Cel ćwiczenia Ćwiczenie 5 POMIARY TEMPERATURY I Celem ćwiczenia jest poznanie budowy i zasady działania rezystancyjnych czujników temperatury, układów połączeń czujnika z elektrycznymi układami przetwarzającymi oraz metrologicznych właściwości przetworników i układów do pomiaru temperatury. Zagadnienia 1. Klasyfikacja i zasady konstrukcji czujników termorezystancyjnych. 2. Statyczne i dynamiczne właściwości czujników temperatury. 3. Dwu-, trój- i czteroprzewodowe układy połączeń czujników termorezystancyjnych. 4. Czujnik rezystancyjny w układzie niezrównoważonego mostka prądu stałego. 5. Normalizacja sygnału w torze pomiarowym z czujnikiem termorezystancyjnym. Program ćwiczenia 1. Wyznaczanie charakterystyk statycznych rezystancyjnych metalowych i półprzewodnikowych czujników temperatury 1.1. Wykorzystując piec laboratoryjny z regulacją temperatury oraz rejestrator cyfrowy z komputerem (rys. 1) wyznaczyć statyczne charakterystyki przetwarzania wybranych czujników temperatury w zakresie zmian temperatury 20 o C 100 o C. Sporządzić wykresy charakterystyk czujników rezystancyjnych. Wyznaczyć czułość S czujników z liniowym modelem charakterystyki. Program obsługi rejestratora podany jest w dodatkowej instrukcji. Rys. 1. Układ z piecem laboratoryjnym do wyznaczania charakterystyk statycznych czujników temperatury. 1
1.2. Na podstawie wyznaczonej charakterystyki termistora R T = Aexp(B/T) sporządzić wykres zależności ln(r T ) = f(1/t) i określić stałe materiałowe termistora A, B. Podać równanie charakterystyki przetwarzania termistora R T = f(t). Obliczyć TWR termistora w temperaturze ϑ = 25 C. 2. Linearyzacja charakterystyki statycznej termistora NTC 2.1. Dla termistora o stałych materiałowych A=1,8 10-2 Ω, B=3900 K, oraz charakterystyce statycznej podanej punktowo w tablicy ϑ [ o C] 30 32 34 36 38 40 42 44 46 48 50 R T [kω] 6,89 6,33 5,83 5,37 4,95 4,57 4,22 3,90 3,61 3,35 3,11 w celu linearyzacji charakterystyki dobrać wartości rezystora R 1 (na podstawie wzoru 1) dołączonego równolegle z termistorem R T (rys. 2). Założyć linearyzację w przedziale 30 50 C (Ta = 303 K, T b =313 K, Tc = 323 K). Wyznaczyć doświadczalnie (zadając wartości R T =f(ϑ) za pomocą rezystora dekadowego) oraz narysować charakterystyki U wy = f(t) (dla termistora R T oraz równoległego połączenia R T i R 1 ) w przedziale 303 323 K. Wartość rezystancji R 1 obliczona dla Tc Tb = Tb Ta z warunku stałości przyrostów rezystancji układu zastępczego wynosi: R 1 ( R + R ) Rb a c 2Ra Rc = (1) R + R 2R a c b 2.2. Wyznaczyć i porównać błędy liniowości dla obydwu badanych układów w zakresie 303 323K. 2
Rys. 2. Zasada linearyzacji charakterystyki statycznej termistora: a) schemat linearyzacji w układzie równoległym; b) charakterystyki ilustrujące zasadę linearyzacji. 3. Sprawdzanie właściwości dwu- i trójprzewodowych układów połączeń czujnika z przetwornikiem temperatury APTR2 3.1. Sprawdzić wpływ zmian rezystancji linii na prądowy sygnał wyjściowy przetwornika w dwui trójprzewodowym układzie połączeń czujnika Pt100 z przetwornikiem temperatury (rys. 3). Przygotować przetwornik do pracy w układzie dwuprzewodowym. Wyznaczyć bezwzględne błędy wskazań ϑ dla trzech temperatur czujnika ϑ x (0 o C, 100 o C, 200 o C) dla rezystancji linii =2Ω. Do symulacji rezystancji linii zastosować podwójne rezystory dekadowe. Do symulacji charakterystyki R ϑ (ϑ) czujnika Pt100 zastosować rezystor wielodekadowy. Wartość rezystancji dodatkowego obciążenia R o ustawić równą zero. 3
