Paweł Glibowski, Renata Bochyńska

Podobne dokumenty
ANNALES. Katedra Technologii Przemysłu Rolno-Spożywczego i Przechowalnictwa Akademia Rolnicza w Lublinie, ul. Skromna 8, Lublin, Poland

ŻELOWANIE MODELOWYCH UKŁADÓW KONCENTRATU BIAŁEK SERWATKOWYCH

ZASTOSOWANIE INULINY JAKO ZAMIENNIKA TŁUSZCZU W ANALOGACH SERA TOPIONEGO. Bartosz Sołowiej

WŁAŚCIWOŚCI REOLOGICZNE DESERÓW OTRZYMANYCH Z BIAŁEK SERWATKOWYCH Z DODATKIEM RÓŻNYCH SUBSTANCJI SŁODZĄCYCH

W YZNACZANIE TEM PERATURY ŻELOW ANIA BIAŁEK SERW ATKOW YCH PRZY UŻYCIU REOMETRII ROTACYJNEJ I OSCYLACYJNEJ

WŁAŚCIWOŚCI REOLOGICZNE ŻELI k-karagenu Z DODATKIEM GALAKTOMANNANÓW

WPŁYW DODATKU KONCENTRATÓW BIAŁEK SERWATKOWYCH NA WŁAŚCIWOŚCI REOLOGICZNE ANALOGÓW SERÓW TOPIONYCH

ANNALES. Stanisław Mleko, Waldemar Gustaw, Paweł Glibowski, Jarosław Mazurkiewicz. Wykorzystanie białek serwatkowych do otrzymywania polew do lodów

Stymulowanie wzrostu bakterii fermentacji mlekowej przez białka mleka. Waldemar Gustaw

WŁAŚCIWOŚCI FIZYKOCHEMICZNE I PROZDROWOTNE SERÓW TOPIONYCH Z DODATKIEM EKSTRAKTU Z BOCZNIAKA

STABILIZACJA CECH STRUKTURALNYCH MLECZNYCH NAPOI FERMENTOWANYCH

WPŁYW OBRÓBKI TERMICZNEJ NA SIŁĘ CIĘCIA I SIŁĘ ŚCISKANIA ZIEMNIAKÓW

ZMIANY WŁAŚCIWOŚCI REOLOGICZNYCH śeli BIAŁEK SERWATKOWYCH PODCZAS PRZECHOWYWANIA. Waldemar Gustaw

ANALIZA TEKSTURY ANALOGÓW SERÓW TOPIONYCH Z DODATKIEM PREPARATÓW SERWATKOWYCH

Nauka Przyroda Technologie

Nauka Przyroda Technologie

ODPORNOŚĆ KOROZYJNA STALI 316L W PŁYNACH USTROJOWYCH CZŁOWIEKA

WYBRANE WŁAŚCIWOŚCI REOLOGICZNE WODNYCH DYSPERSJI KAZEINOWO-POLISACHARYDOWYCH

2 Chmiel Polski S.A., ul. Diamentowa 27, Lublin

WŁAŚCIWOŚCI REOLOGICZNE MODELOWYCH NAPOJÓW FERMENTOWANYCH OTRZYMANYCH Z WYBRANYCH PREPARATÓW BIAŁEK SERWATKOWYCH Z DODATKIEM INULINY

Słowa kluczowe: nasycanie, witamina C, ubytek wody, substancja osmotyczna

WPŁYW ZMIENNEGO CZASU UBIJANIA NA WŁAŚCIWOŚCI REOLOGICZNE PIAN OTRZYMANYCH Z RÓŻNYCH PREPARATÓW BIAŁEK SERWATKOWYCH I SPROSZKOWANEJ ALBUMINY JAJA

WPŁYW DODATKU PREBIOTYKÓW I BIAŁEK SERWATKOWYCH NA WŁAŚCIWOŚCI FIZYKOCHEMICZNE BIOJOGURTÓW

WŁAŚCIWOŚCI SORPCYJNE WYBRANYCH MIESZANIN PROSZKÓW SPOśYWCZYCH O SKŁADZIE BIAŁKOWO-WĘGLOWODANOWYM

WPŁYW WYBRANYCH HYDROKOLOIDÓW NA WŁAŚCIWOŚCI REOLOGICZNE JOGURTU STAŁEGO

Nazwa producenta Ilość w opakowaniu handlowym. opak. Cena części / netto / słownie : zł groszy. Kwota podatku VAT słownie : zł groszy

Magdalena Orczykowska, Marek Dziubiński, Paweł Budzyński

RÓWNOWAGI W ROZTWORACH ELEKTROLITÓW.

