Aerodynamics I Compressible flow past an airfoil

Podobne dokumenty
Aerodynamika I. wykład 3: Ściśliwy opływ profilu. POLITECHNIKA WARSZAWSKA - wydz. Mechaniczny Energetyki i Lotnictwa A E R O D Y N A M I K A I

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

Helena Boguta, klasa 8W, rok szkolny 2018/2019

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations

Rachunek lambda, zima

Hard-Margin Support Vector Machines

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

SG-MICRO... SPRĘŻYNY GAZOWE P.103

BIOPHYSICS. Politechnika Łódzka, ul. Żeromskiego 116, Łódź, tel. (042)

Convolution semigroups with linear Jacobi parameters

Stability of Tikhonov Regularization Class 07, March 2003 Alex Rakhlin

Revenue Maximization. Sept. 25, 2018

Modern methods of statistical physics

Model standardowy i stabilność próżni

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Nespojitá Galerkinova metoda pro řešení

Title: On the curl of singular completely continous vector fields in Banach spaces

Lecture 18 Review for Exam 1

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo

Dupin cyclides osculating surfaces

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

2017 R. Robert Gajewski: Mathcad Prime 4. Solution of examples Rozwiązania przykładów

harmonic functions and the chromatic polynomial

POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

deep learning for NLP (5 lectures)

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Knovel Math: Jakość produktu

Installation of EuroCert software for qualified electronic signature

PRZEPISY RULES PUBLIKACJA NR 83/P PUBLICATION NO. 83/P

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

Few-fermion thermometry

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

HAPPY ANIMALS L01 HAPPY ANIMALS L03 HAPPY ANIMALS L05 HAPPY ANIMALS L07

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08

Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Rodzaj obliczeń. Data Nazwa klienta Ref. Napędy z pasami klinowymi normalnoprofilowymi i wąskoprofilowymi 4/16/ :53:55 PM

Outline of a method for fatigue life determination for selected aircraft s elements

SG-R... SPRĘŻYNY GAZOWE P (2 x S) 60+(2 x S) 42/45+(2 x S) 50+(2 x S) 32+(2 x S) 38+(2 x S) P.67 P.68 P.69 P.70 P.71 P.72

WENTYLATORY PROMIENIOWE SINGLE-INLET DRUM BĘBNOWE JEDNOSTRUMIENIOWE CENTRIFUGAL FAN

Testy jednostkowe - zastosowanie oprogramowania JUNIT 4.0 Zofia Kruczkiewicz

RESONANCE OF TORSIONAL VIBRATION OF SHAFTS COUPLED BY MECHANISMS

Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS

STAŁE TRASY LOTNICTWA WOJSKOWEGO (MRT) MILITARY ROUTES (MRT)

Arrays -II. Arrays. Outline ECE Cal Poly Pomona Electrical & Computer Engineering. Introduction

Sargent Opens Sonairte Farmers' Market

Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS

Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy

KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y. 2. Współczynnik korelacji Pearsona

WENYLATORY PROMIENIOWE ROOF-MOUNTED CENTRIFUGAL DACHOWE WPD FAN WPD

New Roads to Cryptopia. Amit Sahai. An NSF Frontier Center

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

(Slant delay mesoscale functions)

Zmiany techniczne wprowadzone w wersji Comarch ERP Altum

Wyk lad z Algebry Liniowej dla studentów WNE UW. Rok akademicki 2017/2018. Przyk lady zadań na ćwiczenia. 1. Które z cia

JĘZYK ANGIELSKI ĆWICZENIA ORAZ REPETYTORIUM GRAMATYCZNE

Zarządzanie sieciami telekomunikacyjnymi

Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip)

Some Linear Algebra. Vectors operations = =(,, ) =( 1 + 2, 1 + 2, ) λ =(λ,λ,λ ) Addition. Scalar multiplication.

Extraclass. Football Men. Season 2009/10 - Autumn round

Chapter 1: Review Exercises

Typ VFR. Circular flow adjustment dampers for the adjustment of volume flow rates and pressures in supply air and extract air systems

Copyright 2013 Zbigniew Płotnicki. Licence allows only a publication on arxiv.org and vixra.org. Beside it all rights reserved.

TYRE PYROLYSIS. REDUXCO GENERAL DISTRIBUTOR :: ::

Has the heat wave frequency or intensity changed in Poland since 1950?

