The application of elemental analysis for the determination of the elemental composition of lignocellulosic materials

Podobne dokumenty
Zakłady Pomiarowo-Badawcze Energetyki ENERGOPOMIAR Spółka z o.o.

TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS


CENTRUM CZYSTYCH TECHNOLOGII WĘGLOWYCH CLEAN COAL TECHNOLOGY CENTRE. ... nowe możliwości. ... new opportunities

Streszczenie rozprawy doktorskiej

TYRE PYROLYSIS. REDUXCO GENERAL DISTRIBUTOR :: ::

Ocena koncepcji BIOrafinerii i ich powiązanie z POLitykami rolną i leśną.

Krytyczne czynniki sukcesu w zarządzaniu projektami

DOI: / /32/37

Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc

WYKAZ DOROBKU NAUKOWEGO

Euro Oil & Fuel Biokomponenty w paliwach do silników Diesla wpływ na emisję i starzenie oleju silnikowego


Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

ROZPRAWY NR 128. Stanis³aw Mroziñski

Pomiary hydrometryczne w zlewni rzek

Application of ion chromatography for determination of chlorine content in solid biomass for power sector

AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ MECHANICZNY ROZPRAWA DOKTORSKA. mgr inż. Piotr Smurawski

Few-fermion thermometry

Tytuł pracy w języku angielskim: Microstructural characterization of Ag/X/Ag (X = Sn, In) joints obtained as the effect of diffusion soledering.

Installation of EuroCert software for qualified electronic signature

Allocation of elements in former farmland afforestation with birch of varying age

Compression strength of pine wood (Pinus Sylvestris L.) from selected forest regions in Poland, part II

OpenPoland.net API Documentation

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

TECHNOLOGIE OCHRONY ŚRODOWISKA (studia I stopnia) Derywatyzacja w analizie środowiskowej zanieczyszczeń typu jony metali i jony metaloorganiczne

Międzynarodowa Konferencja Naukowa

Conception of reuse of the waste from onshore and offshore in the aspect of

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

LIGNOCELLULOSIC BIOMASS PRODUCTION AND DELIVER FOR BIOREFINERIES

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

Akademia Morska w Szczecinie. Wydział Mechaniczny


Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

SG-MICRO... SPRĘŻYNY GAZOWE P.103

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

POLITECHNIKA WARSZAWSKA. Wydział Zarządzania ROZPRAWA DOKTORSKA. mgr Marcin Chrząścik

WYKAZ PRÓB / SUMMARY OF TESTS. mgr ing. Janusz Bandel

PARAMETRY TECHNICZNE DEKLAROWANE PRZEZ PRODUCENTA POTWIERDZONE BADANIAMI / RATINGS ASSIGNED BY THE MANUFACTURER AND PROVED BY TESTS

TRANSPORT W RODZINNYCH GOSPODARSTWACH ROLNYCH

The analysis of the energy demand for heating and cooling of the house built on the basis of the traditional Canadian wood-frame construction

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

No matter how much you have, it matters how much you need

Urbanek J., Jabłoński A., Barszcz T ssswedfsdfurbanek J., Jabłoński A., Barszcz T., Wykonanie pomiarów

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

W trzech niezależnych testach frezy z powłoką X tremeblue typu V803 był w każdym przypadku prawie 2 razy bardziej wydajne niż wersja niepowlekana.


Equipment for ultrasound disintegration of sewage sludge disseminated within the Record Biomap project (Horizon 2020)


Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

INŻYNIERIA ROLNICZA AGRICULTURAL ENGINEERING

Cracow University of Economics Poland

Knovel Math: Jakość produktu

P R A C A D Y P L O M O W A

ANALIZA ENERGETYCZNA MIESZANINY PALIW STAŁYCH Z UDZIAŁEM BIOKOMPONENTU


European Crime Prevention Award (ECPA) Annex I - new version 2014

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

Formularz recenzji magazynu. Journal of Corporate Responsibility and Leadership Review Form