Zatwierdzone oświadczenia żywieniowe

RHEOTEST Medingen Reometr rotacyjny RHEOTEST RN oraz lepkościomierz kapilarny RHEOTEST LK Zastosowanie w chemii polimerowej

WPŁYW PROCESU TARCIA NA ZMIANĘ MIKROTWARDOŚCI WARSTWY WIERZCHNIEJ MATERIAŁÓW POLIMEROWYCH

G Równanie (1) opisuje uzyskane punkty doświadczalne z rozrzutem mniejszym niŝ ± 1%. Jolanta Gawałek 1, Piotr Wesołowski 2 1

Numer ogłoszenia: ; data zamieszczenia: OGŁOSZENIE O ZMIANIE OGŁOSZENIA

Sprawozdanie. z ćwiczeń laboratoryjnych z przedmiotu: Współczesne Materiały Inżynierskie. Temat ćwiczenia

MECHANIKA KOROZJI DWUFAZOWEGO STOPU TYTANU W ŚRODOWISKU HCl. CORROSION OF TWO PHASE TI ALLOY IN HCl ENVIRONMENT

Rozprawy Naukowe i Monografie Treatises and Monographs. Aneta Cegiełka. SGGW w Warszawie Katedra Technologii Żywności

RHEOTEST Medingen Reometr RHEOTEST RN: Zakres zastosowań Smary

CHOOSEN PROPERTIES OF MULTIPLE RECYCLED PP/PS BLEND

WPŁYW DODATKU WYBRANYCH KONCENTRATÓW BIAŁEK SERWATKOWYCH (WPC) NA WŁAŚCIWOŚCI REOLOGICZNE JOGURTÓW OTRZYMANYCH METODĄ TERMOSTATOWĄ

Wykład 2. Termodynamika i kinetyka procesowa- wykład. Anna Ptaszek. 13 marca Katedra Inżynierii i Aparatury Przemysłu Spożywczego

Korozja drutów ortodontycznych typu Remanium o zróŝnicowanej średnicy w roztworze sztucznej śliny w warunkach stanu zapalnego

KINETYKA REAKCJI ENZYMATYCZNYCH

Ćwiczenie 14. Maria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYMATYCZNYCH

WYMIANA CIEPŁA W PROCESIE TERMICZNEGO EKSPANDOWANIA NASION PROSA W STRUMIENIU GORĄCEGO POWIETRZA

ĆWICZENIE I - BIAŁKA. Celem ćwiczenia jest zapoznanie się z właściwościami fizykochemicznymi białek i ich reakcjami charakterystycznymi.

Paweł Glibowski, Agnieszka Gałązka

WPŁYW WYBRANYCH PREBIOTYKÓW NA WŁAŚCIWOŚCI REOLOGICZNE JOGURTU STAŁEGO

WŁAŚCIWOŚCI FIZYKOCHEMICZNE BEZ WYSOKOBIAŁKOWYCH OTRZYMANYCH Z RÓŻNYCH PREPARATÓW BIAŁEK SERWATKOWYCH

WPŁYW κ-karagenu NA WŁAŚCIWOŚCI FIZYKOCHEMICZNE ANALOGÓW SERÓW TOPIONYCH

Model : - SCITEC 100% Whey Protein Professional 920g

OTRZYMYWANIE DESERÓW MLECZNYCH Z BIAŁEK SERWATKOWYCH Z DODATKIEM SKROBI I KARAGENU

CODEX STANDARD wersja polska

10 ZASAD ZDROWEGO ŻYWIENIA

WPŁYW STABILIZACJI TEKSTURY MIĘSNYCH MAS MIELONYCH NA MOśLIWOŚCI ZASTOSOWANIA ICH W WYTWARZANIU śywności WYGODNEJ

Bufory ph. Pojemność buforowa i zakres buforowania

ĆWICZENIE 1. Aminokwasy

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 14/12

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2017 CZĘŚĆ PRAKTYCZNA

W OFERCIE PERFORMANCE

KONKURS CHEMICZNY DLA GIMNAZJUM ETAP WOJEWÓDZKI

KONDUKTOMETRIA. Konduktometria. Przewodnictwo elektrolityczne. Przewodnictwo elektrolityczne zaleŝy od:

III A. Roztwory i reakcje zachodzące w roztworach wodnych

WPŁYW OBRÓBKI TERMICZNEJ ZIEMNIAKÓW NA PRĘDKOŚĆ PROPAGACJI FAL ULTRADŹWIĘKOWYCH

Badanie właściwości związków powierzchniowo czynnych

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wpływ stężenia kwasu na szybkość hydrolizy estru

Tytuł pracy w języku angielskim: Physical properties of liquid crystal mixtures of chiral and achiral compounds for use in LCDs

WHEY CORE BCAA Amino Mega Strong - 2,3kg + 500ml

Ćwiczenie 2: Właściwości osmotyczne koloidalnych roztworów biopolimerów.

