ANALYSIS OF TRACTION CHARACTERISTICS OF THE MOTOR CAR FIAT PANDA EQUIPPED WITH A V MULTIJET ENGINE

Podobne dokumenty
TRACTION QUALITIES OF A MOTOR CAR FIAT PANDA EQUIPPED WITH A V MULTIJET ENGINE

Effect of high-speed traction gearbox ratio on vehicle fuel consumption

WENTYLATORY PROMIENIOWE SINGLE-INLET DRUM BĘBNOWE JEDNOSTRUMIENIOWE CENTRIFUGAL FAN

Biogas buses of Scania

AN ANALYSIS OF FUEL CONSUMPTION BY A LORRY WITH THE COMPRESSION IGNITION DYNAMIC CHARGED ENGINE

ELASTYCZNOŚĆ SILNIKA ANDORIA 4CTI90

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

NIESTACJONARNY PRZEPŁYW CIEPŁA W TŁOKU DOŁADOWANEGO SILNIKA Z ZAPŁONEM SAMOCZYNNYM

WENYLATORY PROMIENIOWE ROOF-MOUNTED CENTRIFUGAL DACHOWE WPD FAN WPD

PORÓWNANIE ELASTYCZNOŚCI SILNIKÓW COMMON RAIL I TDI

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

4. EKSPLOATACJA UKŁADU NAPĘD ZWROTNICOWY ROZJAZD. DEFINICJA SIŁ W UKŁADZIE Siła nastawcza Siła trzymania

AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ MECHANICZNY ROZPRAWA DOKTORSKA. mgr inż. Piotr Smurawski

Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo

THE INFLUENCE OF THE ENGINE LOAD ON VALUE AND TEMPERATURE DISTRIBUTION IN THE VALVE SEATS OF TURBO DIESEL ENGINE

SELECTION OF LUBRICATING OIL AIMED AT REDUCTION OF IC ENGINE FRICTION LOSSES

Technical Data. SPMT / 4 Axle Module - Transporter

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

BARIERA ANTYKONDENSACYJNA

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów


Akademia Morska w Szczecinie. Wydział Mechaniczny

Euro Oil & Fuel Biokomponenty w paliwach do silników Diesla wpływ na emisję i starzenie oleju silnikowego

II wariant dwie skale ocen II alternative two grading scales

PERSPEKTYWY ZRÓWNOWAŻONEGO ROZWOJU TRANSPORTU DROGOWEGO W POLSCE DO 2030 ROKU

Patients price acceptance SELECTED FINDINGS

DIAGNOSTYKA INTENSYWNOŚCI ZUŻYCIA OLEJU SILNIKOWEGO W CZASIE EKSPLOATACJI

OCENA ZUŻYCIA PALIWA PRZEZ SILNIK O ZAPŁONIE SAMOCZYNNYM PRZY ZASILANIU WYBRANYMI PALIWAMI

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS


Tractive efficiency of a vehicle at variable speed

WENTYLATORY PROMIENIOWE MEDIUM-PRESSURE CENTRIFUGAL

TRANSPORT W RODZINNYCH GOSPODARSTWACH ROLNYCH

IDENTYFIKACJA PARAMETRÓW CHARAKTERYZUJĄCYCH OBCIĄŻENIE SEKCJI OBUDOWY ZMECHANIZOWANEJ SPOWODOWANE DYNAMICZNYM ODDZIAŁYWANIEM GÓROTWORU

OPTYMALIZACJA PUBLICZNEGO TRANSPORTU ZBIOROWEGO W GMINIE ŚRODA WIELKOPOLSKA

Helena Boguta, klasa 8W, rok szkolny 2018/2019

WPŁYW WŁAŚCIWOŚCI PALIW MINERALNYCH I ROŚLINNYCH NA PRĘDKOŚĆ NARASTANIA CIŚNIENIA W PRZEWODZIE WTRYSKOWYM I EMISJĘ AKUSTYCZNĄ WTRYSKIWACZA

SG-MICRO... SPRĘŻYNY GAZOWE P.103

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

WPLFE. WPLFE Economy Line. The shortest right angle planetary gearbox with flange output shaft and maximum torsional stiffness

