Oznaczanie zawartości wilgoci. 1. Zawartość i rodzaje wilgoci w naturalnych paliwach stałych Wilgoć stanowi w większości przypadków balast paliw stałych, który przy ich pozyskaniu, składowaniu, transporcie, przeróbce i użytkowaniu stwarza szereg problemów. Zawartość wilgoci w pozyskiwanym (wydobywanym) naturalnym paliwie stałym kształtuje się na bardzo różnym poziomie. Dla przykładu: w świeżo wydobytym torfie może stanowić nawet do 90 % jego masy, w świeżo ściętym drzewie około 50 %, w tzw. miękkich węglach brunatnych do 55 % i wreszcie w węglach kamiennych do kilkunastu, a w drobnych frakcjach nawet do dwudziestu paru procent. Zawartość wilgoci jest istotnym wskaźnikiem jakości paliwa i bywa w pewnych przypadkach (np. przy węglach brunatnych) stosowana do celów klasyfikacyjnych, a zawsze stanowi parametr rozliczeniowy kształtujący cenę i kierunek użytkowania paliwa. Z tego względu pomiar zawartości wilgoci ma ważne znaczenie praktyczne i stanowi jeden z ważniejszych wskaźników oceny technologicznej paliw. W węglu - podstawowym paliwie stałym, nadmierna zawartość wilgoci powoduje w naszych warunkach klimatycznych w okresie zimy kłopoty ze składowaniem i transportem, związane z jego zamarzaniem w wagonach. Wzrost zawartości wilgoci z reguły obniża wydajność urządzeń stosowanych w operacjach jednostkowych takich jak rozdrabnianie czy przesiewanie, szczególnie drobnych sortymentów. Jeżeli węgiel służy do wytwarzania energii, zawartość wilgoci obniża jego wartość kaloryczną gdyż część ciepła jest tracona na ogrzanie i odparowanie wody. Wzrost zawartości wilgoci obniża ponadto temperaturę punktu rosy spalin. W koksownictwie wzrost zawartości wilgoci w mieszance węglowej zmniejsza produktywność baterii koksowniczych, powiększa zużycie ciepła (pogarsza sprawność cieplną) potrzebnego do skoksowania wsadu, generuje zwiększoną ilość ścieków koksowniczych itd. Do szczególnych przypadków w których wskazana jest pewna ilość wilgoci w węglu należy zaliczyć wytwarzanie brykietów węglowych oraz formowanie bryły węglowej w ubijanym systemie napełniania komór koksowniczych. W obu tych przypadkach woda jest czynnikiem wiążącym ziarna węglowe, a więc korzystnie oddziałuje na wytrzymałość mechaniczną brykietów czy ubitego placka węglowego. 1
Na zawartość wilgoci w węglu rzutuje szereg czynników do których można zaliczyć zawodnienie pokładu oraz sposób: urabiania, wzbogacania, transportu i przechowywania węgla, a także stopień jego metamorfizmu i rodzaj sortymentu. Woda wypełnia pory, kapilary i szczeliny węgla oraz pokrywa kroplami powierzchnię ziaren. W analityce węgla wyróżnia się szereg rodzajów wilgoci takich jak: - wilgoć przemijająca, - wilgoć higroskopijna (w węglu powietrzno-suchym), - wilgoć całkowita, - wilgoć analityczna, - woda konstytucyjna (woda krystalizacyjna w substancji mineralnej). Wilgoć przemijająca (W ex ) jest to wilgoć którą węgiel traci podczas suszenia do osiągnięcia przybliżonej równowagi z wilgocią powietrza. Ten rodzaj wody utrzymującej się mechanicznie na powierzchni ziaren węgla tworzy woda kopalniana oraz pozostająca na ziarnach węgla po operacjach: wzbogacania, transportu czy składowania (opady atmosferyczne). Rys.1. Wpływ stopnia metamorfizmu na zawartość wilgoci higroskopijnej w węglach kamiennych i antracytach. 2