AE/ZP-27-17/15 Załącznik Nr 1 Formularz Cenowy

Instrukcja do ćwiczeń laboratoryjnych

POLITECHNIKA GDAŃSKA WYDZIAŁ CHEMICZNY KATEDRA TECHNOLOGII POLIMERÓW

WŁAŚCIWOŚCI REOLOGICZNE PIAN PRZEZNACZONYCH DO SUSZENIA Agata Marzec, Ewa Jakubczyk

UFS Productspecification

WPŁYW SKŁADU KOMPLEKSÓW ß - LAKTOGLOBULINY Z WITAMINĄ D 3

OCENA SKUTKÓW ZMIAN ZASILANIA W OPTOELEKTRONICZNYM SYSTEMIE POMIARU WILGOTNOŚCI GLEBY

ZMIANY WYBRANYCH WŁAŚCIWOŚCI FIZYCZNYCH GRANULATU UZYSKANEGO Z DODATKIEM RÓŻNYCH SUBSTANCJI WIĄŻĄCYCH

PEHAMETRIA I ROZTWORY BUFOROWE

OTRZYMYWANIE MIESZANYCH ELI BIAŁEK SERWATKOWYCH Z WYBRANYMI POLISACHARYDAMI I BADANIE ICH WŁACIWOCI MECHANICZNYCH

XV Wojewódzki Konkurs z Chemii

TEKSTURA I STRUKTURA ŻELI KONCENTRATU I IZOLATU BIAŁEK SERWATKOWYCH Z NISKOESTRYFIKOWANĄ PEKTYNĄ

K05 Instrukcja wykonania ćwiczenia

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2019 CZĘŚĆ PRAKTYCZNA

W ŁAŚCIW OŚCI TEK STURALNEI M IKROSTRUKTURA ŻEM ALBUM INY SUROW ICY KRW I BYDLĘCEJ Z DODATKIEM SKROBI

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie lepkości wodnych roztworów sacharozy. opracowała dr A. Kacperska

KINETYKA ADSORPCJI PARY WODNEJ PRZEZ AGLOMERATY WYBRANYCH MIESZANIN PROSZKÓW SPOśYWCZYCH

CHEMIA ŚRODKÓW BIOAKTYWNYCH I KOSMETYKÓW PRACOWNIA CHEMII ANALITYCZNEJ. Ćwiczenie 9

Podstawy i ogólne zasady pracy w laboratorium. Analiza miareczkowa.

ZMIANA WYBRANYCH CECH FIZYCZNYCH ZIARNA PSZENICY NAWILśANEGO W ROZTWORACH SPOśYWCZYCH

WŁAŚCIWOŚCI ŻELUJĄCE I TEKSTURA ŻELI OTRZYMANYCH Z BIAŁEK SERWATKOWYCH POCHODZĄCYCH Z MLEKA KRÓW RÓŻNYCH RAS

Charakterystyka reologiczna modelowych emulsji typu o/w stabilizowanych maltodekstrynami ziemniaczanymi

KINETYKA HYDROLIZY SACHAROZY

Nazwa kwalifikacji: Obsługa maszyn i urządzeń przemysłu chemicznego Oznaczenie kwalifikacji: A.06 Numer zadania: 01

ANALIZA WPŁYWU WYBRANYCH CZYNNIKÓW STRUKTUROTWÓRCZYCH NA JAKOŚĆ WYROBÓW DWURODNYCH

Inżynieria Środowiska

POLITECHNIKA OPOLSKA WYDZIAŁ BUDOWNICTWA Katedra Inżynierii Materiałów Budowlanych Laboratorium Materiałów Budowlanych. Raport LMB 109/2012

WYNIKI BADAŃ zaleŝności energii dyssypacji od amplitudy i prędkości obciąŝania podczas cyklicznego skręcania stopu aluminium PA6.

