SYSTEM POMIAROWY Z TRANSMISJĄ DANYCH W WYDZIELONEJ SIECI ZASILAJĄCEJ

Podobne dokumenty
Pracownia Transmisji Danych, Instytut Fizyki UMK, Toruń. Instrukcja do ćwiczenia nr 10. Transmisja szeregowa sieciami energetycznymi

Kod produktu: MP01105T

Wyjścia analogowe w sterownikach, regulatorach

Biomonitoring system kontroli jakości wody

Kod produktu: MP01105

Kod produktu: MP01611

Ex-mBEL_ARN mikroprocesorowa automatyka ARN

Politechnika Wrocławska

Materiały dodatkowe Krótka charakterystyka protokołu MODBUS

(54) (12) OPIS PATENTOWY (19) PL (11) (13) B1 PL B1 C23F 13/04 C23F 13/22 H02M 7/155

MiniModbus 4DO. Moduł rozszerzający 4 wyjścia cyfrowe. Wyprodukowano dla. Instrukcja użytkownika

MOBOT-RCR v2 miniaturowe moduły radiowe Bezprzewodowa transmisja UART

HYDRO-ECO-SYSTEM. Sieciowe systemy monitoringu pompowni wykonane w technologii

Zaliczenie Termin zaliczenia: Sala IE 415 Termin poprawkowy: > (informacja na stronie:

NX70 PLC

microplc Sposoby monitoringu instalacji technologicznych przy pomocy sterownika

PL B1. INSTYTUT TECHNIKI I APARATURY MEDYCZNEJ ITAM, Zabrze, PL BUP 09/13

Mini Modbus 1AI. Moduł rozszerzający 1 wejście analogowe, 1 wyjście cyfrowe. Wyprodukowano dla

Wejścia logiczne w regulatorach, sterownikach przemysłowych

Aparat telefoniczny POTS i łącze abonenckie

Moduł CON014. Wersja na szynę 35mm. Przeznaczenie. Użyteczne właściwości modułu

Instrukcja obsługi. SmartLink DP AC / / 2010

DigiPoint Karta katalogowa DS 5.00

Wizualizacja stanu czujników robota mobilnego. Sprawozdanie z wykonania projektu.

Systemy wbudowane. Paweł Pełczyński

Moduł Komunikacyjny MCU42 do systemu AFS42

WPROWADZENIE Mikrosterownik mikrokontrolery

1. Cel ćwiczenia. Celem ćwiczenia jest zestawienie połączenia pomiędzy dwoma sterownikami PLC za pomocą protokołu Modbus RTU.

Wejścia analogowe w sterownikach, regulatorach, układach automatyki

Programowanie sterowników przemysłowych / Jerzy Kasprzyk. wyd. 2 1 dodr. (PWN). Warszawa, Spis treści

POLITECHNIKA GDAŃSKA

Rozproszony system zbierania danych.

Mini Modbus 1TE. Moduł rozszerzający 1 wejście temperaturowe, 1 wyjście cyfrowe. Wyprodukowano dla

Moduł komunikacyjny Modbus RTU do ciepłomierza SonoMeter 30

Pomieszczeniowe czujniki temperatury

Terminali GPRS S6 Strona 1 z 11. Terminal GPRS. Albatross S6. Instrukcja montażu wersja 4.2

NX700 PLC

SZYMAŃSKI ŁÓDŹ Ul. Wiskicka 22 Tel./fax. (042) Tel./fax. (042) Kom

RS485 MODBUS Module 6RO

Kod produktu: MP01611-ZK

PRZESYŁ INFORMACJI SIECIĄ NISKIEGO NAPIĘCIA

MR - elektronika. Instrukcja obsługi. Mikroprocesorowy Panel Odczytowy OC-11 wersja podstawowa. MR-elektronika Warszawa 1997

