne utrudnia ich prawidłowe schładzanie, co grozi uszkodzeniem łopatek [21]. Szkody powodowane przez osadzająca się krzemionkę są znaczące i mogą prowadzić do trwałego uszkodzenia urządzeń. W silnikach tłokowych pokryciu warstwą krzemionkową ulegają komora spalania, zawory, ściany cylindrów. Uszkodzeniu ulegają także obudowy turbosprężarek i czujniki tlenu, dając fałszywe odczyty. Nieprawidłowo pracujące zawory i pierścienie tłokowe wymagają większego zużycia oleju smarnego [20]. Na rysunku 4 przedstawiono przykład silnika pokrytego krzemionką w wyniku spalania biogazu zwierającego siloksany. Rys. 4. Przykład silnika pokrytego krzemionkowym osadem (źródło fotografii: [13]) W przypadku instalacji wyposażonych w układy katalitycznego dopalania i selektywnej redukcji katalitycznej zanieczyszczeń tj. CO, NO x, lotne związki organiczne i formaldehyd pył krzemionkowy działa dezaktywująco na katalizatory. Zatrucie katalizatora może nastąpić nawet w ciągu kilku dni od rozpoczęcia pracy [19]. Biogaz wykorzystywany jest także w ogniwach paliwowych, gdzie w wyniku katalitycznego reformingu metan przekształcany jest w wodór. Haga [22] przeprowadził badania wpływu występującego w biogazie w największym stężeniu siloksanu D5 na elektrochemiczną aktywność anody ogniw paliwowych z zestalonym elektrolitem tlenkowym (SOFC - solid oxid fuel cell). Zmierzona została zmiana napięcia w ogniwie w czasie w trzech temperaturach operacyjnych (1073, 1173, 1273 K). Badania wykazały, iż wraz z upływem czasu zmniejsza się napięcie w ogniwie w każdej z analizowanych temperatur. Zanieczyszczenie biogazu rzędu 10 ppm siloksanem D5 doprowadziło do zakłócenia pracy ogniwa w czasie 50 godzin. Przyczyną było odkła-

488 A. PAKULUK, J.CIOŁEK danie się SiO 2 w porach ceramiczno-metalowej anody [22, 23]. Według Haga et al., proces opisują poniższe reakcje: ((CH 3 ) 2 SiO) 5 (g) + 25H 2 O 5Si(OH) 4 (g) + 10 CO +3H 2 (1) Si(OH) 4 (g) SiO 2 (s) + 2H 2 O (2) Na rysunku przedstawiono przykład anody w ogniwie paliwowym pokrytej krzemionkowym osadem. Rys. 5. Przykład anody w ogniwie paliwowym pokrytej krzemionkowym osadem (źródło fotografii: [22]) W efekcie spalania biogazu wraz siloksanami zmniejsza się sprawność urządzeń w produkcji energii. Konieczne jest zatem częstsze serwisowanie, a koszty związane z tym i szybszym zużyciem urządzeń stanowią istotny argument w dyskusji na temat aspektów ekonomicznych wykorzystania biogazu. Ze względu na koszty usuwania powłoki krzemionkowej i wymiany poszczególnych elementów, konieczne jest usunięcie z biogazu siloksanów i innych związków krzemoorganicznych przed jego spalaniem. 4. PODSUMOWANIE Biogaz stanowi odnawialne źródło energii o dużym potencjale. Opłacalność przekształcenia biogazu na energię zależy od kosztów jego wzbogacania. Usunięcie zanieczyszczeń konieczne jest ze względów środowiskowych (ograniczenie emisji), oraz w niektórych przypadkach ze względów techniczno-ekonomicznych. Odpowiednie oczyszczenie biogazu jest warunkiem opłacalności jego zagospodarowania. W związku z powszechnym stosowaniem siloksanów w przemyśle, wynikającym z ich uniwersalnych właściwości, rośnie zawartość tych związków w ściekach i odpadach i ostatecznie w biogazie. Spalanie biogazu zawierającego siloksany i inne organiczne związki krzemu skutkuje tworzeniem się na wewnętrznych powierzchniach urządzeń powłoki krzemianowej, co znacznie obniża ich sprawność i skraca żywotność.

