LINEAR BUCKLING ANALYSIS WITH DIFFERENT ABM K-SPAN ARCH PANELS

Podobne dokumenty
EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Tychy, plan miasta: Skala 1: (Polish Edition)

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Hard-Margin Support Vector Machines

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Lecture 18 Review for Exam 1

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like


Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytet Mikołaja Kopernika w Toruniu

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis


Revenue Maximization. Sept. 25, 2018

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

Stargard Szczecinski i okolice (Polish Edition)

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

F-16 VIRTUAL COCKPIT PROJECT OF COMPUTER-AIDED LEARNING APPLICATION WEAPON SYSTEM POWER ON PROCEDURE

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2)

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Pielgrzymka do Ojczyzny: Przemowienia i homilie Ojca Swietego Jana Pawla II (Jan Pawel II-- pierwszy Polak na Stolicy Piotrowej) (Polish Edition)

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

Sargent Opens Sonairte Farmers' Market

SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE

Immigration Studying. Studying - University. Stating that you want to enroll. Stating that you want to apply for a course.

WPLFE. WPLFE Economy Line. The shortest right angle planetary gearbox with flange output shaft and maximum torsional stiffness

Surname. Other Names. For Examiner s Use Centre Number. Candidate Number. Candidate Signature

Zarządzanie sieciami telekomunikacyjnymi

Krytyczne czynniki sukcesu w zarządzaniu projektami

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy

Analiza stateczności lokalnej podwójnie giętych konstrukcji cienkościennych

Instrukcja obsługi User s manual


ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL

Konsorcjum Śląskich Uczelni Publicznych

Egzamin maturalny z języka angielskiego na poziomie dwujęzycznym Rozmowa wstępna (wyłącznie dla egzaminującego)

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Patients price acceptance SELECTED FINDINGS

SG-MICRO... SPRĘŻYNY GAZOWE P.103



Standardized Test Practice

photo graphic Jan Witkowski Project for exhibition compositions typography colors : : janwi@janwi.com

Knovel Math: Jakość produktu

PLSH1 (JUN14PLSH101) General Certificate of Education Advanced Subsidiary Examination June Reading and Writing TOTAL

European Crime Prevention Award (ECPA) Annex I - new version 2014

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

Extraclass. Football Men. Season 2009/10 - Autumn round

Wybrzeze Baltyku, mapa turystyczna 1: (Polish Edition)

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

SHEAR LAG EFFECT IN THE NUMERICAL EXPERIMENT

Życie za granicą Studia

Jak zasada Pareto może pomóc Ci w nauce języków obcych?

POLITYKA PRYWATNOŚCI / PRIVACY POLICY

Warsztaty Ocena wiarygodności badania z randomizacją

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

EGZAMIN MATURALNY Z JĘZYKA ANGIELSKIEGO POZIOM ROZSZERZONY MAJ 2010 CZĘŚĆ I. Czas pracy: 120 minut. Liczba punktów do uzyskania: 23 WPISUJE ZDAJĄCY

Financial support for start-uppres. Where to get money? - Equity. - Credit. - Local Labor Office - Six times the national average wage (22000 zł)

Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS

ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX


Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS

Previously on CSCI 4622

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

PRZEDSIEBIORSTWO LUSARSKO-BUDOWLANE LESZEK PLUTA

Admission to the first and only in the swietokrzyskie province Bilingual High School and European high School for the school year 2019/2020

WYKAZ PRÓB / SUMMARY OF TESTS. mgr ing. Janusz Bandel

Blow-Up: Photographs in the Time of Tumult; Black and White Photography Festival Zakopane Warszawa 2002 / Powiekszenie: Fotografie w czasach zgielku

ROZPRAWY NR 128. Stanis³aw Mroziñski

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

LEARNING AGREEMENT FOR STUDIES

kdpw_stream Struktura komunikatu: Status komunikatu z danymi uzupełniającymi na potrzeby ARM (auth.ste ) Data utworzenia: r.

Ankiety Nowe funkcje! Pomoc Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to students

Struktury proponowane dla unikalnych rozwiązań architektonicznych.

The Overview of Civilian Applications of Airborne SAR Systems

Installation of EuroCert software for qualified electronic signature

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE!