Kod produktu: MP01105T-BT

Sprawdzian test egzaminacyjny 2 GRUPA I

JAZZ OPLC JZ20-R10 i JZ20-R16

BEZDOTYKOWY CZUJNIK ULTRADŹWIĘKOWY POŁOŻENIA LINIOWEGO

Termometr LB-471T INSTRUKCJA UśYTKOWANIA wersja instrukcji 1.1

System powiadamiania TS400

Rys. 1. Schemat blokowy rejestratora ZRZ-28

Sterownik nagrzewnic elektrycznych HE module

Interface sieci RS485

ТТ TECHNIKA TENSOMETRYCZNA

ht25 PRZYKŁAD ZASToSoWAnIA P18S rs-485 ARCH Ethernet www/ ftp / smtp Ethernet TCP IP Ethernet/ sieć wewnętrzna magazyn IP:

Koncentrator komunikacyjny Ex-mBEL_COM

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska

Politechnika Warszawska

Miernik przepływu powietrza Model A2G-25

Koncentrator komunikacyjny Ex-mBEL_COM

Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości

Systemy i Sieci Radiowe

XXXII Olimpiada Wiedzy Elektrycznej i Elektronicznej. XXXII Olimpiada Wiedzy Elektrycznej i Elektronicznej

POLITECHNIKA WARSZAWSKA Wydział Elektryczny Instytut Elektroenergetyki Zakład Elektrowni i Gospodarki Elektroenergetycznej

Ćwiczenie 5 Zegar czasu rzeczywistego na mikrokontrolerze AT90S8515

Spis treści. Dzień 1. I Wprowadzenie do diagnostyki sieci PROFIBUS (wersja 1303) II Warstwa fizyczna sieci PROFIBUS DP (wersja 1401)

Moduł komunikacyjny Modbus RTU w standardzie RS-485 do ciepłomierza SonoMeter 31 i przelicznika energii Infocal 9

MiniModbus 4DI-M. Moduł rozszerzający 4 wejścia cyfrowe z pamięcią liczników. Wyprodukowano dla

Generator przebiegów pomiarowych Ex-GPP2

DigiPoint mini Karta katalogowa DS 6.00

M-1TI. PRECYZYJNY PRZETWORNIK RTD, TC, R, U NA SYGNAŁ ANALOGOWY 4-20mA Z SEPARACJĄ GALWANICZNĄ. 2

Moduł nagrzewnicy elektrycznej EL-HE

LEKCJA TEMAT: Zasada działania komputera.

F&F Filipowski Sp. J Pabianice, ul. Konstantynowska 79/81 tel KARTA KATALOGOWA

Laboratorium Elementów i Układów Automatyzacji

Karta katalogowa JAZZ OPLC JZ20-T40/JZ20-J-T wejść cyfrowych, 2 wejścia analogowe/cyfrowe, 2 wejścia analogowe. 20 wyjść tranzystorowych

Rozdział ten zawiera informacje na temat zarządzania Modułem Modbus TCP oraz jego konfiguracji.

Rys. 1. Schemat ideowy karty przekaźników. AVT 5250 Karta przekaźników z interfejsem Ethernet

WYJŚCIA PRZEKAŹNIKOWE

RS485 MODBUS Module 6RO

IC200UDR002 ASTOR GE INTELLIGENT PLATFORMS - VERSAMAX NANO/MICRO

Sprawozdanie z projektu MARM. Część druga Specyfikacja końcowa. Prowadzący: dr. Mariusz Suchenek. Autor: Dawid Kołcz. Data: r.

Otwór w panelu WYMIAR MINIMALNIE OPTYMALNIE MAKSYMALNIE A 71(2,795) 71(2,795) 71,8(2,829) B 29(1,141) 29(1,141) 29,8(1,173)

RS485 MODBUS Module 6RO

rh-t1x1es AC LR Moduł pomiaru temperatury i jasności z zewnętrznym czujnikiem temperatury i jasności systemu F&Home RADIO.

