BIOGAS YIELD FROM SORGHUM BICOLOR OF BIOMASS 140 VARIETY

Podobne dokumenty
POTENCJAŁ UZYSKU BIOGAZU Z SORGO CUKROWEGO (SORGHUM BICOLOR) ODMIANY RÓD J1052

Equipment for ultrasound disintegration of sewage sludge disseminated within the Record Biomap project (Horizon 2020)

GLOBAL METHANE INITIATIVE PARTNERSHIP-WIDE MEETING Kraków, Poland

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

INŻYNIERIA ROLNICZA AGRICULTURAL ENGINEERING

ROZDROBNIENIE SUBSTRATÓW WYKORZYSTYWANYCH DO PRODUKCJI BIOGAZU

PORÓWNANIE UZYSKU BIOGAZU Z TRZECH RODZAJÓW KISZONEK: Z KUKURYDZY, LUCERNY I TRAWY*

Has the heat wave frequency or intensity changed in Poland since 1950?

Przydatność poplonu ozimego oraz kukurydzy i sorgo w plonie wtórym do produkcji biomasy dla biogazowni

BIOGAS YIELD OF MAIZE STRAW

Life Sciences, Bydgoszcz, Poland Katedra Melioracji i Agrometeorologii, Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy

TECHNICAL EQUIPMENT AND COMMODITY PRODUC- TION IN ECOLOGICAL ANIMAL PRODUCTION FARMS *

TRANSPORT W RODZINNYCH GOSPODARSTWACH ROLNYCH

MECHANISATION COSTS IN FAMILY FARMS OF VARIED PRODUCTION

KOMBAJNY ZBOŻOWE W ROLNICTWIE POLSKIM W LATACH

Agricultural Engineering

Cracow University of Economics Poland

YIELDING AND PLANT STRUCTURE OF MAIZE INTERCROPPED WITH SORGHUM

Wpływ poziomu nawożenia azotem na plonowanie sorga dwubarwnego (Sorghum bicolor (L.) Moench) uprawianego w zróżnicowanych warunkach siedliskowych

Patients price acceptance SELECTED FINDINGS

Institutional Determinants of IncomeLevel Convergence in the European. Union: Are Institutions Responsible for Divergence Tendencies of Some

PRZYDATNOŚĆ KUKURYDZY ODMIANY MAGITOP JAKO SUBSTRATU DO PRODUKCJI BIOGAZU NA PODSTAWIE BADAŃ WSTĘPNYCH

Biogasplant in Poldanor

WZROST I PLONOWANIE PAPRYKI SŁODKIEJ (CAPSICUM ANNUUM L.), UPRAWIANEJ W POLU W WARUNKACH KLIMATYCZNYCH OLSZTYNA

OCENA WARTOŚCI ENERGETYCZNEJ ODMIAN SORGA W ZALEŻNOŚCI OD TERMINU, GĘSTOŚCI SIEWU I NAWOŻENIA

Wpływ niektórych czynników na skład chemiczny ziarna pszenicy jarej

Ocena potrzeb pacjentów z zaburzeniami psychicznymi

Wpływ stosowania zróżnicowanych dawek azotu na właściwości morfologiczne kukurydzy uprawianej na kiszonkę

Potencjalne możliwości produkcji biogazu z mozgi trzcinowatej

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów


Międzynarodowa Konferencja Naukowa

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

WPŁYW WIELOKROTNYCH OBCIĄŻEŃ STATYCZNYCH NA STOPIEŃ ZAGĘSZCZENIA I WŁAŚCIWOŚCI REOLOGICZNE MASY ZIARNA

Agricultural Engineering 2014: 2(150):

TYRE PYROLYSIS. REDUXCO GENERAL DISTRIBUTOR :: ::

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

PORÓWNANIE KOSZTÓW PRODUKCJI JĘCZMIENIA JAREGO I OZIMEGO W WYBRANYCH GOSPODARSTWACH WOJ. ZACHODNIOPOMORSKIEGO

Knovel Math: Jakość produktu

Introduction. Agricultural Engineering w ww.wir.ptir.org ASSESSMENT OF SELECTED TECHNICAL PARAMETERS OF SOYA SEEDS OIL PRESSING PROCESS