Call 2013 national eligibility criteria and funding rates

TO ADVANCED MODELLING OF END PLATE JOINTS

Dominika Janik-Hornik (Uniwersytet Ekonomiczny w Katowicach) Kornelia Kamińska (ESN Akademia Górniczo-Hutnicza) Dorota Rytwińska (FRSE)

Please fill in the questionnaire below. Each person who was involved in (parts of) the project can respond.

Rev Źródło:

Transkrypt:

A R C H I T E C T U R E C I V I L E N G I N E E R I N G E N V I R O N M E N T The Silesian University of Technology No. 2/ 2012 LINEAR BUCKLING ANALYSIS WITH DIFFERENT ABM K-SPAN ARCH PANELS Ryszard WALENTYŃSKI a, Rafael SÁNCHEZ b, Robert CYBULSKI c a Associate Prof.; Faculty of Civil Engineering, The Silesian University of Technology, Akademicka 5, 44-100 Gliwice, Poland E-mail address: Ryszard.Walentynski@polsl.pl b MSc student; Faculty of Civil Engineering, The Silesian University of Technology, Akademicka 5, 44-100 Gliwice, Poland E-mail address: rafsanchez84@hotmail.com c MSc Eng., PhD student; Faculty of Civil Engineering, The Silesian University oftechnology, Akademicka 5, 44-100 Gliwice, Poland E-mail address: Robert.Cybulski@polsl.pl Received: 10.03.2012; Revised: 30.04.2012; Accepted: 15.06.2012 A b s t r a c t In this research paper a brief description of the ABM (Automatic Building Machine) technology is given which can be used as a solution for buildings and roofing structures. It is a machine on wheels that makes cold formed arch steel panels in a very short time period. This technology is commonly used by the US army to build temporary buildings and nowadays these panels are becoming more popular in the civilian life. There are two main problems connected with this technology. First is lack of proper theoretical model of the panel, and the second is that all calculations are made according to American design codes, which not always are compatible with European standards. In order to bend ABM panel as an arch, its surfaces were folded. This leads to the cross section losses in axial and bending stiffness but also gives some positive aspects. The walls of the cross-sections are less vulnerable to local buckling. In this paper the following is investigated: how each folding and corrugation improves or worsen the critical load factor in a linear local buckling analysis with the use of Robot [2]. These numerical analyses are made to better understand the corrugation influence on ABM panel. S t r e s z c z e n i e Artykuł zwięźle przedstawia technologię ABM (z j. ang. Automatic Building Machine) składającą z się z podwójnie giętych elementów cienkościennych, które są używane jako rozwiązanie dla budynków i przekryć dachowych. Jest to mobilna fabryka, która produkuje w bardzo krótkim czasie zimno gięte panele łukowe. Technologia ta jest z powodzeniem wykorzystywana przez armię USA do budowy tymczasowych budynków, a w dzisiejszych czasach zaczyna być również popularna w budownictwie cywilnym. Z technologia tą związane są dwa podstawowe problemy. Pierwszy, to brak modelu teoretycznego opisującego zachowanie elementu ABM, a drugi to obliczenia są przeprowadzane zgodnie z wytycznymi amerykańskimi, które nie zawsze są kompatybilne z normami obowiązującymi w Europie. Podczas formowania elementu ABM w łuk, powstają na jego powierzchni poprzeczne fałdowania. Fałdowania te prowadzą do strat w podłużnej i giętej sztywności, ale mogą mieć pozytywny wpływ na stateczność lokalną profilu. Artykuł ten przedstawia następujący problem: jak proces głównego gięcia oraz fałdowanie poprzeczne polepsza lub pogarsza wartość współczynnika wyboczeniowego podczas liniowej analizy wyboczeniowej w programie Robot [2]? Te numeryczne analizy są przeprowadzone, aby lepiej zrozumieć wpływ fałdowania na panel ABM. K e y w o r d s : ABM; K-span; MIC 120; Cold-formed; Steel; Arch, Folding; Geometry, Model. 2/2012 A R C H I T E C T U R E C I V I L E N G I N E E R I N G E N V I R O N M E N T 79