ĆWICZENIE 2 KONDUKTOMETRIA

WPŁYW CHLORKU SODU NA WŁAŚCIWOŚCI REOLOGICZNE PIAN OTRZYMANYCH Z ALBUMINY WYSOKO PIENISTEJ

TEKSTURA A STRUKTURA ŻELI WYBRANYCH BIAŁEK GLOBULARNYCH

g % ,3%

Transkrypt:

Acta Agrophysica, 2006, 8(2), 337-345 WPŁYW INULINY NA WŁAŚCIWOŚCI REOLOGICZNE ROZTWORÓW BIAŁEK SERWATKOWYCH Paweł Glibowski, Renata Bochyńska Katedra Technologii Przemysłu Rolno-SpoŜywczego i Przechowalnictwa, Akademia Rolnicza ul. Skromna 8, 20-950 Lublin e-mail: glibowskipawel@wp.pl S t r e s z c z e n i e. Celem pracy było określenie właściwości reologicznych roztworów białek serwatkowych z dodatkiem inuliny. Wraz ze wzrostem stęŝenia inuliny obserwowano wzrost naprę- Ŝenia ścinającego dla roztworów białek serwatkowych. Wszystkie badane układy wykazywały właściwości tiksotropowe. Przy najwyŝszym z zastosowanych stęŝeń inuliny powstały słabe Ŝele. Stwierdzono, Ŝe głównym składnikiem odpowiedzialnym za wzrost lepkości są białka serwatkowe, chociaŝ wzrost stęŝenia inuliny wpływał dodatnio na lepkość roztworów inulinowo-serwatkowych. Wzrost twardości Ŝeli przy najwyŝszym badanym stęŝeniu inuliny wynika prawdopodobnie z interakcji z białkami serwatkowymi. Wysunięto trzy hipotezy dotyczące natury powiązań między inuliną i białkami serwatkowymi. Interakcje pomiędzy inuliną i β-laktoglobuliną zachodzą prawdopodobnie w oparciu o strukturę β-laktoglobuliny umoŝliwiającą wiązanie się ze związkami hydrofobowymi. Druga moŝliwa teoria to kowalencyjne reakcje Maillarda pomiędzy aminowymi resztami aminokwasowymi w β-laktoglobulinie a redukującymi grupami inuliny. Trzecia teoria mówi, Ŝe przy niskich stęŝeniach inulina utrudnia Ŝelowanie białek serwatkowych z powodu podwyŝszenia lepkości wodnej fazy. WyŜsze stęŝenie inuliny wspomogły Ŝelowanie białek serwatkowych dzięki zwiększeniu przyciągania się białek na skutek hydratacji inuliny. S ł o wa kluczowe: inulina, białka serwatkowe, Ŝelowanie, interakcje WSTĘP W ostatnich latach rośnie rynek produktów o obniŝonej kaloryczności. Konsumenci skłaniają się ku zdrowej, zróŝnicowanej diecie w celu utrzymania właściwej wagi i dobrego stanu zdrowia. Usunięcie nadmiaru tłuszczu z Ŝywności w zaleŝności od moŝliwości technologicznych polega na zastąpieniu go składnikami dającymi odczucie tłustości. Takimi substancjami są hydrokoloidy oraz preparaty białek serwatkowych.