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

OCENA WYDAJNOŚCI BIOGAZU DLA PLANOWANEJ BIOGAZOWNI PRZY FERMIE KRÓW MLECZNYCH

Streszczenie rozprawy doktorskiej

Exposure assessment of mercury emissions

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

Few-fermion thermometry

OCENA WYKORZYSTANIA CIĄGNIKÓW ROLNICZYCH W GOSPODARSTWACH RODZINNYCH

OPTYMALIZACJA STEROWANIA MIKROKLIMATEM W PIECZARKARNI

Wstęp. PROBLEMY s Henryk BURC CZYK ABCDEF. Streszczenie. Program wymagał niezbędnej. głównym, jako. poplony. i sorga. Rośliny. jak też biogaz.

OCENA TRWAŁOŚCI BRYKIETÓW WYTWORZONYCH Z MASY ROŚLINNEJ KUKURYDZY PASTEWNEJ

PRODUCTIVITY AND MARKETABILITY IN RELATION TO TECHNICAL EQUIPMENT OF ORGANIC FARMS *


SZACOWANIE POTENCJAŁU ENERGETYCZNEGO BIOMASY RO LINNEJ POCHODZENIA ROLNICZEGO W WOJEWÓDZTWIE KUJAWSKO-POMORSKIM

Agricultural Engineering 2015 : 3 (155 ):

OCENA MOśLIWOŚCI WYKORZYSTANIA HODOWLI ŚWIŃ RASY ZŁOTNICKIEJ

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Mgr Paweł Musiał. Promotor Prof. dr hab. n. med. Hanna Misiołek Promotor pomocniczy Dr n. med. Marek Tombarkiewicz

Odnawialne źródła energii. Renewable Energy Resources. Energetics 1 st degree (1st degree / 2nd degree) General (general / practical)

Sargent Opens Sonairte Farmers' Market

WYKAZ DOROBKU NAUKOWEGO

INSTYTUT GENETYKI I HODOWLI ZWIERZĄT POLSKIEJ AKADEMII NAUK W JASTRZĘBCU. mgr inż. Ewa Metera-Zarzycka

LIGNOCELLULOSIC BIOMASS PRODUCTION AND DELIVER FOR BIOREFINERIES

AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ MECHANICZNY ROZPRAWA DOKTORSKA. mgr inż. Piotr Smurawski

ZASADNOŚĆ UŻYWANIA KISZONKI Z KUKURYDZY I GNOJOWICY ŚWIŃSKIEJ DO PRODUKCJI BIOGAZU

Development of a species index and optimization of production technology for selected energy crops

PROTEIN CONTENT IN MIXTURES OF BLUE LUPINE WITH OAT GROWN FOR GREEN FORAGE. Anna Płaza, Barbara Gąsiorowska, Artur Makarewicz

WIELOKRYTERIALNY DOBÓR ROZTRZĄSACZY OBORNIKA

Inżynieria Rolnicza 7(105)/2008

INSTALACJE AGROENERGETYCZNE ASPEKTY ŚRODOWISKOWY I LOGISTYCZNY

The estimation of the yield and content of some chemical compounds in the fruits of chosen hot pepper (Capsicum annuum L.

Analiza porównawcza zmian w rozbiorach wody z uwzględnieniem sposobu jej dostarczania do odbiorców