Powtórzyć czynności dla układu trójprzewodowego. Ocenić właściwości obydwu układów. Rys.3. Schemat układu do badania przetwornika APTR2: a) połączenie czujnika linią dwuprzewodową; b) połączenie czujnika linią trójprzewodową 4. Badanie toru pomiarowego z transmisją prądową 4.1. Sprawdzić wpływ zmian rezystancji dwuprzewodowej linii transmisyjnej na błąd przetwarzania temperatury w sygnał prądowy z przedziału 4 20 ma. W tym celu w układzie z rys. 3 dla linii trójprzewodowej łączącej czujnik z przetwornikiem temperatury ( =2Ω) ustawić R ϑ =138,5 Ω (ϑ=100 o C) a następnie zmieniając rezystancję dodatkowego obciążenia R o od 0 do R ogr wyznaczyć R ogr odpowiadającą 1% wartości błędu wskazania miliamperomierza cyfrowego odniesionej do zakresu zmian prądu wyjściowego. 5. Pomiary właściwości metrologicznych przetwornika temperatura/napięcie 5.1. Dla mostkowego przetwornika ϑ/u z czujnikiem Pt100 i czteroprzewodowym układem połączeń (rys. 4) wyznaczyć charakterystykę U wy =f(ϑ) w zakresie zmian temperatury 0 100 C. Do symulacji zmian rezystancji czujnika Pt100 zastosować wzorcowy rezystor dekadowy. Sprawdzić wpływ zmian rezystancji przewodów łączeniowych na wartość wskazywanego napięcia. Ocenić błąd liniowości charakterystyki względem charakterystyki nominalnej U wy [mv] = 1 [mv/ C] ϑ [ C]. Scharakteryzować mostek użyty do budowy przetwornika. U z = 15 V R 2 R 3 R 2 = 100 Ω U wy R 4 R 3 = 5.54 k Ω R 4 = 5.54 k Ω R ϑ Pt100 U z 4
Rys.4. Mostkowy przetwornik ϑ/u czujnikiem Pt100. 6. Ocena dokładności toru do pomiaru temperatury 6.1. Zapoznać się z elementami toru pomiarowego (rys. 5) składającego się z rezystora termometrycznego Pt100, przewodów łączeniowych ( 0), przetwornika R ϑ /U (APR 135),woltomierza cyfrowego. Zanotować dane znamionowe przetworników i woltomierza. Dokonać pomiaru temperatury ϑ x w piecu laboratoryjnym. Zaobserwować zmiany mierzonej temperatury. Dla wykorzystywanego toru pomiarowego obliczyć graniczny błąd pomiaru temperatury ϑ x. piec laboratoryjny 0 200 C 0 10 V ϑ x 2 1 przetwornik R ϑ /U APR135 VC Un=10V Pt100 Rys. 5. Schemat blokowy toru pomiarowego z czujnikiem Pt100. 7. Badanie cyfrowego miernika temperatury 7.1. Objaśnić działanie cyfrowego miernika temperatury przedstawionego na rysunku 6. Wskaźnik LED o C U R2 + US1 HI 2 20 36 R 3 16,5 kω U R LO 35 I=1mA HI 31 Woltomierz cyfrowy R 1 R 2 619 Ω 100 kω U we ICL7107 LO 30 R ϑ Pt 100 U R1 21 Rys. 6. Schemat uproszczony termometru cyfrowego. 7.2. Obliczyć wartości napięć U R1 i U R2 jeżeli układ posiada zamodelowaną charakterystykę przetwarzania: 5
R ϑ 100 N = 1000 392 0,165 ( R 100) gdzie: R ϑ jest rezystancją czujnika Pt100 w temperaturze ϑ w Ω. 7.3. W układzie pomiarowym przedstawionym na. rys. 7 wykorzystując kalibrator termorezystancji (KT) i krótką dwuprzewodową linię połączeniową wyznaczyć błędy wskazań badanego termometru cyfrowego (TC) w zakresie -199.9 o C +199,9 o C. Przedstawić wykreślnie zależność ϑ w -ϑ z =f(ϑ z ). ϑ KT ϑz HI L 0 R ϑ TC ϑw Rys. 7. Układ do badania termometru cyfrowego. Pytania kontrolne 1. Porównać właściwości metrologiczne rezystancyjnych czujników temperatury. 2. Omówić definicje i wyznaczanie czułości i nieliniowości czujników. 3. Podać zasady linearyzacji charakterystyki statycznej termistora. 4. Omówić właściwości dwu- i trójprzewodowych układów połączeń czujnika rezystancyjnego z układem pomiarowym. 5. Przedstawić zasadę normalizacji sygnału w torze pomiarowym z czujnikiem termorezystancyjnym. 6. Omówić właściwości metrologiczne mostkowych przetworników temperatury z czujnikami Pt100 i Ni100. 7. Scharakteryzować zalety i wady transmisji prądowej sygnałów. 8. Wymienić składowe błędu pomiaru temperatury w torze pomiarowym z termorezystorem. Literatura 1. Dyszyński J. Laboratorium miernictwa wielkości nieelektrycznych. Skrypt PRz, Rzeszów 1974. 2. Jaworski J. Pomiary elektryczne wielkości nieelektrycznych. Skrypt PW, Warszawa 1973. 3. Miłek M. Pomiary wielkości nieelektrycznych metodami elektrycznymi. OW Politechniki Zielonogórskiej. Zielona Góra 1998. 4. Kuźma E. Termometria termistorowa. PWN 1974. 5. Łapiński M. Pomiary elektryczne i elektroniczne wielkości nieelektrycznych. WNT 1974. 6. Michalski L., Eckersdorf K. Pomiary temperatury. WNT 1986. 7. Romer E. Miernictwo przemysłowe. PWN 1970. 6