TYRE PYROLYSIS. REDUXCO GENERAL DISTRIBUTOR :: ::

Simulation method of operating parameters assessment used for engine comparative analysis

OCENA MECHANIZMÓW POWSTAWANIA PĘKNIĘĆ WĄTROBY W URAZACH DECELERACYJNYCH ZE SZCZEGÓLNYM UWZGLĘDNIENIEM ROLI WIĘZADEŁ WĄTROBY

ZESZYTY NAUKOWE NR 10(82) AKADEMII MORSKIEJ W SZCZECINIE

Zarządzanie sieciami telekomunikacyjnymi

BIOPHYSICS. Politechnika Łódzka, ul. Żeromskiego 116, Łódź, tel. (042)

ELASTYCZNOŚĆ WSPÓŁCZESNYCH SILNIKÓW O ZAPŁONIE ISKROWYM

Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS

The analysis of the energy demand for heating and cooling of the house built on the basis of the traditional Canadian wood-frame construction

Krytyczne czynniki sukcesu w zarządzaniu projektami


ROZPRAWA DOKTORSKA. Model obliczeniowy ogrzewań mikroprzewodowych

Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS

PTNSS Conception of gear ratios selection between the engine and the electric machine in the hybrid drive systems

FUNCTIONAL AGRIMOTOR TESTING SUPPLIED BY THE VEGETABLE ORIGIN FUELS BADANIE FUNKCJONALNE SILNIKA ROLNICZEGO ZASILANEGO PALIWAMI POCHODZENIA ROŚLINNEGO

G14L LPG toroidal tank

Updated Action Plan received from the competent authority on 4 May 2017

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 5(109)/2016

POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH

DRIVING SYSTEMS OF THE LIGHT RAIL VEHICLES WITH USING THE HYDROSTATIC DEVICES

Badanie oporu toczenia opon do samochodów osobowych na różnych nawierzchniach

OCENA PORÓWNAWCZA ZUśYCIA PALIWA SILNIKA CIĄGNIKOWEGO ZASILANEGO BIOPALIWEM RZEPAKOWYM I OLEJEM NAPĘDOWYM

Medical electronics part 10 Physiological transducers

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 1(92)/2013

Strategic planning. Jolanta Żyśko University of Physical Education in Warsaw

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

Rodzaj obliczeń. Data Nazwa klienta Ref. Napędy z pasami klinowymi normalnoprofilowymi i wąskoprofilowymi 4/16/ :53:55 PM

POLITECHNIKA WARSZAWSKA. Wydział Zarządzania ROZPRAWA DOKTORSKA. mgr Marcin Chrząścik

EGARA Adam Małyszko FORS. POLAND - KRAKÓW r

A dynamic test of a vehicle in motion and exhaust gas emissions during alternative fuelling with gasoline and compressed natural gas (CNG)

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

SPITSBERGEN HORNSUND

Lecture 18 Review for Exam 1

Regionalny Dyrektor Ochrony Środowiska ul. 28 czerwca 1956 Poznań

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Studying the effects of changes in ambient condition parameters on the torque characteristics of a naval gas turbine

Installation of EuroCert software for qualified electronic signature

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 1(92)/2013

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

WYKORZYSTANIE OPROGRAMOWANIA ADAMS/CAR RIDE W BADANIACH KOMPONENTÓW ZAWIESZENIA POJAZDU SAMOCHODOWEGO

Extraclass. Football Men. Season 2009/10 - Autumn round

Keywords: compression ratio, dual-fuel engine, combustion process, natural gas

OKREŚLENIE OBSZARÓW ENERGOOSZCZĘDNYCH W PRACY TRÓJFAZOWEGO SILNIKA INDUKCYJNEGO

Tablice zmiennej treści Variable message boards UOPG6. Power of supply: Enclosure: Colour (Chrominance): Beam width: Luminance: Luminance ratio:

WYBRANE PROBLEMY BADAWCZE EKOLOGII, ORGANIZACJI I INFRASTRUKTURY TRANSPORTU

Knovel Math: Jakość produktu

RESONANCE OF TORSIONAL VIBRATION OF SHAFTS COUPLED BY MECHANISMS

Analiza parametrów pracy napędu hybrydowego Toyoty Prius III w procesie hamowania

Formularz recenzji magazynu. Journal of Corporate Responsibility and Leadership Review Form

OPIS KONSTRUKCJI DESIGN DESCRIPTION

Instrukcja obsługi User s manual

SPITSBERGEN HORNSUND

BADANIA WYTRZYMA OŒCI NA ŒCISKANIE PRÓBEK Z TWORZYWA ABS DRUKOWANYCH W TECHNOLOGII FDM

Urbanek J., Jabłoński A., Barszcz T ssswedfsdfurbanek J., Jabłoński A., Barszcz T., Wykonanie pomiarów

PRACA DYPLOMOWA Magisterska

dr inż. ANDRZEJ DZIKOWSKI mgr inż. MAREK HEFCZYC mgr inż. JERZY KELLER Instytut Technik Innowacyjnych EMAG

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Transkrypt:

TEKA Kom. Mot. i Energ. Roln. OL PAN, 211, 11, 98 15 ANALYSIS OF TRACTION CHARACTERISTICS OF THE MOTOR CAR FIAT PANDA EQUIPPED WITH A 1.3 16 V MULTIJET ENGINE Wawrzyniec Gołębiewski, Tomasz Stoeck*, Tomasz Stoeck * * Department of Motor Vehicle Use, the West-Pomeranian University of Technology in Szczecin Summary. This paper presents analysis of traction characteristics of the Fiat Panda car equipped with a 1.3 16 V Multijet engine. Characteristics of the full power of the 1.3 JTD engine was prepared, along with a selection of the trend curves. On the basis of the moment curve from that graph and the car basic data, traction characteristics of the vehicle was prepared. It was a dependence of the propulsive force on the vehicle s linear velocity. On that basis, such traction qualities of the Fiat Panda as its ability to accelerate, to drive upon hills and its achieving the maximum speed were analyzed. Key words: traction characteristics of a vehicle, theory of motion, combustion engines, external characteristic of an engine. INTRODUCTION Acceleration potential is one of the most important traction characteristics of a vehicle. It finds its reflection in urban traffic. A higher number of cars that manage to drive over a crossing in one light cycle results in a lower number of cars waiting before the crossing, which translates to a lower emission of combustion gases from engines working idle. Moreover, quick passing is also important, as it shortens the time of the hazardous maneuver. This quality of the car is strongly affected by the external characteristics of the engine torque and selection of an appropriate power transmission system. Overcoming heights by the vehicle at its maximum speed is meaningful, too. These traction qualities describe the essence of the vehicle work and the character of its use. PURPOSE OF THE RESEARCH Purpose of this research was to perform analysis of traction characteristics of a motor vehicle Fiat Panda, equipped with a 1.3 16 V Multijet engine.

ANALYSIS OF TRACTION CHARACTERISTICS OF THE MOTOR CAR FIAT PANDA 99 TESTING STATION The testing station was composed of the following components: a fuel (diesel oil) tank a 2 l fuel tank for diesel oil, a fuel pump it was supposed to ensure fuel pressure from the tank and its delivery to the fuel pipes, Automex fuel meter it was an important component, necessary for measuring fuel consumption with the weighing method (not included in the scope of the tests). Unburnt fuel returned to it through the engine, a Fiat Multijet 1,3 JTD engine a four-stroke turbo-charged diesel engine with direct injection, provided with the Common Rail fuel delivery system, an Automex eddy current brake which charged the engine with any chosen anti-torque at variable rotational speeds, using the rotary current phenomenon, a power panel with a Fiat Panda 2 switchboard with software and the fuel meter controlling system controlling the engine work and torque loading the engine via the brake, with a display of the basic operational parameters, including: power, engine torque, etc.. Below, Figure 1 presents the testing station arrangement. Fig. 1. Arrangement of the testing station (plan)