INSTYTUT GENETYKI I HODOWLI ZWIERZĄT POLSKIEJ AKADEMII NAUK W JASTRZĘBCU. mgr inż. Ewa Metera-Zarzycka

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

PRZEWODNIK PO PRZEDMIOCIE. Negotiation techniques. Management. Stationary. II degree

deep learning for NLP (5 lectures)

Wpływ wybranych parametrów technologicznych na zawartość estrów glicydylowych w tłuszczach i smażonych produktach

Convolution semigroups with linear Jacobi parameters

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Employment. Number of employees employed on a contract of employment by gender in Company

Opis Przedmiotu Zamówienia oraz kryteria oceny ofert. Części nr 10

THEORETICAL STUDIES ON CHEMICAL SHIFTS OF 3,6 DIIODO 9 ETHYL 9H CARBAZOLE

Gdański Uniwersytet Medyczny Wydział Nauk o Zdrowiu z Oddziałem Pielęgniarstwa i Instytutem Medycyny Morskiej i Tropikalnej. Beata Wieczorek-Wójcik

Lek. Ewelina Anna Dziedzic. Wpływ niedoboru witaminy D3 na stopień zaawansowania miażdżycy tętnic wieńcowych.

Final LCP TWG meeting, Sewilla

Exposure assessment of mercury emissions

Wpływ niektórych czynników na skład chemiczny ziarna pszenicy jarej

Medical electronics part 10 Physiological transducers

4. EKSPLOATACJA UKŁADU NAPĘD ZWROTNICOWY ROZJAZD. DEFINICJA SIŁ W UKŁADZIE Siła nastawcza Siła trzymania

Sargent Opens Sonairte Farmers' Market

The impact of the global gravity field models on the orbit determination of LAGEOS satellites

BIOPHYSICS. Politechnika Łódzka, ul. Żeromskiego 116, Łódź, tel. (042)

Stechiometria. Pojęcie mola. Liczba Avogadry. Liczba atomów zawarta w 12 g czystego 12 C. 1 mol =

Zastosowanie spektroskopii EPR do badania wolnych rodników generowanych termicznie w drotawerynie

Stechiometria. Nauka o ilościach materiałów zużywanych i otrzymywanych w reakcjach chemicznych



PN-EN 1515 DIN 2509 DIN 2510 PN-H 74302

Biogas buses of Scania

Instrukcja obsługi User s manual

Podstawa prawna: Art. 70 pkt 1 Ustawy o ofercie - nabycie lub zbycie znacznego pakietu akcji

Ocena potrzeb pacjentów z zaburzeniami psychicznymi

Wybrane aspekty badań spektroskopowych drewna upłynnionego i surowca drzewnego poddanego upłynnieniu

Has the heat wave frequency or intensity changed in Poland since 1950?

OBWIESZCZENIE MINISTRA INFRASTRUKTURY. z dnia 18 kwietnia 2005 r.

Ekonomiczne i społeczno-demograficzne czynniki zgonów osób w wieku produkcyjnym w Polsce w latach

Hard-Margin Support Vector Machines

Unit of Social Gerontology, Institute of Labour and Social Studies ageing and its consequences for society

PRACE NAUKOWE RESEARCH PAPERS

Transkrypt:

Annals of Warsaw University of Life Sciences - SGGW Forestry and Wood Technology 92, 2015: 477-482 (Ann. WULS - SGGW, For. and Wood Technol. 92, 2015) The application of elemental analysis for the determination of the elemental composition of lignocellulosic materials MAGDALENA WITCZAK, MAŁGORZATA WALKOWIAK, WOJCIECH CICHY, MAGDALENA KOMOROWICZ Environmental Protection and Wood Chemistry Department, Wood Technology Institute, Poznan Abstract: The application of elemental analysis for the determination of the elemental composition of lignocellulosic materials. The presented work includes research on different types of lignocellulosic materials: woody materials, agricultural materials and fruity materials. The aim of the study was the determination of the elemental composition of lignocellulosic materials using elemental analysis by high-temperature combustion, column separation and measuring the gaseous products to determine the carbon, hydrogen, nitrogen and sulfur, and with the use of potentiometric titration to determine the chlorine. In addition, in order to evaluate the relationship between those elements and also the suitability of the tested materials for use, e.g. as a biofuels, their calorific value was also determined. Keywords: lignocellulosic materials, elemental analysis, elemental composition, solid biofuels INTRODUCTION Lignocellulosic material is a conglomeration of macromolecular organic compounds whose chemical structure is mainly carbon s skeleton. In addition to the carbon atoms the main elemental composition are also hydrogen, oxygen, nitrogen and sulfur. Other elements, occurring in minor amounts include chlorine and phosphorus. The composition of these elements is one of the basic information describing the lignocellulosic material, which has an impact on its use, e.g. in solid biofuels. Knowledge of the elemental composition directly, using the formulas of approximation, be directly used to estimate the calorific value [1]. The content of nitrogen, sulfur and chlorine indicate a possible environmental hazards from gas combustion products (NOx, SO2, dioxins, difurans, HCl). These compounds are also responsible for hightemperature corrosion of the boiler [2, 3]. To determine the elemental composition of chemical compounds elemental analysis is used. It allows to determine the percentage by mass of the elements included in the tested materials (biomass, food, biofuels). Elemental analysis can be performed through different techniques. Standard and commonly used technique is a controlled, complete combustion of the sample and then measuring of the separated oxides. This analysis is carried out in a specialized analyzers in which the sample combustion and the determination of carbon, hydrogen, nitrogen and sulfur is performed at the same time. For more advanced techniques of elemental analysis include mass spectrometry, atomic absorption spectrometry and x-ray crystallography. The direct aim of the study was the determination of the elemental composition of various lignocellulosic materials using elemental analysis by high-temperature combustion, column separation and measuring the gaseous products to determine the carbon, hydrogen, nitrogen and sulfur, and with the use of potentiometric titration to determine the chlorine. In addition, in order to evaluate the relationship between those elements and also the suitability of tested materials for use, e.g. as a biofuels, their calorific value was also determined. 477

MATERIALS AND METHODS The samples were chosen from different lignocellulosic materials: 1. Woody materials: - sawdust - coniferous and deciduous, - bark - coniferous and deciduous, - lignocellulosic waste after the hydrolysis process - lignocellulose 2. Non-woody materials: - herbaceous materials: leaves and empty corn cobs, tobacco stalks, sunflower hulls, hay, lupin (Lupinus) straw, cereal straw, Virginia Mallow (Sida hermaphrodita), rape (Brassica napus) seeds, - fruit matrials: oil palm (Elaeis guineensis) nutshells, oil palm (Elaeis guineensis) kernel shells (PKS), argan (Argania spinosa ) nuts, pomace of olives. Lignocellulosic materials were prepared for analysis in accordance with appropriate standard [4]. Pre-ground material was disintegrated in a Pulverisette of Fritsh knife-mill into grains of the desired size of 0.2 mm. The elemental composition of the investigated materials was determined using the procedures according to the standards [5, 6]. Ground to a particle not more than 0.2 mm samples were dried to dry weight at a temperature of (105±2) C. Conditions for elemental analysis for the content of carbon (C), hydrogen (H), nitrogen (N) and sulfur (S): - elemental analyzer FLASH EA 1112 Series of Thermo Electron Corporation, - reaction tube packed of Copper wires and Tungstic Oxide or Copper Oxide; SS column, 2m long, internal diameter of 6mm, - temperature of the reaction tube 900 C, temperature of the oven 70 C, - gases: helium (flow rate - 180 ml/min), oxygen (flow - 250 ml/min), - sample weight 3-3.5 mg. In order to determine the content of C, H, N, S elements in the test samples, the multi-stage calibration of the instrument was carried out. The substances used in the calibration were the standard (Sulfanilamide) and certified reference materials (CRM) BBOT, High Organic Content Sediment Soy Beam Meal and Wheat Flour. Analysis was performed in four independent replications for each CRM and standard. For each element (C, H, N, S) the sixpoint calibration curves were plotted, which describing the dependence of the peak area on the percentage by mass of the CRM/ standard content. The qualitative analysis of the tested materials was carried out on the basis of the retention times and the quantitative analysis of the elements - by absolute calibration by an external standard. The correctness of the method was verified by elemental analysis of the certified reference material Birch Leaf. The acceptable differences between the test results and the certified values are presented in Table 1. Table 1. The criterion for acceptance of the results for the determination of carbon, hydrogen, nitrogen, and sulfur. Element The maximum acceptable difference between results C 0.5% H 0.25% > 0.5% nitrogen content - 10% N <0.5% nitrogen content - 0.05% >0.05% sulphur content - 10% S <0.05% sulphur content - 0.005% Net calorific value was calculated based on gross calorific value which was determined according to instructions in standards [6]. The samples after grinding to a grain size of not more than 0.2 mm were burned in a calorimeter bomb (KL-12 M of Precyzja Bit) filled with oxygen at a pressure of 3.0±0.2 MPa. In order to determine the chlorine the calorimeter bomb content 478