WIZUALIZACJA DANYCH SENSORYCZNYCH Sprawozdanie z wykonanego projektu. Jakub Stanisz

Interfejs RS485-TTL KOD: INTR. v.1.0. Zastępuje wydanie: 2 z dnia

Rodzaje, budowa i funkcje urządzeń sieciowych

MiniModbus 4DI. Moduł rozszerzający 4 wejścia cyfrowe. Wyprodukowano dla

Komputerowe systemy pomiarowe. Dr Zbigniew Kozioł - wykład Mgr Mariusz Woźny - laboratorium

System Telewizji Płatnej MONETNIK typ: MON-02

PRZEPOMPOWNIE ŚCIEKÓW WOŁOMIN WYTYCZNE - STEROWANIA, SYGNALIZACJI I KOMUNIKACJI. maj 2012 r.

Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI. Katedra Metrologii i Optoelektroniki. Metrologia. Ilustracje do wykładu

Karta katalogowa JAZZ OPLC JZ20-R31

EPPL , 15-31, 20-31

Instrukcja użytkownika ARSoft-WZ1

Terminal TR01. Terminal jest przeznaczony do montażu naściennego w czystych i suchych pomieszczeniach.

Komunikacja w mikrokontrolerach Laboratorium

DTR PICIO v Przeznaczenie. 2. Gabaryty. 3. Układ złącz

Karta katalogowa JAZZ OPLC. Modele JZ20-T10/JZ20-J-T10 i JZ20-T18/JZ20-J-T18

RS485 MODBUS Module 6TE

Programowanie mikrokontrolerów. 8 listopada 2007

Transkrypt:

Jacek Suchanek AUDENS Elektronika, Informatyka, Automatyka ul. Wyłom 8, 61-671 Poznań suchanek@audens.win.pl Waldemar Nawrocki Instytut Elektroniki i Telekomunikacji Politechnika Poznańska ul. Piotrowo 3A, 60-965 Poznań 004 Poznańskie Warsztaty Telekomunikacyjne Poznań 9-10 grudnia 004 SYSTEM POMIAROWY Z TRANSMISJĄ DANYCH W WYDZIELONEJ SIECI ZASILAJĄCEJ Streszczenie: W referacie przedstawiono system pomiarowy wykorzystujący do transmisji danych wydzieloną sieć zasilającą. Omówiono koncepcję sieci wydzielonej. Przedstawiono także doświadczalny system pomiarowy oparty na tej koncepcji. 1. WSTĘP Pomysł wykorzystania energetycznej sieci zasilającej do transmisji sygnałów przesyłanych równolegle z energią elektryczną jest prawie tak stary jak sama energetyka. Pierwszy patent dotyczący przesyłania sygnałów sygnalizacyjnych w sieci energetycznej wydano w Stanach Zjednoczonych już w roku 1899, a pierwszą aplikację zrealizowano w roku 196 [1]. Ze względu na trudności technologiczne spowodowane zjawiskami zachodzącymi w sieci energetycznej, skuteczna realizacji transmisji danych w sieci energetycznej długi czas napotykała na bariery rozwojowe. Dopiero w ostatnim dwudziestoleciu XX w. wraz z postępem technologii elektronicznej oraz wprowadzeniem nowoczesnych metod przetwarzania sygnałów uzyskano zadowalające efekty. Początkowo systemy transmisji danych w sieci energetycznej budowano jako wąskopasmowe, ale obecnie realizowane są także systemy szerokopasmowe powalające na dostęp do Internetu i transmisję danych multimedialnych. Systemy szerokopasmowe pojawiły się w roku 1994 [1]. Przykładem takiego systemu jest projekt OPERA ( ang. Open PLC European Research Alliance ) []. Jest to projekt sponsorowany przez Unię Europejską, który ma umożliwić indywidualnym odbiorcom energii elektrycznej dostęp do szerokopasmowego Internetu o szybkości do 00 kilobitów na sekundę. W międzynarodowej terminologii dotyczącej transmisji danych w sieci energetycznej stosowany jest skór PLC, którego rozwinięcie ma znaczenie komunikacja w linii energetycznej ( ang. Power Line Communication ). Naturalną konsekwencją upowszechnienia technologii PLC jest jej wykorzystanie do przesyłania danych w rozproszonych systemach pomiarowych. Szczególnie jest to wykorzystywane przez systemy automatyzacji odczytów danych z liczników energii elektrycznej [3]. W takich systemach stosowana jest wąskopasmowa transmisja danych. W niniejszym referacie zostanie zaprezentowany system pomiarowy do monitorowania poziomu wody w zbiorniku retencyjnym publicznej sieci wodociągowej. Dane między zbiornikiem, a stanowiskiem dyspozytorskim przesyłane są w wydzielonej sieci zasilającej automatyki. Ze względu na bardzo duży poziom zakłóceń w sieci energetycznej, które oddziałują na transmisję danych, stosowane są różne metody ograniczania tego oddziaływania. Jedną z takich metod jest stworzenie sieci wydzielonej, która jest galwanicznie lub pasmowo odseparowana od sieci ogólnodostępnej. Celem budowy prezentowanego systemu jest zbadanie właściwości takiego systemu pomiarowego z transmisją danych w wydzielonej sieci zasilającej.. KONFIGURACJA SYSTEMU Zadaniem prezentowanego systemu pomiarowego jest pomiar poziomu wody w zbiorniku retencyjnym wody pitnej, przesłanie wyniku pomiaru do dyspozytorni oddalonej o 5 kilometrów i wyświetlenie wskazania na panelu operatorskim. Podstawowym kryterium budowy systemu był wybór metody transmisji danych pomiarowych. Ze względu na to, że zmiany poziomu wody są procesem wolnozmiennym, założono przesyłanie wyniku pomiaru co 1 minutę. Przy projektowaniu systemu rozważano następujące sposoby transmisji danych: 1. Dedykowane łącze radiowe.. Dedykowane połączenie kablowe. 3. Wykorzystanie transmisji danych w sieci GSM. 4. Transmisja PLC wykorzystująca istniejące kable sterownicze. Teren pomiędzy dyspozytornią, a zbiornikiem jest pokryty lasem, więc koszty budowy połączenia kablowego byłyby bardzo duże, podobnie jak budowa łącza radiowego, która wymagałaby wyniesienia masztów ponad korony drzew. Porównanie kosztów wykorzystania sieci GSM i PLC także wypadło na korzyść tego ostatniego rozwiązania. Zdecydowano się wykorzystać istniejącą sieć kablową zasilającą istniejące urządzenia automatyki łączącą oba punkty. PWT 004, Poznań 9-10 grudnia 004 1