SPIS TREŚCI / INDEX OGRÓD GARDEN WYPOSAŻENIE DOMU HOUSEHOLD PRZECHOWYWANIE WINA WINE STORAGE SKRZYNKI BOXES

DELTA 600 corner left with TÜV certi ed

BADANIA WYTRZYMA OŒCI NA ŒCISKANIE PRÓBEK Z TWORZYWA ABS DRUKOWANYCH W TECHNOLOGII FDM

II wariant dwie skale ocen II alternative two grading scales

YIELD OF BIOMASS AND BIOGAS PROFITABILITY OF RAW MATERIAL FROM SPECIAL PURPOSE ENERGETIC CROPS CULTIVATION

TECHNIKA I TECHNOLOGIA TRANSPORTU A POSTĘP TECHNICZNY W PRODUKCJI ROLNICZEJ

DELTA 600 corner right with TÜV certi ed

Acta Sci. Pol., Agricultura 7(4) 2008,

OCENA PRZYDATNOŚCI KALKULATORÓW BIOGAZOWNI PRZY PLANOWANIU BUDOWY BIOGAZOWNI ROLNICZEJ

PORÓWNANIE KOSZTÓW PRODUKCJI PSZENICY OZIMEJ W WYBRANYCH GOSPODARSTWACH UNII EUROPEJSKIEJ

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

What our clients think about us? A summary od survey results


Ocena koncepcji BIOrafinerii i ich powiązanie z POLitykami rolną i leśną.

PLANT PARTS STRUCTURE AND YIELDING OF SORGHUM INTERCROPPED WITH MAIZE AND SPACED ALTERNATELY IN EVERY TWO ROWS

Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc

WPŁYW CZYNNIKÓW AGROTECHNICZNYCH NA WŁAŚCIWOŚCI ENERGETYCZNE SŁOMY 1

Evaluation of selected quality traits of storage roots of ten beet cultivars

Fizyka Procesów Klimatycznych Wykład 11 Aktualne zmiany klimatu: atmosfera, hydrosfera, kriosfera

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

Effect of plastic covering and nitrogen fertilization on yield and quality of early potatoes

Country fact sheet. Noise in Europe overview of policy-related data. Poland

CEE 111/211 Agenda Feb 17

Ekonomiczne i społeczno-demograficzne czynniki zgonów osób w wieku produkcyjnym w Polsce w latach

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Ekonomika Produkcji maliny (Raspberry economic production)

WPŁYW NAWOŻENIA AZOTEM NA PLONOWANIE SORGA *

Transkrypt:

I N Ż YNIERIA R OLNICZA A GRICULTURAL E NGINEERING 2012: Z. 4(140)T.2 S. 107-116 ISSN 1429-7264 Polskie Towarzystwo Inżynierii Rolniczej http://www.ptir.org BIOGAS YIELD FROM SORGHUM BICOLOR OF BIOMASS 140 VARIETY Patrycja Sałagan, Tomasz K. Dobek, Paweł Kołosowski Department of Construction and Usage of Technical Devices West Pomeranian University of Technology in Szczecin Paweł Wieliczko Centrum Energii Sp. z o.o. Summary. The paper presents results of physicochemical analysis of sorghum bicolor of Biomass 140 variety and pig liquid manure. Sorghum silage of different degree of chaff length was subjected to methane fermentation in two variants, taking the quality of pig liquid manure as a criterion. German standard DIN 38 414-S8 constituted a methodological basis. It was proved that both at better as well as at worse physicochemical parameters of pig liquid manure, sorghum bicolor silage of Biomass 140 variety may obtain high yield of methane in biogas. Research results prove that sorghum silage may be successfully used as a substrate for biogas plants. Sorghum because of its low water and soil requirements may constitute an alternative for maize on weaker stands. Sorghum ensilage method is the same as an ensilage technique of the most popular substrate for biogas plants, i.e. maize. During 26-days methane fermentation the highest average biogas yield was reported in a sample with silage A in variant I (254 l N kg smo -1 ) and in a sample with silage C in both variants, respectively 1931 N kg smo -1 i 207 l N kg smo -1. Key words: biogas, sorghum bicolor, pig manure, methane fermentation Introduction Recently, one can notice popularization of the biomass use, including biogas with simultaneous growth of crops acreage for energy purposes. Sorghum is one of plants which may be used this way. Sorghum belongs to Poaceae family of photsynthesis type C 4. It is on the fifth place among the most important grains after maize, rice, wheat and barley on a global scale [Audilakshmi et al. 2010]. This type includes 25 varieties, which are cultivated around the world. Sorghum bicolor (regular Sorghum bicolor (L.) Moench.), is one of the most important varieties which may be used in many ways, inter alia, for seeds, fodder, for production of sugar, alcohol and paper and as an energy plant [Sowiński, Liszka-Podkowa 2008; Mahmood 2011].