338 P. GLIBOWSKI, R. BOCHYŃSKA Hydrokoloidy tj. inulina, oligofruktoza, karagen, mączka chleba świętojańskiego itp., stosowane są w przemyśle spoŝywczym do kształtowania lepkości, regulowania zawartości wody i konsystencji. Mają zdolność emulgowania i formowania Ŝeli [7]. Inulina w ostatnich latach cieszy się duŝym zainteresowaniem ze strony producentów Ŝywności. W produktach zastępuje tłuszcz, dzięki czemu stają się one bardziej strawne i przyswajalne przez organizm człowieka, poprawia walory smakowe i zapachowe, wpływa korzystnie na teksturę, daje odczucie sytości, podobnie jak w produkcie wyjściowym. Jest ona równieŝ cennym źródłem błonnika pokarmowego, jej dodatek stymuluje rozwój bifidobakterii w okręŝnicy. Bifidobakterie wzbogacają organizm człowieka w witaminy B 1, B 2, B 6, kwas foliowy i nikotynowy, korzystnie działają na przyswajalność wapnia [1]. Białka serwatkowe mają bardzo wysoką wartość odŝywczą. Preparaty białek serwatkowych mogą pełnić funkcję zarówno substancji wzbogacających w produkcji Ŝywności funkcjonalnej i dietetycznej, jak i substancji wiąŝących wodę czy emulgujących tłuszcz [9]. Korzystnie wpływają takŝe na system immunologiczny, wzrost tkanki mięśniowej jak równieŝ wykazują właściwości przeciwrakowe [8]. Zastosowanie w produkcji Ŝywności dodatków będących mieszaniną białek serwatkowych i inuliny pozwolić moŝe na otrzymanie produktów o nowych właściwościach funkcjonalnych, jak równieŝ obniŝyć koszty produkcji. Celem niniejszej pracy było określenie właściwości reologicznych roztworów białek serwatkowych z dodatkiem inuliny. MATERIAŁ I METODY Do badań wykorzystano izolat białek serwatkowych (WPI) o zawartości białka 91,8% (DAVISCO, USA) oraz inulinę Frutafit TEX! uzyskaną z korzenia cykorii o DP 23 (Sensus, Holandia). Roztwory białek serwatkowych otrzymywano przez mieszanie WPI z wodą destylowaną w temperaturze pokojowej przy uŝyciu mieszadła magnetycznego Heidolph MR 3002 (Schwabach, Niemcy). Inulinę dodawano do gotowych roztworów białek serwatkowych. W obecności elektrody ph-metrycznej ustalano ph próbki na 7,0 za pomocą 1M NaOH. Tak przygotowane roztwory umieszczano w łaźni wodnej o temperaturze 80ºC na czas 30 minut w celu rozfałdowania białek serwatkowych i ekspozycji ich grup tiolowych umoŝliwiając po późniejszym dodaniu chlorku sodu wzrost lepkości bądź zŝelowanie roztworów [2]. Po ochłodzeniu mieszanin dodawano odpowiednio stęŝony roztwór chlorku sodu tak, aby uzyskać stęŝenie 0,1 mol dm -3 oraz odpowiednie stęŝenia białka

WPŁYW INULINY NA WŁAŚCIWOŚCI REOLOGICZNE BIAŁEK SERWATKOWYCH 339 (1, 3, 5 i 7%) i inuliny (1, 3, 5, 7, 10 i 15%). Otrzymywane roztwory przetrzymywano w temperaturze 5ºC przez 24 godziny. Krzywe płynięcia wyznaczano przy uŝyciu reometru RS 300 (Haake, Karlsruhe, Niemcy) w układzie cylindrów współosiowych (rotor Z 41, cylinder Z 43). Wszystkich badań dokonywano w temperaturze 23ºC po wcześniejszym umieszczeniu płynnego roztworu w cylindrze pomiarowym aparatu. Obroty rotora, zmieniały się co dwie minuty. Zakres zmian wynosił od 0,1 do 300 obr min -1. Po zanotowaniu maksymalnych wartości pomiarowych otrzymanych przy 300 obr min -1, obroty rotora zmieniały się do 0,1 obr min -1 równieŝ co 2 min. Wyniki rejestrowano komputerowo wykorzystując program RheoWin Pro Job Manager. Dla zŝelowanych próbek badano siłę penetracji przy uŝyciu analizatora tekstury TA XT2i (Stable Micro Systems, Surrey, Wielka Brytania). Metoda oznaczania polegała na wciskaniu w próbkę głowicy cylindrycznej o średnicy 10 mm i pomiarze siły, jakiej trzeba uŝyć by przesunąć głowicę o 10 mm. Badana próbka miała 20 mm wysokości i umieszczona była w pojemniku cylindrycznym o średnicy 40 mm. Pomiarów dokonywano przy prędkości przesuwu głowicy 1 mm s -1. WYNIKI Rysunek 1 przedstawia krzywe płynięcia dla 7% roztworów białek serwatkowych wzbogaconych róŝnym dodatkiem inuliny. Wraz ze wzrostem stęŝenia inuliny obserwowano wzrost napręŝenia ścinającego. ZaleŜności takie stwierdzano równieŝ dla 1, 3, 5% stęŝeń białka (dane nie załączone), chociaŝ róŝnice pomiędzy poszczególnymi stęŝeniami inuliny były znaczenie mniejsze. We wszystkich przypadkach stwierdzono równieŝ charakterystyczne pętle histerezy, największą z nich dla roztworu zawierającego 7% białek serwatkowych i 10% inuliny (rys. 1). Wszystkie badane układy wykazywały właściwości tiksotropowe. Porównanie krzywych płynięcia dla 7% roztworów inuliny zawierających róŝne stęŝenia białka (rys. 2) pokazuje, Ŝe najwyŝsze wartości napręŝenia ścinającego dotyczą roztworu wzbogaconego 7% dodatkiem białek serwatkowych. Mniejsze dodatki białek serwatkowych niewiele róŝnicowały krzywe płynięcia. W roztworach o niŝszych stęŝeniach białka (1 i 3%) dodatek inuliny niejednoznacznie wpływa na zachowanie reologiczne mieszanin (rys. 3). Krzywe płynięcia 1% roztworu białek serwatkowych, inuliny i ich mieszaniny mają bardzo podobny przebieg (rys. 3A). 3% dodatek inuliny do 3% roztworu białek serwatkowych powoduje obniŝenie wartości napręŝenia ścinającego w stosunku do roztworu zawierającego tylko białka serwatkowe (rys. 3B). Natomiast w roztworach zawierających 5% białka dodatek inuliny powoduje wzrost lepkości (rys. 3C), podobnie jak w roztworach 7% (rys. 1).