Schemat blokowy systemu pomiarowego przedstawiono na rysunku 1. Jako czujnik pomiarowy zastosowano sondę hydrostatyczną typu SG-5 [4] o zakresie pomiarowym 0-10 m słupa wody, błędzie podstawowym 0,% i wyjściu prądowym 4-0 ma. Slave A850 Sonda SG5 Zbiornik Zasilanie 30V Kabel sterowniczy 100V do innych urządzeń Master A850 Zasilanie 30V Dyspozytornia Rys. 1. Schemat blokowy systemu pomiaru poziomu wody w zbiorniku retencyjnym Sygnał z sondy przekazywany jest do sterownika mikroprocesorowego typu A850, będącego własną konstrukcją współautora. Sterownik zainstalowany na zbiorniku pracuje w trybie SLAVE, tzn. może tylko odpowiadać na zapytania z zewnątrz. Drugi sterownik A850 pracujący w trybie MASTER zainstalowany jest w dyspozytorni. Inicjuje on transmisję danych. Sterowniki wyposażone są w wyświetlacze LCD typu graficznego, dzięki czemu wyświetlana informacja jest czytelna nawet z dużej odległości. Jak wspomniano wyżej, głównym elementem systemu są dwa sterowniki mikroprocesorowe A850. Sterowniki te mają następujące cechy konstrukcyjne: 1. Jednostka centralna to 3 bitowy mikrokontroler RISC typu V850/SB1 produkcji firmy NEC.. Pamięć programu i danych nieulotnych typu FLASH megabajty. 3. 16 kilobajtów pamięci RAM. 4. 3 wejścia sygnałów analogowych 4-0 ma lub bezpośrednio z mostka pomiarowego. 5. 6 wejść sygnałów dwustanowych. 6. 3 wyjścia sygnałów dwustanowych. 7. Wyświetlacz graficzny LCD 64 x 18 pixle. 8. Port szeregowy RS-485. 9. Wbudowany modem PLC. 10. Zasilacz sieciowy ~30V. Sterowniki za pomocą modemu PLC podłączone są do sieci 100V prądu stałego, która zasila urządzenia automatyki w obu punktach. Podstawową funkcją sytemu jest pomiar poziomu wody. System wyposażono w dodatkowe funkcje sygnalizacyjne. Może on sygnalizować przekroczenia w dół i w górę zadanych progów, co zapobiega przelaniu lub nadmiernemu opróżnieniu zbiornika. Na podstawie różnicy poziomów wody między kolejnymi pomiarami oraz wprowadzonymi do sterownika wymiarami geometrycznymi zbiornika obliczana jest szybkość napełniania lub opróżniania zbiornika w m 3 /h. Parametr ten ma istotne znaczenie przy sterowaniu dostarczaniem wody do miasta i poborem wody z ujęcia. W stosunku do przepływu można także zaprogramować górny próg, którego przekroczenie jest sygnalizowane. Oprócz tego istnieje możliwość wysterowania 3 wyjść dwustanowych, których zmiana stanu następuje po przekroczeniu wybranego progu. Mogą być one wykorzystane do sterowania urządzeniami wykonawczymi ( obecnie niepodłączone ). W obu sterownikach dostępnych jest 6 wejść binarnych do podłączenia sygnałów dwustanowych, np. z czujników otwarcia włazu do zbiornika. 3. DEFINICJA POJĘCIA WYDZIELONEJ SIECI ZASILAJĄCEJ W niniejszym referacie wprowadzone zostanie pojęcie wydzielonej sieci zasilającej. Jest to fragment sieci energetycznej ogólnodostępnej lub samodzielna sieć zasilająca, która jest odseparowana w zakresie widma sygnałów wykorzystywanych do transmisji danych od sieci ogólnodostępnej. Podstawową funkcją takiej sieci jest przesyłanie energii, a transmisja danych jest dodatkowym jej zastosowaniem. Dzięki temu można uzyskać nowe funkcje techniczne oraz efekty ekonomiczne. W energetycznej sieci zasilającej mamy do czynienia z silnymi zakłóceniami generowanymi przez odbiorniki energii elektrycznej, procesy komutacyjne oraz zakłócenia indukowane drogą radiową. Wszystkie te zakłócenia oddziałują na użyteczny sygnał transmisji danych. Aby zmniejszyć podatność transmisji na te zakłócenia, można wydzielić z całej sieci obszar w którym zachodzi transmisja danych. W ten sposób ograniczy się wpływ zakłóceń generowanych poza obszarem transmisji. Wydzieloną sieć energetyczna można podzielić na dwie kategorie: 1. Sieć wydzielona w sposób naturalny.. Sieć wydzielona w sposób sztuczny. Sieć wydzielona w sposób naturalny powstaje wtedy, gdy do transmisji danych wykorzystujemy całą sieć zasilaną ze źródła energii nie przenoszącego pasma sygnału użytecznego. Takim źródłem jest transformator energetyczny średniego napięcia na niskie napięcie ( SN/NN 15kV/400V ) lub źródło energii niepołączone z siecią energetyczną, np. agregat prądotwórczy lub akumulator. W wypadku zasilania z transformatora SN/NN cały obszar sieci po stronie niskiego napięcia można traktować jako sieć wydzieloną. Aby taka sieć spełniała warunek sieci wydzielonej, pokrycie użytecznym sygnałem transmisji danych musi obejmować cały obszar sieci oraz odbiorniki zasilane z tej sieci nie mogą generować zakłóceń powodujących zerwanie transmisji. Typowym przykładem takiej sieci są sieci pokładowe statków, pociągów itp. Sieć wydzieloną w sposób sztuczny otrzymuje się poprzez zainstalowanie elementów tłumiących sygnały niepożądane w taki sposób, że otrzymuje się obszar wydzielony z ogólnodostępnej sieci rozległej PWT 004, Poznań 9-10 grudnia 004