Patrycja Sałagan, Tomasz K. Dobek, Paweł Wieliczko, Paweł Kołosowski In Polish conditions sorghum may be an alternative crop to maize especially on weaker soils. The uuthors list number of chief assets of sorghum, including: high yield of green mass, high resistance to lodging, high content of soluble sugars and tolerance to draught [Sowiński, Liszka-Podkowa 2008; Vasilakoglou 2011; Mahmood 2011; Księżak et al. 2012; Kaczmarek et al. 2012; Whitfield et al. 2012]. Sorghum bicolor gives high yield at good energy efficiency which is proved by usefulness of this variety for biomass production for agricultural biogas needs [Burczyk 2011]. Hallam et al. [2001] indicate that within 4-year field experiments a higher yield of dry mass from sorghum bicolor was obtained (15.3 20.7 t ha -1 ) in comparison to other annual plants, inter alia maize (11.5 17.9 t ha -1 ). Sorghum bicolor Biomass 140 variety is placed in a community catalogue of agricultural plants varieties [Official Journal of the European Union 2010]. Due to low popularity of sorghum cultivation in the Polish climate, they decided to check biogas production efficiency, including methane yield for sorghum bicolor of Biomass 140 variety. Simultaneously, biogas productivity of sorghum silage as a co-substrate with pig manure was verified depending on its quality. Research results presented below are initial analysis of biogas produciton potential from sorghum bicolor of Biomass 140 variety. The objective and the scope of the study The objective of the research was to analyse and assess a biogas yield from sorghum silage of varied chaff length depending on the quality of pig manure quality. During analysis special attention was paid to correlation between biogas volume and content of methane. Research methodology The initial research was carried out in Laboratorium Biogazu w Katedrze Budowy i Użytkowania Urządzeń Technicznych ZUT [the Biogas Laboratory in the Department of Construction and Use of Technical Devices ZUT] in Szczecin. Silage made of sorghum bicolor Biomass 140 variety and pig manure constituted research material. Sorghum bicolor was obtained from the Experimental Centre ZUT with the seat in Lipnik. While, pig manure was collected from a breeding farm Kołki located in Choszczeński province in Zachodniopomorskie voivodeship. Plants were cut before ensilage into different chaff lengths: up to 1 cm (sorghum A), > 1cm to 3 cm (sorghum B), 3 cm to 5 cm (sorghum C), > 5 cm do 8 cm (sorghum D) (fig. 1). Then, plant mass was ensilaged in mini silos where it was placed for 6 months. Before tests were carried out, silage and pig manure were subjected to physicochemical analyses according to the binding standards. A static methane fermentation process was carried out in two variants (criterion: pig manure quality). German standard - DIN 38 414-S8 was accepted as a methodical basis, changing preparation of samples before fermentation. Modification consisted in resignation from using nitrogen for air uplift from bottles, on which eudiometric biurets are placed. Volume and content of biogas were measured in 24 hours intervals. 108

Biogas yield... Before preparation of co-substrate mixture their weight ratio was determined with maintaining parameters of wet methane fermentation on the level of 12 % of dry mass. Biogas production process with the use of sorghum silage and pig manure was carried out on a research stand consisting in the set of eudiometric biurets and water bath. Fig. 1. Rys. 1. Plant material varied on account of chaff length Materiał roślinny zróżnicowany pod względem długości sieczki Analysis of the research results Before proper methane fermentation was initialized, physical and chemical analyses of basic components in plant material and pig manure were carried out (table 1), i.e. ph, dry mass (d.m.) organic dry mass (o.d.m.), total nitrogen, total phopshorus and potassium. Content of dry mass of sorghum silage was within the range of 29% (sorghum D) up to 34% (sorghum A and C). Whereas, two types of pig manure used in experiment differed considerably with the content of dry mass: manure A - 7.2%, manure B -0.7%. 109