OpenPoland.net API Documentation

TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE

Walyeldeen Godah Małgorzata Szelachowska Jan Kryński. Instytut Geodezji i Kartografii (IGiK), Warszawa Centrum Geodezji i Geodynamiki

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

Unitary representations of SL(2, R)

tum.de/fall2018/ in2357


1A. Which of the following five units is NOT the same as the other four? A) joule B) erg C) watt D) foot pound E) newton meter

Pielgrzymka do Ojczyzny: Przemowienia i homilie Ojca Swietego Jana Pawla II (Jan Pawel II-- pierwszy Polak na Stolicy Piotrowej) (Polish Edition)

Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout

Gradient Coding using the Stochastic Block Model

LED PAR 56 7*10W RGBW 4in1 SLIM

POLITYKA PRYWATNOŚCI / PRIVACY POLICY

INTEGRAL APPROACHES FOR THE PRESSURE DISTRIBUTION OF POWER-LAW FLUID IN A CURVILINEAR BEARINGWITH SQUEEZE FILM

BN1520 BN1521 BN1522 FAMOR S.A. ROZDZIELNICA ŒWIATE NAWIGACYJNYCH I SYGNALIZACYJNYCH NAVIGATION AND SIGNAL LIGHT CONTROL PANELS EDITION 07/04

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

Instrukcja obsługi User s manual

Microsystems in Medical Applications Liquid Flow Sensors

Mixed-integer Convex Representability

DOI: / /32/37

BARIERA ANTYKONDENSACYJNA

Matematyka 3. Suma szeregu. Promień zbieżności szeregu. Przykład 1: Przykład 2: GenerateConditions

Stargard Szczecinski i okolice (Polish Edition)

Strona główna > Produkty > Systemy regulacji > System regulacji EASYLAB - LABCONTROL > Program konfiguracyjny > Typ EasyConnect.

099 Łóżko półpiętrowe 2080x1010(1109)x Bunk bed 2080x1010(1109)x1600 W15 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTION

ANKIETA ŚWIAT BAJEK MOJEGO DZIECKA

Transkrypt:

Aerodynamics I Compressible flow past an airfoil transonic flow past the RAE-8 airfoil (M = 0.73, Re = 6.5 10 6, α = 3.19 )

Potential equation in compressible flows

Full potential theory Let us introduce a velocity potential (no vorticity is present v = 0): v = Φ D Continuity equation can be transformed: u = Φ x v = Φ y (1.1) (ρ v) = ρ v + v ρ = 0 ρ Φ + Φ ρ = 0 (1.) From momentum equation: ( ) 1 V ρ p = v v = + ( v) v (1.3) Since vorticity v is zero : ( v) v = 0 dp = ρ d ( V ) = ρ d ( Φ Φ) (1.4) Using equation for speed of sound (izentropic relation): dp = c dρ dρ = ρ d ( Φ Φ) (1.5) c

Full potential theory Gradient of density can be obtained fro equation: ρ = ρ c ( Φ Φ) = ρ Φ Φ (1.6) c for D: [ ] ρ x = ρ Φ Φ c x x + Φ Φ y x y ρ y = ρ c after substituting into (1.): for D: Φ x + Φ y 1 c [ Φ x Φ x y + Φ y ] Φ y (1.7) (1.8) ρ Φ ρ Φ ( Φ Φ) = 0 (1.9) c [ ( ) ( ) Φ Φ Φ x x + Φ y y + Φ Φ x y ] Φ = 0 x y (1.10)

Full potential theory After transformation equation (1.10) takes following form: [ 1 1 c ( Φ x ) ] [ ( ) ] Φ x + 1 1 Φ Φ c y y = Φ c x Φ y Φ x y (1.11) Using energy integral the relation for speed of sound can be obtained: c = c 0 k 1 [ ( ) Φ + x ( ) ] Φ y (1.1) Equations (1.11) and (1.1) are equation of full potential theory. They allow to simulate compressible flows with weak (izentropic relations are used!) shock waves.

Linearized equations of small disturbances potential Equations (1.11) and (1.1) can be further simplified by introducing potential of small disturbances and using linearization. where: v = v + ṽ (1.13) v = [ u, v ], v = [ V, 0 ], ṽ = [ ũ, ṽ ] Let us define potential of disturbances φ : ṽ = φ Φ = V x + φ (1.14) After substituting into equation (1.11): [ ( ) ] [ c V + φ ( ) ] φ x x + c φ ( φ y y = V + φ x ) φ y φ x y (1.15)