R. W a l e n t y ń s k i, R. S á n c h e z, R. C y b u l s k i 1. INTRODUCTION Due to today s difficult economy, cheap and short time consuming solutions for buildings industry are very desirable. One of the solutions which fulfills the above requirements is the ABM (Automatic Building Machine) technology. It is a mobile factory used to fabricate and construct K-span arch steel buildings based on self-supporting panels made of MIC 120 and MIC 240 profiles. K-span stands for large, selfsupporting buildings constructed in this technology. Described in here technology comes from the USA and belongs to M.I.C. Industries Inc.[5]. In Poland there are two firms specializing in this building system. First one, Konsorcjum Hale Stalowe [4] uses MIC 120 profiles (Fig. 1a). Second one, Węglopol Sp z o.o. [7] uses MIC 240 profiles (Fig. 1b). In this paper only MIC 120 profiles are considered. The technical specifications of the ABM arch panel cross section 120 are maximum thickness of 1.0 mm, characteristic yield strength of steel is 320 MPa, modulus of elasticity of 210 GPa, Poisson ratio of 0.30, and shear modulus of 81 GPa. 3. GEOMETRICAL SPECIFICATIONS The general cross section geometry, consists of 2 flanges (one flange in each side), and a convex web. At the top of each flange there are two horizontal flat lips. At the top part of the left flange, the horizontal part is at the right side. In this flange both top parts have 10 mm of length, but differ in their thickness, one has 1 mm and the other 2 mm of thickness. The same occurs in the top part of the right flange, with the only difference, that the second element with 2 mm of thick and 15 mm long. Fig. 2, shows a detail drawing of the cross section dimensions. a b Figure 1. MIC 120 and MIC 240 cross-sections According to Walentyński R., Cybulski R., and Kozieł K.[6], ABM system is based on the American Design Codes. This gives a series of limitations of the use this system in Europe due to different loading considerations. Also, there is no proper theoretical panel model and surface folding created during the bending of the panels into arch is not well understood. European standards [3] recommend treating ABM panel s cross-section as class 4. So it means that folded surfaces are not taken into calculation process. It is not totally correct especially that folding gives some resistance to local buckling. Currently this problem is being analyzed in the Department of Civil Engineering of The Silesian University of Technology by Prof. Ryszard Walentyński, PhD student Robert Cybulski, and PhD student Krzysztof Kozieł, who have published several research papers analyzing this system. 2. TECHNICAL SPECIFICATIONS Figure 2. Detail drawing of cross section Figure 3. Geometry of cross section There are three types of corrugations to be distinguished and these are (Fig. 3): a. Main Corrugation: it is the curvature or arc formed in between supports, this arch has a height from the midpoint of the arc to the level of supports equal to 4mm and the arc is formed with a sector of a circle with an angle equal to 2.865. b. Secondary Corrugation: these are the sinusoidal 80 A R C H I T E C T U R E C I V I L E N G I N E E R I N G E N V I R O N M E N T 2/2012

L I N E A R B U C K L I N G A N A L Y S I S W I T H D I F F E R E N T A B M K - S P A N A R C H P A N E L S waves formed in the corrugated flange and corrugated web. The web corrugations have amplitude of 1.2mm from the center to the crest and a wavelength of 30.0 mm from crest to crest. The side corrugations at the flanges have an amplitude of 1.5mm from the center to the crest and a wavelength of 34.0 mm from crest to crest. In both cases half of a sphere is considered of 7.5 and 8.5 mm in the bottom and side corrugation respectively, localized at each end of the web and side corrugations. c. Tertiary Corrugation: these are two waves that are perpendicular to the secondary corrugations and go along the length of the panel. The length of this corrugation is 30.0 mm and amplitude of 1.0 mm up from the web, (Fig. 4). Figure 6. Model B ce C I V I L E N G I N E E R I N G Figure 4. Tertiary corrugation 4. NUMERICAL MODEL DESIGN Figure 7. Model C All models were analyzed with the use of Robot [2]. Model A will have a Zero Gaussian curvature, will have the same cross section geometry, and is a smooth, horizontal, planar model, (Fig. 5). The second model, Model B, consists of the cross section as Model A and includes the main corrugation. As a result we obtain a curved panel with a Negative Gaussian curvature, (Fig. 6). In the third model (Model C), the Negative Gaussian Figure 8. Model D Figure 5. Model A curvature and the secondary corrugation were incorporated. Due to the complex geometry of this panel, the geometry was done completely by means of AutoCAD [1], (Fig. 7). The fourth model, Model D, was incorporated the Negative Gaussian curvature, the secondary corrugation, and tertiary corrugation. Due to the complex geometry of this panel, the geometry was done completely by means of AutoCAD, (Fig. 8). 2/2012 A R C H I T E C T U R E C I V I L E N G I N E E R I N G E N V I R O N M E N T 81