Wilgoć higroskopijna (W h ) jest to woda pozostała w węglu po usunięciu wilgoci przemijającej, którą węgiel traci dopiero po wysuszeniu w temperaturze 105 110 C. Zawartość wilgoci higroskopijnej jest zależna od stopnia metamorfizmu węgla. Zjawiska zachodzące w procesie naturalnego uwęglenia powodują stopniowe zmniejszanie się ilości hydrofilowych grup funkcyjnych w substancji organicznej węgla (przede wszystkim grup karboksylowych) oraz zmianę jego struktury fizycznej prowadzącą w kierunku zmniejszenia ilości i średnicy por i kapilar. W efekcie ze wzrostem stopnia metamorfizmu węgli maleje zawartość wilgoci higroskopijnej (rys. 1), która w węglach koksowych nie przekracza 3-4 %, a w węglach energetycznych może osiągnąć kilkanaście procent. r Wilgoć całkowita węgla W t jest sumą wilgoci przemijającej i higroskopijnej (z uwzględnieniem przeliczenia stanu paliwa): W r t r r 100 Wex = Wex + Wh (1) 100 gdzie: W r t zawartość wilgoci całkowitej w stanie roboczym, % r W ex zawartość wilgoci przemijającej w stanie roboczym, % W h zawartość wilgoci higroskopijnej, % W praktyce jest to najczęściej stosowany parametr kształtujący cenę i wartość użytkową węgla. Próbki analityczne np. 0,2 na których wykonuje się większość pomiarów właściwości węgla nie zawsze odpowiadają stanowi higroskopijnemu i dlatego należy wykonać dla nich oddzielny pomiar zawartości wilgoci W a. Po usunięciu wilgoci przemijającej i higroskopijnej w węglu pozostaje jeszcze woda konstytucyjna (krystalizacyjna) W M związana w substancji mineralnej (glinokrzemiany, krzemiany). Wydzielenie wody z tych związków zachodzi dopiero w wyższych temperaturach 400 800 C. W praktyce nie wykonuje się bezpośredniego pomiaru zawartości wody konstytucyjnej, a jej zawartość można w przybliżeniu określić korzystając z zależności: W d M = 0,09 A d (2) gdzie: W d M zawartość wody konstytucyjnej w węglu suchym, % A d zawartość popiołu w węglu w przybliżeniu na stan suchy, % 3
2. Metody oceny zawartości wilgoci w węglu. Pomiary zawartości wilgoci w węglu polegają na pomiarze masy wody zawartej w badanej próbce węgla lub na pośredniej ocenie tego parametru wykorzystującej wpływ zawartej w węglu wody na pewne wielkości fizyczne tego surowca. Do pierwszej grupy można zaliczyć metody - suszarkowe, - destylacyjne, - ekstrakcyjne, - gazometryczne. przy czym najczęściej stosowanymi i znormalizowanymi metodami są metody suszarkowe i destylacyjne stanowią one przedmiot Polskiej Normy: PN-80/G-04511 Paliwa stałe. Oznaczanie zawartości wilgoci. W metodach suszarkowych zawartość wilgoci ocenia się na podstawie ubytku masy wynikającej z odparowania wody z próbki węgla suszonej w znormalizowanych warunkach. Suszenie jest prowadzone w atmosferze powietrza lub przy węglach łatwo utleniających się w atmosferze azotu. Rys. 2. Schemat zestawu do wykonywania oznaczania zawartości wilgoci metodą destylacyjną. 1 kolba destylacyjna o pojemności 500 cm 3 ; 2 chłodnica; 3 odbieralnik pomiarowy o pojemności 16 cm 3 4
W metodzie destylacyjnej badana próbkę węgla umieszcza się w kolbie (rys. 2) i zalewa określoną ilością cieczy (toluenu) nie mieszającej się z wodą. Ogrzewając kolbę odpędza się wodę zawartą w węglu wraz z parami toluenu. Po ochłodzeniu i skropleniu par kondensat spływa do kalibrowanego odbieralnika. Otrzymuje się w nim wyraźną granicę podziału między wodą i toluenem i z objętości wody i masy próbki węgla określa się zawartość wilgoci. Pozostałe dwa rodzaje metod tj. ekstrakcyjne i gazometryczne są