Linearized equations of small disturbances potential In order to simplify the (1.15) it is convenient to use form based on velocity not the potential: [ c ( V + ũ ) ] [ ] ũ x + c ṽ ṽ ũ = (V + ũ) ṽ (1.16) y y Equation (1.1) takes form: c = c k 1 ( V ũ + ũ + ṽ ) (1.17) After substitution (1.17) into (1.16) and transformation: [ ( ) 1 M ũ x + ṽ y = M (k + 1) ũ + k + 1 ũ V V [ + M (k + 1) ṽ + k + 1 ṽ V V [ ( + M ṽ 1 + ũ ) ( ũ V V x + ṽ x + k 1 + k 1 )] ṽ V ũ V ] ũ x ] ṽ y (1.18)

Linearized equations of small disturbances potential Assuming small disturbances (valid for thin airfoils at small angles of attack): ũ V 1 ṽ V 1 (1.19) Equation (1.18) can be transformed to a form where only linear terms are present (it is assumed that it is valid for M < 0.8 and 1. < M < 5): ( ) 1 M ũ x + ṽ y = 0 (1.0) After substitution of the potential function: ( 1 M ) φ x + φ y = 0 (1.1) This equation is elliptic for M < 1 and hyperbolic for M > 1.

Pressure coefficient for linearized equations Pressure coefficient is defined by: C p p p gdzie: q = ρ V q (1.) Equation (1.) can be transformed using: q = ρ V = k p ( ρ ) V = k k p p M (1.3) The formula for pressure coefficients takes then form: ( ) C p = p 1 k M p For simplifications we will use izentropic relation:: ( ) k p T k 1 = p T (1.4) (1.5)

From eneregy integral: Pressure coefficient for linearized equations V + cpt = V k 1 ( + cpt T T = V V ) (1.6) k R Using definition of the disturbance velocity (1.13) we can obtain: ( ) T = 1 k 1 M ũ + ũ + ṽ T V V (1.7) After substituting: p p = [ 1 k 1 M ( )] ũ + ũ + ṽ k k 1 V V (1.8) It can be simplified by expanding using Taylor series and discarding higher order terms: p = (1 r) k 1 k = 1 k r +... p k 1 (1.9) ( ) p 1 k p M ũ + ũ + ṽ V V (1.30)

Pressure coefficient for linearized equations Substituting (1.30) inot (1.4): C p = ũ V ũ + ṽ V (1.31) For small disturbances (1.19): ũ + ṽ V ũ V (1.3) Finally, we can obtain the simplified relation for pressure coefficient: C p = ũ V (1.33) The relations are valid for both, subsonic and supersonic flows.

Prandtl Glauert rule Let us consider subsonic flow (M < 1) which is described by linearized equations of small disturbances potential. We can defined the coefficient: β 1 M (1.34) equation (1.1) can be then written in form: β φ x + φ y = 0 (1.35) This equation can be transformed to Laplace equation by transformation applied to the reference coordinates, e.g.: ξ = x η = βy x = ξ y = β (1.36) η After substituting into (1.35): β ϕ ξ + β ϕ η = 0 ϕ ξ + ϕ η = 0 (1.37)

Prandtl Glauert rule What is a difference between φ and ϕ? Let us assume that the boundary of the airfoil on the plane x y is defined by function y = f(x). Boundary condition for the airfoil (normal velocity is equal zero) then can be defined: d dx f(x) = In similar way for ξ η: d dξ ˆf(ξ) = ṽ V + ũ ˆv V + û ṽ ṽ = φ V y = V ˆv ˆv = ϕ V η = V Assuming that airfoils in x y and ξ η are similar then ˆf = f. d f(x) (1.38) dx d dξ ˆf(ξ) (1.39) ϕ η = 1 ϕ β y = φ y ϕ = β φ (1.40)

Prandtl Glauert rule y compressible flow φ C p, C L, C M incompressible flow η = βy ϕ = β φ Ĉ p, Ĉ L, Ĉ M y = f(x) x η = f(ξ) ξ = x Using (1.33) it is possible to obtain relation for C p: C p = ũ = 1 φ V V x = 1 ϕ β V x = û = 1 β V β Ĉp (1.41) Since moment and lift coefficients are integrals of C p finally we can obtain: C p = Ĉ p 1 M C L = Ĉ L 1 M C M = Ĉ M 1 M (1.4)

Other high order rules Karman Tsien rule: C p = 1 M + Ĉ p 1+ M 1 M Ĉ p (1.43) Laitone rule: Ĉ p C p = 1 M + M k 1 (1+ M ) 1 M Ĉ p (1.44)

Other high order rules 1.5 Prandtl-Glauert Karman-Tsien Laitone Cp 1 0.5 0 0 0. 0.4 0.6 0.8 1 M