R. W a l e n t y ń s k i, R. S á n c h e z, R. C y b u l s k i Several models were also developed to have better understanding of the geometry influence of the cross section and the 3 corrugations that were already mentioned above. They were developed in the same way as Model C and D. In Table 1 the different combinations and changes that were implemented in each model are collected to compare the result of buckling critical load. Table 1. Model characteristics Model Cross section Main Corr. 2 nd Corr. 3 rd Corr. E Fig. 2 0 YES - F Fig. 2 0 - YES G Fig. 9 0 - - H Fig. 9 Neg. - - I Fig. 10 0 - - J Fig. 10 Neg. - - K Fig. 2 0 - - L Fig. 2 Neg. - YES M Fig. 11 0 - - N Fig. 11 Neg. - - Figure 11. Cross section of Model M and N 5. SUPPORT CONSTRAIN The support constrains for the linear local buckling analysis in the edges of the element are: In the edge of the element where the compressive load will be applied, the displacements (X and Z) and rotations (X, Y, and Z) were constrained (Red line, Fig. 12). In the free edges of the horizontal elements located at the top of the inclined plates only the displacements (X and Z) were constrained due to future experimental investigation (Yellow line, Fig. 12). In the opposite side of the application of the compressive load, the displacements and rotations were constrained in all directions X, Y, and Z, as a fixed support (Orange line, Fig. 12). These support constrains are used in all models. Figure 9. Cross section of Model G and H Figure 12. Detail of support constrains Figure 10. Cross section of Model I and J 82 A R C H I T E C T U R E C I V I L E N G I N E E R I N G E N V I R O N M E N T 2/2012

L I N E A R B U C K L I N G A N A L Y S I S W I T H D I F F E R E N T A B M K - S P A N A R C H P A N E L S 6. LOAD DEFINITION Depending on the Main Corrugation, in some models a unitary distributed load was applied in the Y direction. With the addition of the Main Corrugation the unitary distributed load was decomposed in its vector components in the Y and Z direction. This load is symbolizing the axial compression. 7. LINEAR LOCAL BUCKLING For this analysis we just analyze a length segment of the arch panel, and the panel length that will be used in the laboratories and in Robot will be of 600 mm. Figure 13. Model A deformations ce C I V I L E N G I N E E R I N G 8. RESULTS The results of the local buckling analysis are presented in Table 2, with the resultant nodal force, maximum displacement (axial shortening), and percentage ratio of reduced force to the maximum resultant force obtained for Model C. Table 2. Table of results F. force Resultant Disp. Percentage Ratio Model [kn] [mm] [%] A 55.2 8.6 34.8% B 70.3 12.7 44.3% C 158.6 14.5 100.0% D 141.0 14.8 88.9% E 157.6 9.5 99.3% F 149.3 13.7 94.1% G 8.5 15 5.3% H 14.8 18 9.4% I 42.5 11 26.8% J 55.6 11.2 35.1% K 57.5 9.3 36.2% L 58.9 12.1 37.1% M 55.2 8.1 34.8% N 70.3 12.8 44.3% Figure 14. Model B deformations Figure 15. Model C cross section view of deformations The following shapes for the local buckling modes were obtained. Figure 16. Model D cross section view of deformations 2/2012 A R C H I T E C T U R E C I V I L E N G I N E E R I N G E N V I R O N M E N T 83

