Allocation of elements in former farmland afforestation with birch of varying age Gawęda Tomasz 1, Małek Stanisław 2 Michał Zasada 3 1 Nadleśnictwo Bielsko, RDLP Katowice 2 Department of Forest Ecology, Forest Faculty, University of Agriculture in Krakow al. 29-listopada 46, 31-425 Karków, Poland, rlmalek@cyf-kr.edu.pl 3 Laboratory of Dendrometry and Forest Productivity, Faculty of Forestry, Warsaw University of Life Sciences SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
Biomass dynamics in silver birch stands on postagricultural lands in Poland Michał Zasada, Szymon Bijak, Agnieszka Bronisz, Karol Bronisz, Maciej Czajkowski, Łukasz Ludwisiak, Robert Tomusiak, Rafał Wojtan Warsaw University of Life Sciences - SGGW Forest Biomass Conference 2013, October 7-9, 2013, Mierzęcin, Poland
Location of research areas 5 20 19 Chronosequences 1 Dobieszyn 2 Dobieszyn 5 Ostrołęka 19 Siedlce 20 Mińsk Maz. 2 1
Example of chronosequence in Dobieszyn The vegetation patches were classified according to subsequent age groups: I: 1-4 years, II: 5 8 years, III: 9 12 years IV: over 12 years. IV I II
Chronosequence I age class
Chronosequence II age class
Chronosequence III age class
Chronosequence - III age class
Chronosequence - IV age class
Investigated compo- nents and elements Roots, stem, bark, branches, assimilation apparatus, litterfall and total biomass of the other (except birch) plants for all groups mentioned above, the content of the following elements was determined: N, C, S, Ca, K, Mg, Na, P, Mn, Cu, Fe, Zn, Pb, Cd.
Characteristic of age groupe Age class Average age Average biomass [m 3 /ha] Average biomass [kg/ha] aboveground roots litterfall other biomass I 3 2 2 521,58 510,83 2 523,39 3 478,01 II 5 19 13 807,89 1 086,39 3 748,64 2 725,70 III 9 57 35 677,44 1 485,48 6 784,16 1 942,08 IV 12 126 78 082,05 1 475,87 9 643,49 1 306,86
Biomass allocation in age groups 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% aparat asymilacyjny gałęzie pień korzenie kora opad organiczny Leaves Branches Stem Roots Bark Litterfall 0%
In total biomass, in kg/ha 10000 1000 100 10 1 N C S P
In total biomass, in kg/ha 1000 100 10 1 Ca Mg K Na 0,1 0,01
In total biomass, in kg/ha 100 10 1 Cu Zn Mn Fe 0,1 0,01 0,001
In total biomass, in kg/ha 1 Pb Cd 0,1 0,01 0,001 0,0001
In branches, in kg/ha 10000 1000 100 10 1 N C S P 0,1
In branches, in kg/ha 100 10 1 Ca Mg K Na 0,1 0,01
In branches, in kg/ha 10 Cu Zn Mn Fe 1 0,1 0,01 0,001
In branches, in kg/ha 1 Pb Cd 0,1 0,01 0,001 0,0001
In stem, in kg/ha 100000 10000 1000 100 10 1 N C S P 0,1
In stem, in kg/ha 100 10 1 Ca Mg K Na 0,1 0,01
In stem, in kg/ha 10 Cu Zn Mn Fe 1 0,1 0,01 0,001
In stem, in kg/ha 1 Pb Cd 0,1 0,01 0,001 0,0001
In roots, in kg/ha 10000 1000 100 10 1 N C S P 0,1
In roots, in kg/ha 100 10 1 Ca Mg K Na 0,1
In roots, in kg/ha 100 Cu Zn Mn Fe 10 1 0,1 0,01 0,001
In roots, in kg/ha 1 Pb Cd 0,1 0,01 0,001 0,0001
In bark, in kg/ha 10000 1000 100 10 1 N C S P 0,1
In bark, in kg/ha 100 10 1 Ca Mg K Na 0,1 0,01
In bark, in kg/ha 10 Cu Zn Mn Fe 1 0,1 0,01 0,001
In bark, in kg/ha 1 Pb Cd 0,1 0,01 0,001 0,0001
In litterfall, in kg/ha 10000 1000 100 10 1 N C S P 0,1
In litterfall, in kg/ha 100 10 1 Ca Mg K Na 0,1 0,01
In litterfall, in kg/ha 100 Cu Zn Mn Fe 10 1 0,1 0,01 0,001
In litterfall, in kg/ha 1 Pb Cd 0,1 0,01 0,001 0,0001
Conclusions The content of the majority of the analyzed elements in biomass increases with age, with exception of roots where the amount of sodium (Na) and iron (Fe) clearly stabilizes in older age classes. Similar trend can be observed in the case of heavy metals in the litter fall. The content of cadmium (Cd) is lower than the content of lead (Pb) in almost whole plant with exception of bark, where relations are the opposite.