Patrycja Sałagan, Tomasz K. Dobek, Paweł Wieliczko, Paweł Kołosowski Table 1. Physicochemical composition of sorghum silage of different degree of chaff length and pig manure Tabela 1. Skład fizykochemiczny kiszonek z sorgo o różnym stopniu długości sieczki oraz gnojowicy świńskiej Specification ph d.m. o.d.m. Total N Total P K [%] [% s.m.] [g kg -1 ] [g kg -1 ] [g kg -1 ] Sorghum A: (up to 1 cm) 5.9 34 94 10.1 9.4 17.2 Sorghum B (1.1-3cm) 7.5 33 93 8.7 13.1 15.0 Sorghum C (3.1-5 cm) 6.9 34 96 6.0 8.2 16.6 Sorghum D (5.1-8 cm) 6.6 29 94 7.9 8.6 19.7 Pig manure A 7.3 7.2 72 3.8 23.1 2.7 Pig manure B 7.9 0.7 59 2.7 0.4 1.5 Source: author's own study Taking into consideration the results of physical and chemical analyses, one could have expect the highest biogas yield, including methane, from samples where silage from sorghum A was used as a co-substrate (chaff length up to 1 cm). Mesophillic static fermentation process lasted 26 days and was carried out in two variants: variant I - particular silages from sorghum and pig manure A constituted mixture of cosubstrates, variant II - particular silages from sorghum and pig manure B constituted mixture of cosubstrates. In variant I of the experiment (fig. 2) silages from sorghum of different chaff length and pig manure A were used for methane fermentation. Silage A and C had the highest biogas yield. While, the lowest biogas yield was reported in a sample with silage D. I N (kg d.o.m -1 ) a normalised unit of gas volume (1 litre) in regular conditions / one kilo of dry organic substance Source: author's own calculations; Fig. 2. Rys. 2. 110 Biogas yield from sorghum silages in variant I of the experiment Uzysk biogazu z kiszonek z sorgo w wariancie I doświadczenia

Biogas yield... In case of variant II (fig. 3) sorghum silages and pig manure B were used for the experiment. Silage C had the highest biogas yield, while silage A had the lowest. It was reverse to variant I. While silage B and D had a similar biogas yield during 26-days methane fermentation. I N (kg d.o.m. -1 ) normalised unit of gas volume (1 litre) in regular conditions / one kilo of dry organic substance Source: author's own calculations; Fig. 3. Rys. 3. Biogas yield from sorghum silage in variant II of the experiment Uzysk biogazu z kiszonek z sorgo w wariancie II doświadczenia The highest unit biogas yield (fig. 4) was reported in variant II of the experiment with the use of sorghum silage C (477 l N kg d.o.m. -1 ). Efficiency of biogas production from A sorghum silage (311 l N kg d.o.m. -1 and 267 l N kg d.o.m -1 ) and D (208 l N kg d.o.m. -1 and 173 l N kg d.o.m. -1 ) in both variants of the experiment was at a comparable level. While, silage B had the lowest unit biogas production in variant I (1.8 l N kg d.o.m. -1 ) and silage A in variant II of the experiment (3.6 l N kg d.o.m. -1 ). During 26-days methane fermentation the highest average biogas yield was reported in a sample with silage A in variant I ((254 l N kg d.o.m. -1 ) and in a sample with silage C in both variants, respectively 1931 N kg d.o.m. 1 and 207 l N kg d.o.m. -1. Comparing biogas yield between variants including silage of the same chaff length, it is found that there was 65% of sorghum A silage during methane fermentation in variant I and in case of sorghum B and D silage by 25% more biogas than in variant II. While, in case of sorghum C in variant II, there was more biogas by 7.5% than in variant I. Taking into consideration, the content of methane in the produced biogas during 26- days fermentation in two variants, one may find that in case of sorghum B, C and D, the value of CH 4 was on a similar level (fig. 5 and 6). Only in case of sorghum A in variant II the process was broken (after 19 days of fermentation), which resulted in stopping the biogas production. While in variant I including silage of sorghum A, a considerable decrease on the 14th day of fermentation may be reported, and then another increase of methane content in the produced biogas occurred (fig. 5). 111

Patrycja Sałagan, Tomasz K. Dobek, Paweł Wieliczko, Paweł Kołosowski Source: Author's own calculations; Fig. 4. Rys. 4. Biogas production efficiency from Biomass 140 sorghum silage in two variants of the experiment Wydajność produkcji biogazu z kiszonek z sorgo odmiany Biomass 140 w dwóch wariantach doświadczenia Source: author's own calculations Fig. 5. Rys. 5. Biogas yield from sorghum silage in variant I of the experiment Zawartość metanu w biogazie z kiszonek z sorgo w wariancie I doświadczenia 112