was quantitatively washed after combustion process. The obtained aqueous solution was potentiometric titrated using ion-selective electrode AgCl by SCHOTT connected to a stationary Orion ph-meter according to instructions in standard [7]. The correctness of the method was verified by standard analysis (Chloride Standard 1000mg/l Cl). RESULTS AND DISCUSSION Table 2 shows the results of determinations of woody materials. The analyzed samples have a low sulfur content (<0.01 0.15%) and chlorine (0.01 0.03%). Larger differences were found in the range of nitrogen content. The lowest content of this element determined in coniferous and deciduous sawdust (0.1%), as well as in the softwood bark (0.3%). Analysis of the hardwood bark shows a relatively high nitrogen content - 0.9%. However, the determined value is mentioned in the literature and may be related to the specific anatomy of the bark [8, 9] Also, higher than in wood, 0.5% nitrogen content characterized lignocellulosic waste after the hydrolysis process (lignocellulose). The content of the basic elements (carbon and hydrogen) is in the range of 50.3 52.9% (carbon) and a 5.1 6.2% (hydrogen). Table 2. Elemental analysis, chlorine content and net calorific value of woody materials Elemental analysis Chlorine Net calorific Material value C H N S Cl Q % d % d % d % d % d MJ/kg daf sawdust - coniferous 51.8 6.2 0.1 0.02 0.03 19.2 sawdust - deciduous 50.3 6.2 0.1 0.02 0.03 18.0 bark - coniferous 52.2 5.6 0.3 < 0.01 0.01 20.7 bark - deciduous 52.9 5.7 0.9 0.1 0.02 21.0 lignocellulose 51.3 5.1 0.5 0.15 0.02 22.7 Net calorific value designated for coniferous bark (20.7 MJ/kgdaf) and deciduous bark (21.0 MJ/kgdaf) is higher than the calorific value determined for sawdust (coniferous - 19.2 MJ/kgdaf, deciduous - 18.0 MJ/kgdaf). This is reflected in the chemical structure of both types of materials. According to Janežič et al. [10] lignin has a higher calorific value with respect to the polysaccharides, which is directly involved with a higher ratio of carbon to hydrogen for this compound. On Figure 1. the calculated ratios C/H for tested samples were presented. For wood C/H ratio is lower (1.8) than in the bark (1.9). A similar dependence can be observed in the lignocellulose where high ratio (10.1) of these two elements can indicate a higher content of aromatic hydrocarbons. It is related with a higher calorific value, which confirms the obtained result (22.7 MJ/kgdaf). 479