340 P. GLIBOWSKI, R. BOCHYŃSKA 25 20 NapręŜenie ścinające Shear stress (Pa) 15 10 5 0 Gradient prędkości - Shear rate (s -1 ) Rys. 1. Zmiany napręŝenia ścinającego w funkcji gradientu prędkości dla 7% roztworów białek serwatkowych przy róŝnym stęŝeniu inuliny; - - 0%, - - 1%, - - 3%, -O- 5%, -+- 7%, -x- 10% Fig. 1. Shear stress vs. shear rate behaviour of 7% whey protein solutions with different inulin concentration; - - 0%, - - 1%, - - 3%, -O- 5%, -+- 7%, -x- 10% 100 NapręŜenie scinające Shear stress (Pa) 10 1 0,1 0,01 0,001 Gradient prędkości - Shear rate (s -1 ) Rys. 2. Zmiany napręŝenia ścinającego w funkcji gradientu prędkości dla 7% roztworów inuliny przy róŝnym stęŝeniu białek serwatkowych; -+- 0%, -x- 1%, - - 3%, - - 5%, - - 7% Fig. 2. Shear stress vs. shear rate behaviour of 7% inulin solutions with different whey protein concentration; -+- 0%, -x- 1%, - - 3%, - - 5%, - - 7%

WPŁYW INULINY NA WŁAŚCIWOŚCI REOLOGICZNE BIAŁEK SERWATKOWYCH 341 1,40 A 1,05 0,70 0,35 0,00 NapręŜenie ścinające Shear stress (Pa) 1,40 1,05 0,70 0,35 0,00 B 1,40 C 1,05 0,70 0,35 0,00 Gradient prędkości - Shear rate (s -1 ) Rys. 3. Krzywe płynięcia dla roztworów zawierających inulinę ( ), białka serwatkowe (O) i ich mieszaninę (sumę stęŝeń inuliny i białek serwatkowych) (x) w róŝnych stęŝeniach A 1%, B 3%, C 5% Fig. 3. Flow curves for inulin ( ), whey proteins (O) and mixture (the sum of inulin and whey protein concentration) (x) solutions at different concentrations A 1%, B 3%, C 5%

342 P. GLIBOWSKI, R. BOCHYŃSKA 1,2 1 Naprężenie ścinające Shear stress (Pa) 0,8 0,6 0,4 0,2 0 Gradient prędkości - Shear rate (s -1 ) Rys. 4. Krzywe płynięcia dla roztworów zawierających 1% inuliny i 3% białka (-), 1% inuliny i 5% białka ( ), 3% inuliny i 1% białka ( ), 3% inuliny i 5% białka (+), 5% inuliny i 1% białka (x), 5% inuliny i 3% białka (O) Fig. 4. Flow curves for solutions containing 1% inulin and 3% protein (-), 1% inulin and 5% protein ( ), 3% inulin and 1% protein ( ), 3% inulin and 5% protein (+), 5% inulin and 1% protein (x), 5% inulin and 3% protein (O) W celu ustalenia co jest głównym czynnikiem odpowiadającym za lepkość mieszanin białek serwatkowych i inuliny porównano krzywe płynięcia dotyczące mieszanin zawierających 4, 6 i 8% suchej masy (odpowiednio 1% inuliny + 3% białka i 3% inuliny + 1% białka, 1% inuliny + 5% białka i 5% inuliny + 1% białka, 3% inuliny + 5% białka i 5% inuliny + 3% białka) (rys. 4). Stwierdzono, Ŝe im wyŝsza zawartość dodatków tym wyraźniejsze róŝnice pomiędzy naprę- Ŝeniem ścinającym poszczególnych mieszanin. Głównym czynnikiem odpowiedzialnym za wzrost lepkości mieszanin są białka serwatkowe. Najwyraźniej to widać w przypadku roztworów o zawartości 8% suchej masy, roztwór zawierający 5% białek serwatkowych i 3% inuliny wykazywał wyŝszą lepkość niŝ roztwór o składzie 3% białek serwatkowych i 5% inuliny. Analizując wyniki które obrazuje rysunek 5 moŝna stwierdzić, Ŝe inulina wchodzi w interakcje z białkami serwatkowymi. Roztwory zawierające 15% inuliny tworzą słabe Ŝele. Dodatek białek serwatkowych spowodował znaczny wzrost ich twardości od 182% przy 1% dodatku do 505% przy 7% dodatku. Białka serwatkowe w takim przedziale stęŝeń w obecności 0,1 M NaCl nie tworzą Ŝeli.