R. W a l e n t y ń s k i, R. S á n c h e z, R. C y b u l s k i Model I, J, K, L, M and N have very similar diagrams of deformation to Model A and B. 9. COMPARISON OF RESULTS Figure 17. Model E cross section view of deformations Figure 18. Model F cross section view of deformations This section provides results comparison between all model analyses. If we compare Model A and B we can conclude that the original cross section geometry (see Figure 2) can resist a compressive force of 55.2 kn and when we add the main corrugation it gives a compressive force of 70.3 kn, what means that the main corrugation provides additional resistance to the arch panel. If we compare Model B and C we may conclude that when we include the main and secondary corrugation an increment in the compressive force is seen, the total force is 158.6 kn, thus the secondary corrugation provides additional resistance to the arch panel. If we compare Model C and D we may conclude that tertiary corrugations do not provide essential additional resistance to the arch panel. Comparing Model C and E we may conclude that when we have only the secondary corrugation there is no resistance loss, so the maximum resistance is given by the secondary corrugation. Comparing Model E and F we may conclude that Figure 19. Model G lateral view of deformations Figure 20. Model H lateral view of deformations 84 A R C H I T E C T U R E C I V I L E N G I N E E R I N G E N V I R O N M E N T 2/2012

L I N E A R B U C K L I N G A N A L Y S I S W I T H D I F F E R E N T A B M K - S P A N A R C H P A N E L S when we only have the secondary and tertiary corrugations and in another model only the tertiary corrugation this type of corrugation does not give any additional resistance. Comparing Model G and H, both having a flat web, and Model H also with the main corrugation with Model A we may conclude, that curve web provides resistance to the arch panel and is an important element of the arch panel. Comparing Model I and J, both without the flat lips at the top of both flanges and Model J with the main corrugation, with Model A, we may conclude that these flat lips do provide certain resistance to the arch panel. Comparing Model K and L, where both models only have the tertiary corrugation, and Model L with the main corrugation with Model A, we may conclude that the tertiary corrugation is influenced by the secondary corrugation. Due to the results obtained, Model K and L show higher critical force than Model A. Comparing Model M and N, where both models have the flat lips towards the inner part of the panel and Model N includes the main corrugation with Model A and B respectively, we may conclude that it does not give any loss of resistance to the arch panel. 10. CONCLUSIONS This paper briefly described the ABM technology and computer models with different changes to the cross section of the arch panel to determine which part of this technology is important and which combination does give a reduction to the critical load force. Linear analyses were performed with the use of Robot Structural Analysis software. With the analyses, results, and comparison of results we can conclude the following: The combination of the main, secondary, and curved web at the cross section give the maximum resistance to the arch panel for the local buckling analysis. The tertiary corrugation when combined with the secondary corrugation reduces the critical compressive force of the arch panel by about 11%. The flat lips at the top of the cross section do not change the value of the critical compressive force if placed inward or outward of the cross section. But it should be included in the cross section because if not the panel critical compressive force will be reduced (like for Models I and J). Information presented in this work, give a better understanding of the ABM panel cross section resistance to local buckling and which elements give a gain or reduction to the critical compressive force. ACKNOWLEDGEMENT I cordially thank MSc. Krzysztof Kozieł for his help and advice during the realization of this research paper Rafael Sánchez. REFERENCES [1] Autodesk Autocad LT 2012; http://usa.autodesk.com/autocad/ [2] Autodesk Robot Structural Analysis Professional 2012;http://usa.autodesk.com/robot-structural-analysis-professional/. [3] European Standard; Eurocode 3- Design of steel structures- Part 1-3: General rules- Supplementary rules for cold-formed members and sheeting. EN 1993-1-3, 2006 [4] Konsorcjum Hale Stalowe (Consortium of Steel Buildings); http://www.ptech.pl/ [5] M.I.C. Industries Inc.; http://www.micindustries.com/ [6] Walentyński R., Cybulski R., and Kozieł K.; Stiffness investigation of ABM K-span arch panels. ACEE, (pending) [7] Węglopol Sp. z o.o., http://www.weglopol.eu/ c e C I V I L E N G I N E E R I N G 2/2012 A R C H I T E C T U R E C I V I L E N G I N E E R I N G E N V I R O N M E N T 85

R. W a l e n t y ń s k i, R. S á n c h e z, R. C y b u l s k i 86 A R C H I T E C T U R E C I V I L E N G I N E E R I N G E N V I R O N M E N T 2/2012