przeznaczony do transmisji danych. Zastosowanie takiego rozwiązania znacznie polepsza jakość transmisji tj. stopę błędów. Dostateczną separację obwodów transmisji danych w paśmie użytecznym można uzyskać przez włączenie szeregowe dławików o wartości np. 50 µh w oba przewody sieciowe L i N lub poprzez zastosowanie transformatorów separujących o przekładni 1:1 [5]. Można wtedy uzyskać na jednej sieci ogólnodostępnej kilka obwodów wydzielonych, między którymi nie ma komunikacji. Podobne metody wydzielania obwodów stosuję się także przy budowie systemów szerokopasmowej transmisji PLC [6]. Zaletą stosowania sieci wydzielonej jest głównie to, że operator systemu transmisji może mieć kontrolę nad tą siecią w przeciwieństwie do sieci ogólnodostępnej, gdzie odbiorcy energii w sposób dowolny mogą dołączać odbiorniki, a także często nie znana jest dokładnie topologia sieci. Rozwiązanie z wydzieloną siecią zasilającą zostało zastosowane w opisywanym systemie pomiarowym. Jest to sieć zasilana z zasilacza prądu stałego 100V przeznaczona do zasilania urządzeń automatyki na ujęciu wody. Zasilacz znajduje się w budynku dyspozytorni, a sieć rozprowadzona jest do zbiornika i innych obiektów ujęcia. Z sieci tej nie są zasilane odbiorniki dużej mocy, nie występują tu zjawiska komutacyjne, ani nie korzystają z niej inni odbiorcy. Doświadczenia z wydzieloną siecią zasilającą zostały przeprowadzone także przez współautora na statku. Podczas prób okazało się, że w sieci pokładowej generowane są silne zakłócenia przez różne odbiorniki mocy, głównie falowniki. Aby uzyskać zadowalające efekty, należało przeprowadzić separację toru transmisji danych od źródeł zakłóceń poprzez zainstalowanie dławików separujących. Badania te pokazały, że w szczególnych warunkach sieć pokładowa nie może być traktowana jako sieć wydzielona w sposób naturalny. Jak z tego wynika, należało zastosować rozwiązanie mieszane, na sieci wydzielonej w sposób naturalny należało zbudować odcinek wydzielony sztucznie. W ten sposób uzyskano pewne warunki transmisji danych. 4. MODEM PLC-19 Do transmisji danych w opisywanym systemie wykorzystano modem PLC typu PLC-19. Na podstawie poprzednich badań [7] z dostępnych układów wybrano system transmisji o nazwie własnej "Adaptive Spread Spectrum" firmy ANI Inc. USA. System ten wykorzystuje opatentowaną odmianę metody modulacji z rozproszonym widmem. Polega ona na tym, że nadajnik dokonuje pomiaru poziomu sygnału w sieci podczas nadawania i koryguje selektywnie wzmocnienie zależnie od poziomu tłumienia sygnału w sieci. W celu zwiększenia efektywności transmisji wykorzystywane są dwa tory transmisyjne: tor na przewodach międzyfazowych lub przewodach fazowym i zerowym oraz tor na przewodach zerowym i ochronnym. Dzięki tym zabiegom jakość transmisji jest porównywalna z połączeniem kablowym, tj. uzyskano stopę błędów <10-9. Bazując na zestawie układów ( ang. chip set ) do transmisji PLC produkowanym przez firmę ANI skonstruowano własną wersję modemu. Jego schemat blokowy przedstawiono na rysunku. Składa się on z następujących elementów: 1. Moduł separujący. Zawiera on ferrytowy transformator w.cz. oraz elementy przeciwprzepięciowe. Zmontowany jest na oddzielnej płytce drukowanej. Zapewnia odseparowanie układów modemu od napięcia sieci.. Stopień wyjściowy mocy. Jest to wyjściowy wzmacniacz mocy pracujący w klasie AB, który wzmacnia sygnał nadawany. 3. Układ PLC19 ( Phisical Layer Controller ). Jest to układ scalony typu ASIC, który pełni rolę modulatora i demodulatora sygnału rozproszonego widma. 4. Procesor DLP ( Data Link Layer and Application Processor ). Mikroprocesor zarządzający transmisją, obsługujący transmitowane ramki. 5. Pamięć EPROM. Pamięć stała przechowująca oprogramowanie systemowe modemu, tzw. firmware. 6. Pamięć RAM. Pamięć podręczna do przechowywania danych roboczych. 7. Interfejs. Układ konwersji sygnałów na standard RS-3. Pamięć RAM Sieć 100V (30V / 400V) Moduł separujący Układ ASIC PLC19 Procesor DLP Interface Złącze RS-3 Stopień wyjściowy mocy Pamięć EPROM Rys.. Schemat blokowy modemu typu PLC-19 PWT 004, Poznań 9-10 grudnia 004 3