Linearized supersonic flow In supersonic flow (M > 1) the equation (1.1) can be written: λ φ x φ y = 0 where: λ = M 1 (1.45) This is the wave equation where the wave propagation speed is equal λ. The general solution to this problem has form: φ = f +(x + λ y) + f (x λ y) (1.46) where f + i f are arbitrarily chosen functions. The values of f + and f are constant along lines defined by: x + λ y = const x λ y = const (1.47) Such lines are called characteristics of the wave equation. the angle of inclination of the characteristics can be obtained from (1.46): dy dx = ± 1 λ = ± 1 M 1 = tg(µ± ) (1.48) Characteristics of the equation (1.45) are identical to the Mach lines.

Linearized supersonic flow M > 1 µ θ The boundary condition for zero normal velocity must be satisfied on the boundary of the domain or airfoil : ṽ tg(θ) = V + ũ ṽ (1.49) V Using general solution to the wave equation (1.46): ũ = φ x = f + + f ṽ = φ y = λ (f + f ) [ ] ũ = ṽ f + + f λ f + f (1.50)

Linearized supersonic flow Using boundary condition (1.49) we can obtain: ṽ = V tg(θ) ũ V θ λ After substituting (1.51) into (1.33): C p = θ M 1 [ ] f + + f f + f [ ] f + + f f + f (1.51) (1.5) Functions f + and f can be chosen arbitrarily. In order to simplify the problem we will consider only two cases: f + is constant or f is constant. Since characteristics are identical to Mach lines their type (sign) should be chosen such that the disturbances will be propagated with the flow. Cp U/L θ = ± M 1 (1.53) wher: U upper airfoil surface, L lower airfoil surface

Linearized supersonic flow - flat plate C p upper surface α µ x µ + lower surface Upper surface characteristic µ and θ = α : C U p = α M 1 (1.54) Lower surface characteristic µ + and θ = α : C L p = α M 1 (1.55)

Linearized supersonic flow - flat plate Force coefficients in normal and tangent directions: Lift coefficient: C n = 1 lac (Cp L C U 4 α p ) dx = l ac M 1 C t = 0 0 C L = C n cos(α) C t sin(α) C n C L = 4 α M 1 (1.56) (1.57) Drag coefficient: C D = C n sin(α) + C t cos(α) C n α C D = 4 α M 1 (1.58) In potential supersonic flow, there exists a nonzero drag force (in contrary to subsonic flow s Alembert paradox). This force is called wave drag.

Linearized supersonic flow - flat plate Example: Flow past a flat plate for α = 10, M = and p = 1 Simplified theory - linearized supersonic flow: C L = C D = 4 α M 1 = 0.403 4 α M 1 = 0.0703 Exact theory based on the oblique shock wave and Prandtl-Meyer expansion: C L = 0.408 C D = 0.0719

Linearized supersonic flow - dc L /dα Incompressible flows: dc L/dα = π Subsonic flows (P-G rule): dc L/dα = π/ M 1 Supersonic flows: dc L/dα = 4 / M 1 0 15 Prandtl-Glauert Ackeret dcl/dα 10 5 0 0 0.5 1 1.5.5 3 M

Transonic flow past a D airfoil

Critical Mach number Critical Mach number M cr is a Mach number of undisturbed flow M for which maximum of the local velocity at some point on the airfoil surface is equal to the speed of sound. If M < M cr then flow is fully subsonic (a i b) If M > M cr then there exists a supersonic flow region (d)

Critical Mach number For izentropic flow: Using (1.4): ( p = p p 0 1 + k 1 = M ) k k 1 p p 0 p 1 + k 1 M [ ( C p = 1 + k 1 M ) k ] k 1 k M 1 + k 1 M 1 where M is local Mach number at some point on airfoil surface. If M = 1 then: [ ( Cp = 1 + k 1 M ) k ] k 1 1 k M 1 + k 1 (.1) (.) (.3) Cp is a critical pressure coefficient. If at some point on airfoil surface C p > Cp then at this point M > 1, otherwise if C p < Cp then M < 1.

Critical pressure coefficient

Critical pressure coefficient

Krytyczny współczynnik ciśnienia 1.5 C p C p (PG theory) Cp 1 0.5 0 0 0. 0.4 0.6 0.8 1 M M cr

Critical pressure coefficient 1.5 C p C p (PG theory) Cp 1 0.5 0 0 0. 0.4 0.6 0.8 1 M

Critical pressure coefficient airfoil thickness