Conclusions For the litter fall, a significant drop in most elements can be observed in the initial phase followed by a relatively stable moderate increase. This fact can not be confirmed for the amount of the litter fall, which increases approximately linearly. The share of the foliage biomass in the whole tree biomass decreases with age, and the share of the trunk strongly increases. After initial moderate increase, the share of bark and branches stabilizes. The share of roots also initially decreases and then levels up.
% of allocation of N 100% 90% 80% 70% 60% 50% 40% liście gałęzie pień kora Leaves Branches Stem Bark 30% 20% 10% 0% korzeń opad organiczny Roots Litterfall
% of allocation of C 100% 90% 80% 70% 60% liście gałęzie pień Leaves Branches Stem 50% 40% kora Bark 30% 20% 10% 0% korzeń opad organiczny Roots Litterfall
% of allocation of S 100% 90% 80% 70% 60% 50% 40% liście gałęzie pień kora Leaves Branches Stem Bark 30% 20% 10% 0% korzeń opad organiczny Roots Litterfall
% of allocation of P 100% 90% 80% 70% 60% liście gałęzie pień Leaves Branches Stem 50% 40% kora Bark 30% 20% 10% 0% korzeń opad organiczny Roots Litterfall
% of allocation of K 100% 90% 80% 70% 60% liście gałęzie pień Leaves Branches Stem 50% 40% kora Bark 30% 20% 10% 0% korzeń opad organiczny Roots Litterfall
% of allocation of Na 100% 90% 80% 70% 60% liście gałęzie pień Leaves Branches Stem 50% 40% kora Bark 30% 20% 10% 0% korzeń opad organiczny Roots Litterfall
% of allocation of Mg 100% 90% 80% 70% 60% 50% 40% 30% liście gałęzie pień kora korzeń Leaves Branches Stem Bark Roots 20% 10% 0% opad organiczny Litterfall
% of allocation of Ca 100% 90% 80% 70% 60% 50% 40% liście gałęzie pień kora Leaves Branches Stem Bark 30% 20% 10% 0% korzeń opad organiczny Roots Litterfall
% of allocation of Mn 100% 90% 80% 70% 60% liście gałęzie pień Leaves Branches Stem 50% 40% kora Bark 30% 20% 10% 0% korzeń opad organiczny Roots Litterfall
% of allocation of Zn 100% 90% 80% 70% 60% liście gałęzie pień Leaves Branches Stem 50% 40% kora Bark 30% 20% 10% 0% korzeń opad organiczny Roots Litterfall
% of allocation of Fe 100% 90% 80% 70% 60% liście gałęzie pień Leaves Branches Stem 50% 40% kora Bark 30% 20% 10% 0% korzeń opad organiczny Roots Litterfall
% of allocation of Cu 100% 90% 80% 70% 60% 50% 40% liście gałęzie pień kora Leaves Branches Stem Bark 30% 20% 10% 0% korzeń opad organiczny Roots Litterfall
% of allocation of Pb 100% 80% 60% 40% liście gałęzie pień kora Leaves Branches Stem Bark 20% 0% korzeń opad organiczny Roots Litterfall
% of allocation of Cd 100% 90% 80% 70% 60% liście gałęzie pień Leaves Branches Stem 50% 40% kora Bark 30% 20% 10% 0% korzeń opad organiczny Roots Litterfall
Conclusions For litter fall, content of majority of analyzed elements increases in young ages and then decreases. Reverse tendency can be observed for foliage. Amount of carbon sequestered in stems gets higher with tree's age, whereas in roots it decreases. We observed high content of sodium, lead and especially iron in roots. In 2nd age class it reaches over 80%.
Conclusions Sodium content in roots significantly decreases with age and increases in stems. Similar pattern of the element transfer from roots to shoots can be seen for copper and, to a less extent, for magnesium, calcium and lead. Copper, zinc and calcium content peaked in the bark. Foliage stores over 50% of magnesium and potassium.
Acknowledgements Project financed by Polish National Centre for Science (NCN) grant # N N305 400238 Ecological consequences of the silver birch (Betula pendula Roth.) secondary succession on abandoned farmlands in central Poland. T H A N K Y O U F O R Y O U R A T T E N T I O N! Contact: rlmalek@cyf-kr.edu.pl, Michal.Zasada@wl.sggw.pl