stosowane sporadycznie. W metodzie ekstrakcyjnej wodę zawartą w węglu ekstrahuje się za pomocą rozpuszczalników organicznych (np. bezwodnego metanolu), a następnie określa się jej ilość na drodze miareczkowania lub wyznaczania punktu kriohydratycznego. Z kolei w metodach gazometrycznych próbkę badanego węgla miesza się z substancjami, które w reakcji z wodą dają składniki gazowe (np. karbid reagując z wodą tworzy acetylen). W najczęściej stosowanych metodach drugiej grupy (metody instrumentalne) do oszacowania zawartości wilgoci w węglu stosuje się: - absorpcję mikrofal, - pomiar stałej dielektrycznej, - pomiar przewodnictwa cieplnego, - pomiar przewodnictwa elektrycznego. Metody te z reguły dają wyniki obarczone większym błędem, ale pozwalają znacznie szybciej, a często w sposób on line (na przenośnikach) wyznaczać omawiany parametr. Najczęściej stosowane są metody: mikrofalowa i dielektryczna. W metodzie mikrofalowej wykorzystuje się oddziaływanie wody zawartej w węglu na wielkość adsorpcji mikrofal (fal o długości kilku centymetrów). Ocena zawartości wilgoci na podstawie pomiarów parametrów dielektrycznych węgla wykorzystuje znaczącą różnicę pomiędzy stałą dielektryczną suchego węgla (ε 2,5) i wody (ε 81). Jak już wspomniano Polska Norma PN-80/G-04511 przewiduje oznaczanie wilgoci w paliwach stałych metoda suszarkową bądź destylacyjną i w praktyce te dwa sposoby są powszechnie stosowane. 5
3. Ocena zawartości wilgoci w koksie. Woda zawarta w karbonizatach węglowych (półkoksie i koksie) pochodzi głównie z mokrego gaszenia, a jej ilość zależy od: technologii gaszenia, stopnia gotowości koksu i jego uziarnienia, jakości wody gaśniczej, czasu odparowania koksu na zrzutni itd. Na zawartość wilgoci oddziałują również warunki atmosferyczne w jakich odbywa się transport i magazynowanie koksu. Zawartość wilgoci w niesorcie koksu po jego zgaszeniu może się mieścić w zakresie od około 3 do 7 %, przy czym jest bardzo zróżnicowana w tworzących go klasach ziarnowych (rys. 3). Rys. 3. Zależność pomiędzy średnią zawartością w niesorcie oraz zawartością wilgoci w wydzielonych z niego sortymentach. W koksie pochodzącym z suchego chłodzenia zawartość wilgoci nie przekracza 0,5 1,0 % (wilgoć jest sorbowana z powietrza). Zawartość wilgoci w koksie stanowi balast obniżający jego wartość opałową i z reguły stanowi parametr rozliczeniowy. Z kolei koks z suchego chłodzenia o minimalnej zawartości wilgoci stwarza problemy przy transporcie, gdyż bardzo pyli i wymaga hermetyzacji urządzeń za- i rozładowczych oraz przenośników. 6
Oznaczenie zawartości wilgoci w koksie tradycyjnie wykonuje się metodą suszarkową. Normy wyróżniają dwa rodzaje zawartości wilgoci: wilgoć całkowitą i wilgoć w próbce analitycznej. Szczegółowy opis oznaczenia zawierają: - PN-80/G-04511 Paliwa stałe. Oznaczanie zawartości wilgoci. - PN-ISO 579:2002 Koks z węgla kamiennego. Oznaczanie zawartości wilgoci całkowitej. - PN-ISO 687:2002 Koks z węgla kamiennego. Oznaczanie zawartości wilgoci w próbce analitycznej. Obok klasycznej metody suszarkowej w przemyśle do pomiaru zawartości wilgoci całkowitej w koksie znalazła zastosowanie metoda neutronowa. Zasada metody polega na ilościowym pomiarze spowolnienia neutronów prędkich. Neutrony prędkie o średniej energii rzędu 5 MeV emitowane ze źródła mieszaniny izotopów ameryk beryl lub pluton beryl, są spowalniane przez jądra atomów otaczającego