Biogas yield... Source: author's own calculations; Fig. 6. Rys. 6. Biogas yield from sorghum silage in variant II of the experiment Zawartość metanu w biogazie z kiszonek z sorgo w wariancie II doświadczenia Figure 7 proves that the highest methane yield was reported in case of sorghum A in variant I (64.8% CH 4 ) and then in sorghum D in variant I (63.1% CH 4 ). A comparable value of methane was obtained in a sample from sorghum C in both variants, respectively (62.9% CH 4 and 61.6% CH 4 ). While, the lowest values were on the level from 0.1% CH 4 (sorghum A, variant I) to 2.8% CH 4 (sorghum C, variant I). Source: Author's own calculations; Fig. 7. Methane production efficiency in biogas obtained from Biomass 140 sorghum silage in two variants of the experiment Rys. 7. Wydajność produkcji metanu w biogazie z kiszonek z sorgo odmiany Biomass 140 w dwóch wariantach doświadczenia 113

Patrycja Sałagan, Tomasz K. Dobek, Paweł Wieliczko, Paweł Kołosowski While, the scope of average values of methane in the produced biogas was between 6.1% CH 4 (sorghum A, variant II) to 53.1% CH 4 (sorghum D, variant I). Content of methane in C and D sorghum silage in variant II was on a similar level (42.8% CH 4 and 41.7% CH 4 ). A similar relation may be observed in case of silage A, B and C in variant I, respectively: 51.1% CH 4, 49.4% CH 4 and 52.9% CH 4. Comparing methane yield between two variants of experiments with reference to silage of the same defragmentation, it may be noticed that in samples in variant I there is more methane than in variant II. In a sample with silage from sorghum A in variant I there was by 88% more methane than in variant II. Between silage from sorghum B and C, there was by 19% more methane in variant I than in variant II. In a sample with silage from sorghum D in variant I there was by 21% more methane than in variant II. Summary Sorghum silage may be successfully used as a substrate for biogas plants. It may constitute an alternative for maize, which is characterised by a relatively high methane yield in biogas. A method of sorghum ensilage is the same as the ensilage technique of the most popular substrate for biogas plants, i.e. maize. Biomas 140 sorghum is a good material for silage production. In the used silage dry mass content from 29 to 34 % was reported. On the basis of the research on the biogas efficiency which was carried out, it was found that: the highest average biogas production and the highest unit biogas production occurred in case of sorghum A silage in variant I of the experiment (respectively 254 l N kg d.o.m. -1 and 311 l N kg d.o.m. -1 ), the lowest average value of biogas production and the lowest methane content was in silage A from variant II of the experiment, the highest unit biogas yield was reported in case of sorghum C silage in variant II of the experiment(477 l N kg d.o.m. -1 ), the highest average content of methane was in sorghum D silage in variant I of the experiment (53.1% CH 4 ), in case of variant II with the use of manure of worse physicochemical parameters (manure B), approx. 25% lower biogas yield was reported with reference to manure of better parameters (manure A), at the 0.7% content of dry mass in variant II of the experiment (manure B) in sorghum B, C and D silage at the average 42% of CH 4 in biogas was obtained, methane fermentation of sorghum A in variant II of the experiment was disturbed by inadequate inoculation with methane bacteria of co-substrates mixture or by faster use of easily available chemical compounds by fermentation bacteria. The above results of the initial research prove the necessity of further analysis of assessment of biogas production efficiency including methane from Biomass 140 sorghum silage of varied chaff length. 114