WPŁYW INULINY NA WŁAŚCIWOŚCI REOLOGICZNE BIAŁEK SERWATKOWYCH 343 Siła penetracji Penetration force (N) 16 14 12 10 8 6 4 2 0 0 1 3 5 7 Stężenie białka - Protein concentration (%) Rys. 5. Siła penetracji dla Ŝeli zawierających 15% inuliny i róŝne stęŝenia białek serwatkowych Fig. 5. Penetration force for 15% inulin gels with different whey protein concentration DYSKUSJA Wzajemne oddziaływania pomiędzy białkami serwatkowymi i inuliną nie są zbyt dobrze poznane. Schaller-Povolny i Smith [13] badając interakcje pomiędzy głównymi białkami mleka takimi jak α-, β- i κ-kazeina oraz α-laktoalbumina i β- laktoglobulina a inuliną stwierdzili, Ŝe tylko α-laktoalbumina nie łączy się z inuliną. Największy udział wśród białek serwatkowych (około 55%) stanowi β-laktoglobulina [11] i to ona przede wszystkim odpowiada za Ŝelowanie roztworów białek serwatkowych [6]. ChociaŜ α-laktoalbumina z 20% udziałem w składzie białek serwatkowych nie oddziaływuje z inuliną [13] jednak wspomaga proces Ŝelowania zarówno β- laktoglobuliny jak i BSA, trzeciego co do udziału białka serwatkowego [12]. Analizując wyniki badań i konfrontując je z wcześniejszymi doniesieniami moŝna wysunąć trzy hipotezy dotyczące natury powiązań między inuliną i białkami serwatkowymi. Interakcje pomiędzy inuliną i β-laktoglobuliną zachodzą prawdopodobnie w oparciu o oddziaływania hydrofobowe, poniewaŝ w białku tym występuje wiele obszarów wykazujących powinowactwo do związków hydrofobowych bądź obszarów hydrofobowych innych cząsteczek [13]. Druga moŝliwa teoria to kowalencyjne reakcje Maillarda pomiędzy aminowymi resztami aminokwasowymi w β-laktoglobulinie a redukującymi grupami inuliny. Podobną hipotezę tylko dotyczącą dekstranów i β-laktoglobuliny wysunęli Dickinson i Galazka [4]. Trzecia teoria pozwalająca wytłumaczyć dodatkowo obniŝenie lepkości mieszanin o niskich stęŝeniach inuliny i białek serwatkowych i znaczny wzrost twardości Ŝeli wzbogaconych