ośrodka koksu. Strata energii kinetycznej neutronów (spowalnianie) w wyniku ich zderzeń z jądrami atomów będzie tym większa, im bardziej będą do siebie zbliżone masy uczestników zderzeń. W efekcie o wielkości spowolnienia neutronów będą decydowały jądra atomów wodoru, które pochodzą od wodoru związanego w substancji organicznej lub w wodzie. Przy ustabilizowanych warunkach technologicznych produkcji koksu, zawartość wodoru w jego substancji organicznej można przyjąć za wielkość stałą, a więc efekt spowalniania w którym neutrony prędkie zamieniają się w neutrony termiczne o energii rzędu 0,025 ev, będzie w praktyce zależał od zawartości wilgoci w koksie. Gęstość strumienia neutronów termicznych mierzona detektorem, jest po uprzednim wzorcowaniu przyrządu miarą zawartości wilgoci w koksie. 7
Oznaczanie zawartości części lotnych 1. Zawartość części lotnych jako uniwersalny wskaźnik odporności termicznej substancji organicznej i stopnia uwęglenia paliw stałych. Pod pojęciem zawartości części lotnych w paliwach należy rozumieć ubytek masy próbki analitycznej (wyrażony w procentach), zachodzący w wyniku termicznej destrukcji paliwa podczas pirolizy (a więc ogrzewanego bez dostępu powietrza), prowadzonej w ściśle określonych normą warunkach, pomniejszony o zawartość wilgoci w próbce analitycznej odparowującej podczas pomiaru. Zawartość części lotnych jest podstawowym wskaźnikiem charakteryzującym paliwa stałe związanym ze stopniem zaawansowania procesów naturalnego uwęglenia (utorfienia, diagenezy, metamorfizmu) lub stopniem odgazowania surowców węglowych w procesie pirolizy w przypadku karbonizatów węglowych w rodzaju półkoksu czy koksu. Rys. 1. Współzależność stopnia uwęglenia i zawartości części lotnych w naturalnych paliwach stałych. 1
W przypadku naturalnych paliw stałych zawartość części lotnych, jak już wspomniano jest miarą ich odporności termicznej związanej ze stopniem uwęglenia tak jak ilustruje to rys. 1. W najniżej uwęglonych naturalnych paliwach stałych - biopaliwach (słoma, drewno) zawartość części lotnych wynosi od 70 do 80 %, a z kolei najbardziej zmetamorfizowane paliwo stałe - antracyt zawiera od 2 do 10 %. Największe znaczenie praktyczne ma ocena zawartości części lotnych w węglach kamiennych. Prostota pomiaru i krótki czas potrzebny do wykonania oznaczenia spowodowały, że zawartość części lotnych, przeliczona na stan suchy i bezpopiołowy, już w połowie XIX wieku stała się podstawowym wskaźnikiem jakości węgla, określającym w pierwszym przybliżeniu najwłaściwszy kierunek jego technologicznego wykorzystania. Węgle kamienne o wysokiej zawartości części lotnych są węglami typowo energetycznymi przeznaczonymi do spalania i zgazowania. Zawartość części lotnych daje np. wskazówkę o długości płomienia powstającego przy spalaniu węgla (ze wzrastającą zawartością części lotnych wydłuża się płomień). Węgle kamienne o zawartości części lotnych od około 16 35% stanowia bazę surowcową koksownictwa. Zawartość części lotnych w powiązaniu z innymi wskaźnikami (spiekalność, dylatacja, plastyczność, ciśnienie rozprężania) daje w tym przypadku cenne wskazówki, co do roli danego węgla jaką będzie pełnił w mieszance koksowniczej (węgiel podstawowy, uszlachetniający, schudzający). Dodatkową informację uzyskuje się ponadto z wyglądu nielotnej pozostałości (pozostałego w tygielku karbonizatu) po wykonaniu oznaczenia części lotnych. W