Problemy z siloksanami w instalacjach biogazowych. Zagrożenia stwarzane przez 489 Siloksany stanowią coraz istotniejszy problem w instalacjach energetycznego spalania biogazu. Ostatnio wymienia się organiczne związki krzemu jako najbardziej problematyczne w jego energetycznej utylizacji [24, 25]. Dokładne zbadanie zachowania siloksanów, opracowanie standardowych metod poboru i analizy próbek, oraz metod usuwania siloksanów jest warunkiem utrzymania sprawności i wydłużenia żywotności urządzeń przystosowanych do spalania biogazu. LITERATURA [1] GAJ K., CYBULSKA H., KNOP F., Parametry biogazu pochodzącego z fermentacji osadów ściekowych, Archiwum Gospodarki Odpadami i Ochrony Środowiska, vol. 2 (2005), 91-98, http://ago.helion.pl; Paliwa z odpadów V praca zbiorowa pod red. J.WANDRASZA i K.PIKONIA, wyd. Helion S.A., Gliwice 2005. [2] GAJ K., KNOP F., CYBULSKA-SZULC H., Badania sezonowej zmienności składu biogazu powstającego procesie fermentacji osadów ściekowych Oczyszczanie ścieków i przeróbka osadów ściekowych. T. 4 / red. nauk. Zofia Sadecka. Zielona Góra : Ofic. Wyd. Uniwersytetu Zielonogórskiego, 2010. 113-123, Forum Eksploatatora 6/2010, 70-75. [3] GAJ K., CYBULSKA H., Modelowanie emisji biogazu ze składowisk odpadów komunalnych. Chemia i Inżynieria Ekologiczna, nr 1, 2002, 91 100. [4] CIUPRYK M., GAJ K., Możliwości i korzyści utylizacji biogazu ze składowisk odpadów komunalnych, Ochrona Powietrza i Problemy Odpadów, nr 1 (219) /2004, 28. [5] ONISZK-POPŁAWSKA A., ZOWSIK M., WIŚNIEWSKI G., Produkcja i wykorzystanie biogazu rolniczego, EC BREC/IBMER, 2003. [6] ZAMORSKA-WOJDYŁA D., GAJ K., HOŁTRA A., SITARSKA M., Quality evaluation of biogas and selected methods of its analysis, Ecological Chemistry and Engineering S., 2012, 19(1), 77-87 [7] Serwis Aktów Prawnych Unii Europejskiej: eur-lex.europa.eu [8] Energia ze źródeł odnawialnych w 2011 r., Główny Urząd Statystyczny, Warszawa 2012 [9] PORTMAN M., Siloxane in der Umwelt, Amt für Abfall, Wasser, Energie und Luft, Zürich 2009 [10] Guidance on gas treatment technologies for landfill gas engines, Scottish Environmental Protection Agency, Bristol 2004 [11] MAZUREK M., Polimery krzemoorganiczne w Chemia polimerów, praca zbiorowa, Warszawa 2006 [12] ARNOLD M., KAJOLINNA T., Development of on-line measurement techniques for siloxanes and other trace compounds in biogas, Waste Management 30 (2010) 1011-1017 [13] DEWIL R., APPELS L., BAEYENS J., Energy use of biogas hampered by the presence of siloxanes, Energy Conversion and Management 47 (2006), 1711-1722 [14] WANG, D.G. et al. Review of recent advances in research on the toxicity, detection, occurence and fate of cyclic volatile methyl siloxanes in the environment. Chemosphere (2012) http://dx.doi.org/10.1016/j.chemosphere.2012.10.041 [15] MCBEAN E. A., Siloxanes in biogases from landfills and wastewater digesters, Canadian Journal of Civil Engineering (2008), 431-436 [16] HORII Y., KANNAN K., Survey of organosilicone compounds, including cyclic and linear siloxanes, in personal-care and household products, Environmental Contamination and Toxicology 55 (2008), 701-710 [17] SANCHIS J. et al., Occurence of linear and cyclic volatile methylosiloxanes in wastewater, surface water and sediments from Catalonia, Science of the Total Environment 443 (2013) 530-538

490 A. PAKULUK, J.CIOŁEK [18] TOWER P., New Technology for removal of siloxanes in digester gas results in lower maintanence costs and air quality benefits in power generation equipment. WEFTEC -03, 78th annual technical exhibition and conference, 2003 [19] WHELESS E., PIERCE J., Siloxanes in Landfill and Digester Gas Update, Proceedings of the 27 th SWANA Landfill Gas Symposium, San Antonio 2004 [20] Treatment solutions for landfill gas fuel applications, White Paper Quebec 2007 [21] BADJAGBO T. et al., BADJAGBO, Direct Analysis of volatile methylsiloxanes in gaseous matrixes using atmospheric pressure chemical ionization-tandem mass spectrometry, Analytical Chemistry 81 (2009), 7288-93 [22] HAGA K. et al., Poisoning of SOFC anodes by various fuel impurities, Solid State Ionics 179 (2008), 1427-1431 [23] SASAKI et al., Chemical durability of Solid Oxide Fuel Cells: Influence of impurities on longterm performance, Journal of Power Sources 196 (2011), 9130-9140 [24] RASI S., LANTELA J., RINTALA J., Trace compounds affecting biogas energy utilisation A review, Energy Conversion and Management 52 (2011), 3369-3375 [25] MATSUI T., IMAMURA S., Removal of siloxane from digestion gas of sewage sludge, Bioresource Technology 101 (2010), S29-S32 ISSUES WITH SILOXANES IN BIOGAS INSTALLATIONS - PT 1 DANGERS OF COMBUSTION OF BIOGAS CONTAINING ORGANIC SILICON COMPOUNDS The demand for energy from renewable sources is increasing with growing concern about energy independence policy, air purity, climate change and depletion of fossil fuels. Biogas is a renewable fuel which can be used for power and heat production. The main components of biogas are methane and carbon dioxide, but typically biogas also contains trace impurities such as organic silicon compounds - siloxanes. The use of siloxanes as an intermediate in the formation of personal care and house hold products results in their widespread environmental exposure, especially in biogas produced in waste water treatment plants. Siloxanes are not hazardous biogas components when emitted, but during combustion convert to hard solid silica which is very abrasive and harmful to engines, turbines, catalysts and fuel cells. Organic silicon compounds have been recently mentioned as the most harmful components affecting energy utilisation in biogas production from waste materials. Better understanding of siloxanes, standard methods of collecting samples and removing are needed to improve the lifetime of existing biogas facilities.