sawdust - coniferous sawdust - deciduous bark - coniferous bark - deciduous lignocellulose leaves and empty corn cobs tobacco stalks sunflower hulls hay lupin straw cereal straw Virginia Mallow rape seeds oil palm nutshells oil palm kernel shells (PKS), argan nuts pomace of olives 6 7 8 9 10 Figure 1. The carbon to hydrogen ratio in the lignocellulosic materials Table 3 shows the results of analyzes of non-woody materials - herbaceous and fruit. Analyzing the elemental composition of these materials, as in the case of woody materials, low sulfur content (<0.01 0.2%) was determined. In most of the analyzed samples the content of that element was determined to be below the level of quantification apparatus (<0.01%) or to its limits. It may therefore be concluded that the lignocellulosic materials require more precise analytical methods, for example ion chromatography. The chlorine content in fruit materials is between (0.0002 0.2%), while the content in herbaceous materials is higher and amounts from 0.03% in the rape seeds to 0.6% in the tobacco stalks. The determined nitrogen content in herbaceous is in most of the analyzed samples in the range of 0.5% (Virginia Mallow) to 1.9% (hay), while in the fruit material from 0.3 to 1.8% for argan nuts and oil palm nutshells, respectively. Only in case of rape seeds it was determined in significantly higher levels of nitrogen (6.2%), which may be related to the applied fertilizers. Percentage of basic elements - carbon and hydrogen - ranges from 46.3 to 55.0% (carbon) and a 5.5 6.9% (hydrogen). Table 3. Ultimate analysis, chlorine content and net calorific value of non-woody materials Ultimate analysis Chlorine Net calorific Material value C H N S Cl Q % d % d % d % d % d MJ/kg daf Herbaceous materials leaves and empty corn cobs 48.8 6.3 1.1 <0.01 0.1 18.6 tobacco stalks 46.7 5.7 1.4 <0.01 0.6 18.3 sunflower hulls 49.4 6.5 1.2 0.06 0.1 19.6 hay 48.8 6.2 1.9 <0.01 0.3 19.0 lupin straw 48.5 6.0 0.8 <0.01 0.1 18.4 cereal straw 47.7 6.7 1.0 <0.01 0.3 18.1 Virginia Mallow 46.3 7.1 0.5 <0.01 0.1 17.0 rape seeds 47.6 6.4 6.2 0.2 0.03 20.2 Fruit materials oil palm nutshells 48.2 5.5 1.8 0.18 0.02 21.1 480