przypadku dobrych węgli koksowych, nielotna pozostałość jest silnie wydęta i spieczona. Wynika stąd uwaga, że przy bieżącej kontroli zawartości części lotnych celowe jest również prowadzenie obserwacji uzyskanego karbonizatu tygielkowego. Zawartość części lotnych w węglowym wsadzie decyduje o uzysku i składzie produktów koksowania. Poglądowy obraz zmian udziału ciekłych i gazowych składników surowego gazu koksowniczego w zależności od zawartości części lotnych wsadu węglowego dają wyniki badań [1] przedstawione na rys. 2. 2
Rys. 2. Wpływ zawartości części lotnych na uzyski lotnych produktów koksowania. Zawartość części lotnych węglowej mieszanki koksowniczej służy również do oszacowania uzysku koksu. Jak wykazały badania prowadzone w polskiej koksowni [2] spośród wielu wzorów empirycznych umożliwiających prognozę uzysku koksu na podstawie zawartości części lotnych wsadu węglowego można polecić wzory: A. Karcza: K d = 86,39 0,37 V d (1) UCh i N: K d = 96,84 0,7 V d (2) koksowników japońskich: K d = 103,19 0,75 V d 0,0067 t (3) Simonisa i wsp.: K d daf V = 117,28 237,0 100-0,176 K 2 + 0,00635 K 3 + daf V + 13,3 100 daf V K 0,0133 100 K 3 (4) gdzie: K d uzysk suchego koksu z suchej mieszanki węglowej, % V d /V daf zawartość części lotnych w mieszance węglowej przeliczona odpowiednio na stan suchy lub suchy i bezpopiołowy, % t średnia temperatura koksu wypchanego z komory, C 3
2 ρ B K = 4 τ (5) gdzie: ρ średnia gęstość wsadu węglowego wilgotnego w komorze koksowniczej, g/cm 3 B średnia szerokość komory koksowniczej, cm τ czas koksowania, h Zawartość części lotnych w węglach kamiennych (w przeliczeniu na stan suchy i bezpopiołowy) stanowi podstawowy parametr służący do ich klasyfikacji wg typów. Dotyczy to zarówno polskiej klasyfikacji wg typów (PN/G-97002) jak i klasyfikacji międzynarodowej (EC 1988). W przypadku sztucznych paliw stałych - karbonizatów pochodzących przede wszystkim z procesów odgazowania (wytlewanie, koksowanie) zawartość części lotnych zależy przede wszystkim od temperatury i czasu trwania procesu. W półkoksach zawartość części lotnych waha się od 5 do 15 %, a w koksach od 0,5 do 3 %. W im wyższej temperaturze i przy dłuższym czasie było prowadzone odgazowanie surowca węglowego tym mniej części lotnych zawiera końcowy produkt stały karbonizat. Dlatego zawartość części lotnych bywa używana jako miernik stopnie odgazowania karbonizatu tzw. gotowości koksu, choć jak wykazały badania Knaufa [3] który kontrolował skład gazów i par wydzielających się podczas oznaczania zawartości części lotnych koksów, tworzą je nie tylko produkty rozkładu termicznego substancji organicznej ale również gazy sorbowane na powierzchni koksu podczas jego gaszenia i składowania. 2. Metodyka oznaczania zawartości części lotnych. Na ilość substancji lotnych wydzielających się podczas ogrzewania próbki paliwa bez dostępu powietrza (odgazowania) wpływają warunki prowadzenia pomiaru takie jak : - końcowa temperatura ogrzewania próbki - szybkość ogrzewania próbki - czas przetrzymywania próbki w końcowej temperaturze ogrzewania - naważka i wielkość ziaren próbki - wielkość, kształt i materiał tygla, w którym umieszczono próbkę. Przy oznaczaniu zawartości części lotnych wszystkie w/w parametry są ściśle zdefiniowane w odpowiednich normach. W krajowych laboratoriach stosowane są następujące unormowania: 4