1 Wawrzyniec Gołębiewski, Tomasz Stoeck COURSE OF THE TESTS During the tests, measurements on a test engine bed were conducted, by performing the engine full power speed characteristic [6,9,16] for the Fiat Multijet 1,3 JTD. It appeared as follows. 16 6 14 y =,452x 3-2,37x 2 + 25,99x + 39,397 R 2 =,9745 5 12 1 y = -,1529x 2 + 5,65x -,129 R 2 =,9968 4 Mo[Nm] 8 Mo 3 Ne[kW] 6 4 2 Ne Ne trend curve Mo trend curve 1 12 14 16 18 2 22 24 26 28 3 32 34 36 38 4 42 2 1 n[rpm] Fig. 2. Speed characteristic of a Fiat Multijet 1,3 JTD engine; Mo engine torque, Ne engine power output, n engine rotational speed, R 2 correlation coefficient The measurements were made every 2 rpm, from 1 rpm to 42 rpm and the opposite. The result was the mean of the two measurements. For these values, trend curves were matched. Equations characterizing those curves are shown on the graph, where x=1,2,3,... 17 the next measurement number. High values of the correlation coefficients (R 2 ) proved the good matching of the trend curves and the actual values. In the table below, results of actual measurements with theoretic values obtained from equations of the matched trend curves are presented.

ANALYSIS OF TRACTION CHARACTERISTICS OF THE MOTOR CAR FIAT PANDA 11 Table 1. Actual values and theoretical values of the engine torque and power output n (rpm) M o [Nm] M o theor [Nm] N e [kw] N e theor [kw] 1 1 67 63.32 7.1 5.34 2 12 76 83.45 9.6 1.49 3 14 98 1.7 14.3 15.32 4 16 117 113.43 19.6 19.85 5 18 13 123.82 24.5 24.8 6 2 134 131.51 28 28. 7 22 136 136.76 31.3 31.61 8 24 136 139.85 34.3 34.92 9 26 135 141.4 36.8 37.92 1 28 141 14.62 41.3 4.61 11 3 139 138.84 43 43. 12 32 138 135.99 46.3 45.9 13 34 135 132.33 48 46.86 14 36 129 128.13 48.8 48.34 15 38 123 123.67 49.1 49.5 16 4 118 119.22 49.6 5.36 17 42 115 115.5 5.6 5.92 where: M o actual engine torque, M o theor theoretical engine torque, N e actual engine power output, N e theor theoretical engine power output The next stage of the test was selection of parameters characterizing the vehicle and preparation of a traction graph based on the above-given theoretical characteristic of the engine torque. VEHICLE DATA The basic parameters that describe the vehicle include the ones given in Table 2. Table 2. Basic data of the vehicle Symbol Value Unit where: G c 19325.7 [N] vehicle weight f t.12 - basic rolling resistance coefficient A.5 - additional rolling resistance coefficient c x.3 - non-dimensional air resistance coefficient k.9 - filling factor B 1.578 [m] vehicle width H 1.54 [m] vehicle height F 2.19 [m 2 ] vehicle end face area η.9 - propulsive system mechanical efficiency σ 1 - under-hood power loss factor r k.27 [m] wheel kinematic radius Basic assumptions for selecting values for the vehicle data: it was assumed that the vehicle is fully loaded, hence its weight (G c ),

12 Wawrzyniec Gołębiewski, Tomasz Stoeck the value of the basic rolling resistance coefficient f t was adopted as for a surface similar to smooth asphalt, the value of the additional rolling resistance coefficient A was adopted as for most of surfaces in use, the value of the non-dimensional air resistance coefficient c x was adopted as for a Fiat Panda car, the value of the filling factor k was adopted as for motor cars, the values of the width and height of the car were adopted as for a Fiat Panda, version 4x2 Van, the vehicle end face area was calculated based on the dependence F=kBH, the value of the propulsive system mechanical efficiency was adopted as for motor cars, the value of the under-hood power loss factor was adopted as for a vehicle going at elevation of meters above the sea level, the wheel kinematic radius resulted from the tire size (at pressure recommended by the producer) and the ring, with consideration of static loads. Table 3. Basic ratios of gearbox C514R and the final drive [18] I gear 3.99 II gear 2.158 III gear 1.345 IV gear.974 V gear.766 Reverse gear 3.818 Final drive 3.438 TRACTION CHARATERISTIC OF THE CAR Traction characteristic of the car was the dependence between the propelling force on the car wheels on its linear speed. The propelling force on the car wheels was calculated with the formula: P k = (M o theor σ η m i bi i g )/r k, (1) where: P k propelling force on the wheels [N], M o theor theoretical engine torque (value according to the trend curve) [Nm], σ - under-hood power loss factor, η m mechanical efficiency of propelling system, i bi ratio of the actual gear of the gearbox the car is driving at (selectable ratio), i g final drive ratio (permanent ratio), r k wheel kinematic radius [m].