Modem PLC-19 ma następujące parametry techniczne: 1. Efektywna szybkość transmisji: 19. kbd.. Bitowa szybkość transmisji: 134,4 kbd. 3. Pasmo częstotliwości: 134,4-403, khz. 4. Interfejs: RS-3 lub TTL. 5. Zasilanie: +1V/0,5A. Modemy skonfigurowane zostały w taki sposób, że pracują w trybie symulacji połączenia kablowego. Tryb ten polega na tym, że użytkownik po prostu wysyła lub odbiera dane i nie musi zajmować się zarządzaniem łączem. Modemy symulują połączenie full-duplex poprzez buforowanie danych, natomiast łącze PLC pracuje w trybie half-duplex. Jedyny efekt symulacji łącza widoczny przez użytkownika to niewielkie opóźnienie wprowadzane przez modemy ( ok. 0,03s ). 5. PROTKÓŁ TRANSMISJI DANYCH W opisywanym systemie pomiarowym wykorzystano uproszczoną wersję protokołu MODBUS [9]. Protokół MODBUS zbudowany jest według struktury MASTER-SLAVE o konfiguracji magistralowej [10]. Oznacza to, że w danym systemie pomiarowym jest tylko jedna jednostka typu MASTER i wiele jednostek typu SLAVE. W opisywanym systemie jednostką typu MASTER jest sterownik zainstalowany w dyspozytorni, a sterownik SLAVE na zbiorniku. Tylko MASTER ma prawo do inicjowania transmisji w sieci, SLAVE odpowiada na zapytania z MASTER-a. Znacznik początku 1 znak : Adres Rozkaz Dane n znaków Rys. 3. Format ramki Suma LRC Znacznik końca CR LF W opisywanym systemie zaimplementowano tylko ramki w trybie ASCII. Konstrukcję ramki przedstawiono na rysunku 3. Ramka przesyłana jest w kodzie heksadecymalnym, gdzie każda cyfra heksadecymalna przedstawiona jest za pomocą znaku ASCII z zakresu 0-9 i A-F. Każda ramka rozpoczyna się em początku :. Następnie jednostka MASTER przesyła dwuznakowy adres odbiorcy, a jednostka SLAVE w ramce odpowiedzi umieszcza swój adres. Następnie przesyłany jest kod rozkazu, a potem pole danych zawierające dodatkowe dane potrzebne do wykonania rozkazu. Na zakończenie przesyłana jest suma kontrolna LRC ( ang. Longitudinal Redundancy Check ) [9] i znacznik końca składający się z dwóch znaków CR i LF. Maksymalny czas opóźnienia odpowiedzi przyjęto 5 s, jeżeli w tym czasie MASTER nie otrzyma odpowiedzi na swoje zapytanie, powtarza wywołanie 5 razy. Jeżeli 5 prób nawiązania komunikacji zakończy się niepowodzeniem, sygnalizowany jest operatorowi błąd transmisji. Komunikacja nawiązywana jest co minutę. Dane pomiarowe zorganizowane są w sterowniku w postaci rejestrów o następującym znaczeniu: - Stan słupa wody - bajty. - Stany wejść 6 dwustanowych - 1 bajt. - Nastawy 3 wyjść dwustanowych - 1 bajt. - Nastawa alarmu górnego poziomu - bajty. - Nastawa alarmu dolnego poziomu - bajty. - Nastawa alarmu przepływu - bajty. Nastawy mogą być odczytywane i ustawiane w sterowniku, stany są tylko odczytywane. 