I. PN-G-04516 Paliwa stałe. Oznaczanie części lotnych metodą wagową II. PN-ISO 562 Węgiel kamienny i koks. Oznaczanie zawartości części lotnych. Pierwsza z nich stosuje końcową temperaturę ogrzewania próbki 850 C, natomiast druga 900 C, co powoduje zróżnicowanie uzyskiwanych wyników. Stosowane są 1g naważki o uziarnieniu próbki analitycznej 0,2 w przypadku węgli i karbonizatów oraz poniżej 0,425 mm, w przypadku biopaliw. Do tygla z naważoną próbką karbonizatu (półkoksu czy koksu), który ze swej natury zawiera mało części lotnych, celem stworzenia atmosfery chroniącej próbkę przed utlenieniem, przed odgazowaniem dodaje się kilka kropel N-heksanu. Równolegle z oznaczeniem zawartości części lotnych musi być wykonywany pomiar zawartości wilgoci w próbce analitycznej, którego wynik uwzględniany jest w obliczeniach: V a = m m W a 100 [%] (6) gdzie : V a zawartość części lotnych w próbce analitycznej, % W a wilgoci, % m ubytek masy próbki w procesie odgazowania, g m masa próbki przed odgazowaniem, g Zawartość części lotnych powinna charakteryzować stopień rozkładu termicznego substancji organicznej węgla. W praktyce może być jednak zniekształcona dodatkowym ubytkiem masy próbki na skutek przemian zachodzących pod wpływem temperatury w substancji mineralnej paliwa (wydzielanie wody krystalizacyjnej, rozkład węglanów, sublimacja alkaliów itd.). W tym świetle wskazanym jest przy dużej zawartości substancji mineralnej zastosowanie przy obliczaniu zawartości części lotnych odpowiednich współczynników korekcyjnych. Dla przykładu Leighton i Tomlison [4] zaproponowali dla węgli brytyjskich następujący wskaźnik korekcyjny C, który należy odjąć od uzyskanego wyniku pomiaru zawartości części lotnych: C = 0,13 (A) + 0,2 (S) + 0,7 (CO 2 ) + 0,7 (Cl) 0,32 (7) gdzie: A, S, Cl i CO 2 oznaczają odpowiednio procentową zawartość popiołu, siarki, chloru i węglanów przeliczonych na CO 2 w badanym węglu. Wymieniona wcześniej Polska Norma PN-G-04516 uwzględnia częściowo ten problem ograniczając zawartość popiołu w próbce analitycznej do 10 % oraz wprowadzając odpowiednią poprawkę na zawartość CO 2 w węglanach przy badaniach węgli związanych z ich klasyfikacją. 5
W specjalistycznych laboratoriach coraz częściej stosowane są zautomatyzowane metody oznaczania w jednym cyklu pomiarowym zawartości wilgoci, części lotnych i popiołu z wykorzystaniem analizy termograwimetrycznej. Zastosowanie tej metody przewiduje Polska Norma PN-G-04560 Paliwa stałe - Oznaczanie zawartości wilgoci, części lotnych oraz popiołu analizatorem automatycznym. Rys. 3. Schemat aparatury do automatycznego pomiaru zawartości wilgoci, części lotnych i popiołu w paliwach stałych. P badana próbka; T termometr, Z zawór trójdrożny Zasadę działania tego analizatora przestawiają rys. 3 i 4. Analityczna próbka węgla, której zmiany masy są automatycznie rejestrowane jest traktowana azotem (oznaczanie zawartości wilgoci i części lotnych), a następnie spalana w atmosferze tlenu (oznaczenie zawartości popiołu). Procesy te są prowadzone w określonych zakresach temperaturowoczasowych (rys. 4). 6
Rys. 4. Przebieg procesów wyznaczania zawartości wilgoci, części lotnych i popiołu analizatorem automatycznym. Bibliografia 1. Haarmann A., Brennstoff Chemie, nr 19, s.301, (1956) 2. Karcz A. i wsp., Karbo, Energochemia, Ekologia, nr 11, s. 448, (1996) 3. Knauf G., Brennstoff Chemie, nr 5, s.69, (1966) 4. Leighton L.H., Tomlison R.C., Fuel, nr 2, s.133, (1960) 7