ANALYSIS OF TRACTION CHARACTERISTICS OF THE MOTOR CAR FIAT PANDA 13 The car velocity was described with the dependence: V=(.38 n s r k )/ i bi i g, (2) where: V car linear velocity [km/h], n s engine rotational speed [min -1 ], r k wheel kinematic radius [m], i bi ratio of the actual gear of the gearbox the car is driving at (selectable ratio), i g final drive ratio (permanent ratio). The values of the propelling force and the linear velocity were calculated for five gears. The reverse gear was not taken into account. The graph shows the vehicle motion resistances, i.e. rolling resistance, air resistance and grade resistance. The resistance curves were drawn based on dependences available in the literature [1,4,8,12,14]. 7 6 Pk[N] 5 4 3 2 Pk1 Pk2 Pk3 Pk4 Pk5 Wt+Wp Wt+Wp+Ww5% Wt+Wp+Ww1% Wt+Wp+Ww15% Wt+Wp+Ww2% Wt+Wp+Ww25% Wt+Wp+Ww3% 1 2 4 6 8 1 12 14 16 18 V[k m /h] Fig. 3. Traction graph of a Fiat Panda car equipped with a 1.3 JTD engine Pk1, Pk2, Pk3, Pk4, Pk5 propelling force for the subsequent gears: 1, 2, 3, 4, 5; Wt rolling resistances; Wp air resistance; Ww% - grade resistance (e.g. Ww 5% - grade resistance at a 5% slope)

14 Wawrzyniec Gołębiewski, Tomasz Stoeck RESULTS Maximum speed of the car: 155 km/h. Maximum propelling and acceleration forces at individual gears: Table 4. Maximum propelling and acceleration forces at individual gears P k max [N] a [m/s 2 ] gear 1 6318.28 3.21 gear 2 3488.7 1.77 gear 3 2173.98 1.1 gear 4 1574.32.8 gear 5 1238.12.63 where: P k max maximum value of propelling force at the given gear, a maximum value of acceleration at the given gear Steepest hill possible to overcome at gear 1: 3 %. Steepest hill possible to overcome at gear 2: 15 %. Steepest hill possible to overcome at gear 3: 5%. Steepest hill possible to overcome at gear 4: 5%. CONCLUSIONS Considering the fact that it was not a sports car, its maximum speed (155 km/h) was of a satisfactory level. Apart from the engine and propelling system design, that was strongly attributed to the aerodynamics of the vehicle. The basic air resistance factor had been effectively reduced throughout the years, thanks to which the car had been achieving higher and higher maximum speeds and using less and less fuel. The ability to overcome a 3 % slope when fully loaded proved the good selection of the transmission ratio of gear 1 and utilization of the torque characteristics. Acceleration values achieved at the other gears were important too, whereas the first selectable transmission had a high value. It its worth consideration if it would not good to have the ratios of gears 2 and 3 increased slightly. This could make the car able to overcome steeper elevations at these gears and to achieve a better acceleration. Particularly, increasing the gear 3 ratio would make sense, as in urban traffic this gear is used most frequently. On the other hand, increased rations of gears 2 and 3 would result in increased fuel consumption while driving at them. That would entail a general increase of fuel consumption, and thus a higher emission of exhaust gases. To sum up, in the view of the ecology and economy, the engine and propelling system design should be qualified as good. Traction characteristics of the car result from its intended use. REFERENCES 1. Arczyński S.: Mechanika ruchu samochodu. Warsaw, WNT 1994. p. 45-64, 92-14.