oil palm kernel shells (PKS), 51.1 5.7 0.7 0.16 0.0002 20.0 argan nuts 51.6 6.0 0.3 <0.01 0.01 19.3 pomace of olives 55.0 6.9 1.1 <0.01 0.02 22.6 Net calorific value of non-woody materials is in the range of 17.0 22.6 MJ/kgdaf and the herbaceous materials are characterized by a significantly lower calorific value (from 17.0 MJ/kgdaf for Virginia Mallow to 20.2 MJ/kgdaf for rape seeds). For fruit materials calculated value ranges from 19.3 MJ/kgdaf for argan nuts to 22.6 MJ/kgdaf for pomace of olives. The above relation is confirmed in most of the calculated ratio of carbon to hydrogen in these samples. In herbaceous materials this parameter is between 6.6 8.2 (Figure 1), while in fruits 8.0 9.0. The exception is the high calorific value determined in the pomace of olives (22.6 MJ/kgdaf), which calculated ratio C/H is 8.0. This can be explained by the presence of extractives in the material [11, 12]. CONCLUSIONS Based on the study and analyzing the results presented above the following can be concluded: - elemental analysis allows the assessment of the quality of lignocellulosic materials for use as a solid biofuel, - for the analysis of sulfur content in lignocellulosic materials, there is a need for more accurate and precisely analytical techniques. REFERENCES 1. WANDRASZ J.W., WANDRASZ A.J. (2006): Paliwa formowane. Biopaliwa i paliwa z odpadów w procesach termicznych. Wydawnictwo Seidel-Przywecki Sp. z o.o., Warszawa. 2. ŚCIĄŻKO M., ZUWAŁA J., PRONOBIS M. (2007): Współspalanie biomasy i paliw alternatywnych w energetyce. Wydawnictwo Instytutu Chemicznej Przeróbki Węgla i Politechniki Śląskiej, Zabrze- Gliwice 3. KRÓL D., ŁACH J., POSKROBKO S. (2010): O niektórych problemach związanych z wykorzystaniem biomasy nieleśnej w energetyce. Energetyka. Styczeń, 53-62 4. PN-EN 14780:2011 Biopaliwa stałe - Metody przygotowania próbki 5. PN-EN 15104:2011 Biopaliwa stałe - Oznaczanie zawartości węgla, wodoru i azotu Metody instrumentalne 6. PN-EN 14918:2010 Biopaliwa stałe Oznaczanie wartości opałowej 7. PN-EN 15289:2011 Biopaliwa stałe - Oznaczanie całkowitej zawartości siarki całkowitej i chloru 8. FENGEL D., WEGENER G. (1984): Wood. Walter de Gruyter, Berlin, New York; 32-39, 182-183 9. PROSIŃSKI S. (1984): Chemia drewna. Państwowe Wydawnictwo Rolnicze i Leśne, Warszawa; 395-398 10. JANEŽIĆ T.S., DANON G., BUJANOWIĆ B., DEDIĆ A. (1993): Correlation between Chemical Composition and Heating value of some domesticwood species. Drevársky Výskum, 3, 1-7 11. WHITE R.H. (1987): Effect of lignin content and extractives on the higher heating value of wood. Wood and Fiber Science 19(4), 446-452 12. TELMO C., LOUSADA J. (2011): The explained variation by lignin and extractive contents on higher heating value of wood. Biomass and Bioenergy 35, 1663-1667 481

Streszczenie: Zastosowanie analizy elementarnej w określaniu składu pierwiastkowego materiałów lignocelulozowych. Celem pracy było określenie składu pierwiastkowego różnych materiałów lignocelulozowych z wykorzystaniem analizy elementarnej poprzez technikę wysokotemperaturowego spalania z rozdziałem na kolumnie chromatograficznej i pomiarem ulatniających się gazów do oznaczenia zawartości węgla, wodoru azotu i siarki oraz z zastosowaniem miareczkowania potencjometrycznego do oznaczenia chloru. Dodatkowo, w celu oceny zależności między oznaczonymi pierwiastkami oraz oceny przydatności badanych materiałów do zastosowania, na przykład w charakterze biopaliw, wyznaczono również ich wartość opałową. Badania przeprowadzono na drzewnych (trociny iglaste i liściaste, kora iglasta i liściasta, ligninoceluloza pohydrolityczna) i niedrzewnych (zielnych i owocowych) materiałach lignocelulozowych. Oznaczono zawartość węgla, wodoru, azotu, siarki i chloru oraz wyznaczono wartość opałową badanych prób. Zawartość węgla i wodoru, a szczególnie stosunek tych pierwiastków daje pośrednie informacje na temat wielkości wartości opałowej. Z kolei zawartość azotu, siarki i chloru wskazuje na możliwość wystąpienia zagrożeń dla środowiska ze strony gazowych produktów ich spalania, a także korozji wysokotemperaturowej kotła. Stwierdzono, że analiza elementarna pozwala na ocenę jakości materiałów lignocelulozowych do zastosowania na przykład w charakterze biopaliw. Corresponding author: Magdalena Witczak Małgorzata Walkowiak Wojciech Cichy Magdalena Komorowicz Wood Technology Institute Winiarska Street, no. 1, 60-654 Poznań E-mail address: m_witczak@itd.poznan.pl m_walkowiak@itd.poznan.pl w_cichy@itd.poznan.pl m_komorowicz@itd.poznan.pl Phone: +48 61 849 24 78 +48 61 849 24 31 482