Biogas yield... Bibliography Audilakshmi S., Mall A. K., Swarnalatha M., Seetharama N. (2010): Inheritance of sugar concentration in stalk (brix), sucrose content, stalk and juice yield in sorghum. Biomass and Bioenergy, 34813-820. Burczyk H. (2011): Przydatność zbóż na potrzeby produkcji energii odnawialnej w świetle wyników doświadczeń. Problemy Inżynierii Rolniczej, 3, 43-51. Hallam A., Anderson I. C., Buxton D. R. (2001): Comparative economic analysis of perennial, annual and intercrops for biomass production. Biomass and Bioenergy, 21(6), 407-424. Kaczmarek S., Matysiak K., Kierzek R. (2012): Ocena wrażliwości Sorghum vulgare L. na wybrane substancje aktywne herbicydów. Nauka Przyr. Technol. 6, 2, #27 Księżak J., Bojarszczuk J., Staniak M. (2012): Produktywność kukurydzy i sorga w zależności od poziomu nawożenia azotem. Polish Journal of Agronomy 8, 20-28. Mahmood A. (2011): Performance of sorghum (Sorghum bicolor L. Moench) as an energy crop for biogas production. Justus Liebig University Giessen, Germany. [dostęp 13-09-2012], Dostęp w Internecie: http://geb.uni-iessen.de/geb/volltexte/2012/8577/pdf/mahmoodathar_2012_01_13.pdf Sowiński J., Liszka-Podkowa A. (2008): Wielkość i jakość plonu świeżej i suchej masy kukurydzy (Zea mays L.) oraz sorga cukrowego (Soeghum bicolor (L.) Moench) na glebie lekkiej w zależności od dawki azotu. Acta Sci. Pol., Agricultura 7(4), 105-115. Vasilakoglou I., Dhima K., Karagiannidis N., Gatsis T. (2011): Sweet sorghum productivity for biofuels under increased soil salinity and reduced irrigation. Field Crops Research 120, 38-46. Whitfield M. B., Chinn M. S., Veal M. W. (2012): Processing of materials derived from sweet sorghum for biobased products. Industrial Crops and Products 37, 362-375. DIN 38 414-S8. (1985): Osady i sedymenty. Określanie charakterystyki fermentacji. Wspólnotowy katalog odmian roślin rolniczych 6. suplement do 28. pełnego wydania (2010/C 217 A/01) (on-line) 2010. [Dostęp 4-05-2012], Dostępny w Internecie: http://eur-lex.europa.eu /LexUriServ/LexUriServ.do?uri=OJ:C:2010:217A:0001:0052:PL:PDF 115

Patrycja Sałagan, Tomasz K. Dobek, Paweł Wieliczko, Paweł Kołosowski UZYSK BIOGAZU Z SORGA CUKROWEGO (SORGHUM BICOLOR) ODMIANY BIOMASS 140 Streszczenie. W pracy przedstawiono wyniki analiz fizykochemicznych sorgo cukrowego Biomass 140 i gnojowicy świńskiej. Kiszonki z sorgo o różnym stopniu długości sieczki poddano fermentacji metanowej w dwóch wariantach, przyjmując za kryterium jakość gnojowicy świńskiej. Podstawę metodyczną stanowiła niemiecka norma DIN 38 414-S8. Wykazano, że zarówno przy lepszych, jak i gorszych parametrach fizykochemicznych gnojowicy świńskiej, kiszonka z sorgo cukrowego odmiany Biomass 140 może osiągnąć wysoki uzysk metanu w biogazie. Wyniki badań potwierdzają, że kiszonka z sorgo może być z powodzeniem stosowana jako substrat do biogazowni. Sorgo ze względu na małe wymagania wodne i glebowe może stanowić alternatywę dla kukurydzy, na słabszych stanowiskach. Sposób zakiszania sorgo jest tożsamy z techniką zakiszania najpopularniejszego substratu do biogazowni, jakim jest kukurydza. W trakcie trwania 26-dniowej fermentacji metanowej najwyższy średni uzysk biogazu odnotowano w próbie z kiszonką A w wariancie I (254 l N kg smo -1 ) oraz w próbie z kiszonką C w obu wariantach, odpowiednio 193 l N kg smo -1 i 207 l N kg smo -1. Słowa kluczowe: biogaz, sorgo cukrowe, gnojowica świńska, fermentacji metanowa Contact address: Patrycja Sałagan; e-mail: Patrycja.Salagan@zut.edu.pl Katedra Budowy i Użytkowania Urządzeń Technicznych Zachodniopomorski Uniwersytet Technologiczny w Szczecinie ul. Papieża Pawła VI/3 71-459 Szczecin 116