344 P. GLIBOWSKI, R. BOCHYŃSKA białkami serwatkowymi przy 15% stęŝeniu inuliny opiera się o wyniki badań dotyczących wpływu cukrów prostych i dwucukrów na właściwości reologiczne białek serwatkowych [10]. Stwierdzano tam, Ŝe w niskich stęŝeniach cukry, szczególnie sacharoza, opóźniają Ŝelowanie białek serwatkowych z powodu podwyŝszenia lepkości wodnej fazy. WyŜsze stęŝenia cukrów przyspieszały Ŝelowanie białek serwatkowych dzięki zwiększeniu przyciągania się białek na skutek związania wody przez cukry. Na tym etapie nie moŝna jednoznacznie wykluczyć Ŝadnej z tych hipotez, być moŝe wszystkie opisane oddziaływania mają miejsce. Jednak w celu ostatecznego rozstrzygnięcia niezbędne jest przeprowadzenie dalszych badań. WNIOSKI 1. Głównym składnikiem odpowiedzialnym za wzrost lepkości roztworów białek serwatkowych i inuliny są białka serwatkowe. 2. Wzrost stęŝenia inuliny wpływał dodatnio na lepkość roztworów inulinowo-serwatkowych. 3. Wzrost twardości Ŝeli przy wyŝszych stęŝeniach inuliny (15%) wynika prawdopodobnie z interakcji z białkami serwatkowymi. PIŚMIENNICTWO 1. Amarowicz R.: Znaczenie Ŝywieniowe oligosacharydów. Roczn. PZH., 1, 89-95, 1999. 2. Bryant C.M., Mclements D.J.: Molecular basis of protein functionality with special consideration of cold-set gels derived from heat-denaturated whey. Trends in Food Sc. Tech., 9, 143-151, 1998. 3. Bryant M.C., McClements D.J.: Influence of sucrose on NaCl-induced gelation of heat denatured Whey protein solutions. Food Res. Int., 33, 649-653, 2000. 4. Dickinson E., Galazka V.B.: Emulsion stabilization by ionic and covalent complexes of beta-lactoglobulin with polysaccharides. Food Hydrocol., 5, 281-296, 1991. 5. Garret I.M., Stairs R.A., Annett R.G.: Thermal denaturation and coagulation of whey proteins effect of sugars. J. Dairy Sci., 71, 10-16, 1988. 6. Glibowski P., Mleko S., Gustaw W.: śelowanie zdenaturowanych białek serwatkowych pod wpływem dodatku soli mineralnych. Przemysł SpoŜywczy, 5, 48-50, 2002. 7. Gustaw W., Achremowicz B., Mazurkiewicz J.: Właściwości reologiczne Ŝeli κ-karagenu z dodatkiem galaktomannanów. śywność. Nauka. Technologia. Jakość., 1, 25-37, 2003. 8. Hoch G.J.: Whey to go. Food Processing, 3, 51-52, 1997. 9. Huffmann L.M.: Processing whey protein for use as a food ingredient. Food Technol., 2, 49-52, 1996. 10. Kulmyrzaev A., Cancelliere C., McClements D.J.: Influence of sucrose on cold gelation of heat-denatured whey protein isolate. J. Sci. Food Agric., 80, 1314-1318, 2000. 11. Leman J.: Białka serwatkowe jako czynnik alergii pokarmowej u ludzi. Przegląd Mleczarski, 2, 82-85, 2001.

WPŁYW INULINY NA WŁAŚCIWOŚCI REOLOGICZNE BIAŁEK SERWATKOWYCH 345 12. Matsudomi N., Oshita T., Sasaki E., Kunihiko K.: Enhanced heat-induced gelation of β- lactoglobulin by α-lactoglobulin. Biosci. Biotech. Biochem., 56, 1697-1700, 1992. 13. Schaller-Povolny L.A., Smith D.E.: Interaction of milk proteins with inulin. Milchwissenschaft, 57, 494-497, 2002. EFFECT OF INULIN ON RHEOLOGICAL PROPERTIES OF WHEY PROTEIN SOLUTIONS Paweł Glibowski Department of Food Technology, University of Agriculture ul. Skromna 8, 20-950 Lublin e-mail: glibowskipawel@wp.pl Ab s t r a c t. The aim of this study was the determination of rheological properties of whey protein solutions (1-7%) with addition of inulin (1-15%). According to increasing inulin concentration, increasing shear stress values for whey protein solutions were observed. All examined mixtures revealed tixotropic behaviour. Weak gels were set at the highest utilized inulin concentrations. It was affirmed that the main component responsible for increasing viscosity were whey proteins, however the increase of inulin concentration influenced the viscosity of the whey proteins inulin solutions in a positive way. Three hypotheses concerning the nature of bonding between inulin and whey proteins were advanced. Interaction between inulin and β-lactoglobulin occurring probably on the basis of the structure of β-lactoglobulin giving rise to the ability to bind hydrophobic substances. The second possible theory is covalent Maillard reactions between amino groups on β-lactoglobulin and the reducing groups on inulin. The third theory says that at low inulin concentration gelation of the whey proteins is hampered because of inulin increasing the aqueous phase viscosity. Higher inulin concentration helped whey protein gelation through increasing the attraction between proteins as a result of hydration of inulin. K e y wo r d s : inulin, whey proteins, gelation, interactions