6. WYNIKI EKSLOATACJI SYSTEMU Opisywany system pomiarowy został zainstalowany na wybranym ujęciu wody we wrześniu 003 roku. Do chwili przygotowania niniejszego referatu ( październik 004 r. ) system działał bezawaryjnie. Nie stwierdzono zerwania komunikacji między obydwoma punktami, więc uzyskano praktycznie 100% skuteczność transmisji danych. Uzyskane wyniki potwierdzają tezę, że transmisja danych w sieci energetycznej może być skuteczną alternatywą dla innych powszechnie stosowanych sposobów transmisji. W wielu wypadkach wykonanie dedykowanego połączenia kablowego może być kosztowne, łączność radiowa niepewna. System PLC jest także konkurencyjny ekonomicznie. Potwierdził to przypadek badanego systemu pomiarowego. Nie wymaga on żadnych dodatkowych kosztów, jak np. instalacji okablowania, anten, ponoszenia opłat dzierżawy pasm radiowych lub abonamentu GSM i opłat za przesył danych. W szczególności potwierdzono skuteczność stosowania transmisji PLC w wydzielonej sieci zasilającej. Zastosowanie rozwiązania z siecią wydzieloną zwiększa odporność systemu na zakłócenia, co pozwala uzyskać 100% skuteczność. Opisywany system wykazał swoją przydatność praktyczną. Poprzez wprowadzenie nowych cech funkcjonalnych, na przykład obliczanie szybkości napełniania lub opróżniania zbiornika czyli przepływu, umożliwiono obsłudze prognozowanie zapotrzebowania na wodę. Poprzednio takich danych nie można było uzyskać bezpośrednio za pomocą tradycyjnych metod pomiaru lub wielkości uzyskane były obarczone dużym błędem ( pomiar ręczy i obliczenia ). SPIS LITERATURY [1] P. O' Neill, Telecalling all power ministers "Buddy - can you really spare a billion? ", materiały konferencji: Affordable Telecom and IT Solutions for Developing Countries, Chennai 000, Indie, http://www.tenet.res.in/ [] Strona internetowa: http://ist-opera.org/ PWT 004, Poznań 9-10 grudnia 004 4

[3] J. Suchanek, Automatyzacja odczytów wskazań liczników energii elektrycznej w gospodarstwach domowych, Wiadomości Elektrotechniczne, nr 4/004, s. 0-4, 004 [4] Katalog wyrobów, APLISENS sp. z o.o., wyd. II/003, s. 5-53, Warszawa 003 [5] Dokumentacja Modemu VORTEX V19,C&K Technologies Pty Ltd [6] Materiały reklamowe firmy EICHHOFF, strona internetowa: www.eichhoff.de [7] J. Suchanek, Transmisja danych w energetycznej sieci zasilającej, materiały konferencji: P.W.T. 003, s. 193-197, Poznań 003 [8] AN19CS Powerline Network Communication Chip Set, ANI Inc., 1996 [9] W. Mielczarek, Szeregowe interfejsy cyfrowe, wyd.. Helion, Gliwice 1997 [10] W. Nawrocki: Komputerowe systemy pomiarowe, Warszawa.WKŁ 00 PWT 004, Poznań 9-10 grudnia 004 5