ANALYSIS OF TRACTION CHARACTERISTICS OF THE MOTOR CAR FIAT PANDA 15 2. Bogdański J.R.: Hamownia podwoziowa kompendium wiedzy minimalnej cd. Auto Moto Serwis. No 1/22. Wydawnictwo Instalator Polski. Warsaw 22. 3. Bogdański J.R.: Ile koni pod maską? Auto Moto Serwis. No 6/24. Wydawnictwo Instalator Polski. Warsaw 24. 4. Dębicki M.: Teoria samochodu. Teoria napędu. WNT. Warsaw 1976. p. 19-27, 45-6, 16-12, 161-172. 5. Hozer J. red.: Statystyka. Katedra Ekonometrii i Statystyki Wydziału Nauk Ekonomicznych i Zarządzania Uniwersytetu Szczecińskiego. Szczecin 1998. p. 187-21. 6. Kijewski J.: Silniki spalinowe. WSiP Warsaw 1997. p.81-85. 7. Lisowski M.: Ocena własności trakcyjnych samochodu Jelcz 317 wyposażonego w silnik SW-68 z różnymi systemami doładowania. MOTROL. Lublin 1999. 8. Lisowski M.: Teoria ruchu samochodu. Teoria napędu. Politechnika Szczecińska. Szczecin 23. p. 8-13, 17-19, 43-47, 64-67. 9. Luft S.: Podstawy budowy silników. WKiŁ. Warsaw 26. p.45-46. 1. Mysłowski J.: Ocena własności eksploatacyjnych silników wysokoprężnych na podstawie jednostkowego zużycia paliwa. Praca doktorska. Szczecin 25. p.18-26. 11. Mysłowski J., Mysłowski J.: Tendencje rozwojowe silników spalinowych o zapłonie samoczynnym. Wyd. AUTOBUSY. Radom 26. p.7-77. 12. Prochowski L.: Mechanika ruchu. WKiŁ. Warszawa 27. p.53-83. 13. Siłka W.: Energochłonność ruchu samochodu. WNT. Warszawa 1997. p.28-36. 14. Siłka W.: Teoria ruchu samochodu. WNT. Warszawa 22. p.53-144. 15. Ubysz A.: Teoria trakcyjnych silników spalinowych. Politechnika Śląska. Gliwice 1991. p.23-21. 16. Wajand J. A., Wajand J. T.: Tłokowe silniki spalinowe. WNT. Warsaw 25. p.159-162. 17. Zając P., Kołodziejczyk L. M.: Silniki spalinowe. WSiP. Warsaw 21. p.18-114. 18. Zembowicz J.: Fiat Panda. WKiŁ. Warsaw 25. p.12, 5-51, 136-138. 19. Instrukcja obsługi panelu mocy. Automex. Gdańsk 27. 2. Instrukcja obsługi modułu programatora AMX 211. Automex. Gdańsk 27. ANALIZA WŁASNOŚCI TRAKCYJNYCH SAMOCHODU FIAT PANDA WYPOSAŻONEGO W SILNIK 1,3 16 V MULTIJET Streszczenie. W artykule przedstawiono analizę własności trakcyjnych samochodu Fiat Panda wyposażonego w silnik 1,3 16 V Multijet. Wykonano charakterystykę pełnej mocy silnika 1,3 JTD wraz z doborem krzywych trendu. Na podstawie krzywej momentu z tego wykresu oraz podstawowych danych pojazdu wyznaczono charakterystykę trakcyjną pojazdu. Była to zależność siły napędowej od prędkości liniowej pojazdu. Na jej podstawie analizowano własności trakcyjne pojazdu Fiat Panda, takie jak: zdolność przyspieszania, możliwość pokonywania wzniesień oraz uzyskiwanie maksymalnej prędkości. Słowa kluczowe: własności trakcyjne pojazdu, teoria ruchu, silniki spalinowe, charakterystyka zewnętrzna silnika.