MODEL MATEMATYCZNY TURBOZESPOŁU PAROWEGO DLA SYMULATORA BLOKU ENERGETYCZNEGO WYBRANE ZAGADNIENIA

Podobne dokumenty
MODEL MATEMATYCZNY TURBOZESPOŁU PAROWEGO

MODEL MATEMATYCZNY UKŁADU REGENERACJI DLA SYMULATORA TURBOZESPOŁU PAROWEGO

NUMERYCZNY MODEL OBLICZENIOWY OBIEGU TURBINY KLASY 300 MW

Analiza efektów pracy bloku energetycznego z parametrami poślizgowymi 1)

Energetyczna ocena efektywności pracy elektrociepłowni gazowo-parowej z organicznym układem binarnym

WPŁYW ZMIAN WYBRANYCH PARAMETRÓW UKŁADU TECHNOLOGICZNEGO ELEKTROWNI NA WSKAŹNIKI EKSPLOATACYJNE

DETEKCJA FAL UDERZENIOWYCH W UKŁADACH ŁOPATKOWYCH CZĘŚCI NISKOPRĘŻNYCH TURBIN PAROWYCH

Zastosowanie rachunku wyrównawczego do uwiarygodnienia wyników pomiarów w układzie cieplnym bloku energetycznego siłowni parowej

WSPOMAGANIE DECYZJI W ZAKRESIE POPRAWY EFEKTYWNOŚCI PRACY

Wydział Mechaniczno-Energetyczny Kierunek ENERGETYKA. Zbigniew Modlioski Wrocław 2011

Dr inż. Andrzej Tatarek. Siłownie cieplne

Mgr inż. Marta DROSIŃSKA Politechnika Gdańska, Wydział Oceanotechniki i Okrętownictwa

12.1. Proste obiegi cieplne (Excel - Solver) Proste obiegi cieplne (MathCad) Proste obiegi cieplne (MathCad) Proste obiegi cieplne

Elastyczność DUOBLOKU 500

Zagospodarowanie energii odpadowej w energetyce na przykładzie współpracy bloku gazowo-parowego z obiegiem ORC.

Wpływ regeneracji na pracę jednostek wytwórczych kondensacyjnych i ciepłowniczych 1)

ANALIZA MOŻLIWOŚCI ZWIĘKSZENIA PRODUKCJI ENERGII ELEKTRYCZNEJ W ELEKTROCIEPŁOWNI

KOMPUTEROWY MODEL UKŁADU STEROWANIA MIKROKLIMATEM W PRZECHOWALNI JABŁEK

7.1. Modelowanie fizyczne 7.2. Modelowanie matematyczne 7.3. Kategorie modelowania matematycznego 7.4. Kategorie modelowania matematycznego 7.5.

Załącznik Nr 3 : Gwarantowane parametry techniczne

K raków 26 ma rca 2011 r.

Termodynamiczna analiza pracy bloku o mocy elektrycznej 380 MW przystosowanego do pracy skojarzonej. Prof. nzw. dr hab. inż.

Wykład 7. Regulacja mocy i częstotliwości

(13) B1 PL B1 F01K 17/02. (54) Sposób i układ wymiany ciepła w obiegu cieplnym elektrociepłowni. (73) Uprawniony z patentu:

MODELOWANiE TURBiNOWYCH SiLNiKÓW ODRZUTOWYCH W ŚRODOWiSKU GASTURB NA PRZYKŁADZiE SiLNiKA K-15

Wdrożenie nowego stopnia turbiny na bloku nr 8 w Elektrowni Połaniec (patenty P , P ). Ocena efektów energetyczno ekonomicznych.

Elektroenergetyka Electric Power Industry. Elektrotechnika I stopień ogólnoakademicki. stacjonarne

Konsekwencje termodynamiczne podsuszania paliwa w siłowni cieplnej.

silniku parowym turbinie parowej dwuetapowa

PRZESTRZENNY MODEL PRZENOŚNIKA TAŚMOWEGO MASY FORMIERSKIEJ

Numeryczna symulacja rozpływu płynu w węźle

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW ENERGETYKA

Analiza wartości rynkowej elektrowni

PL B1. INSTYTUT MASZYN PRZEPŁYWOWYCH IM. ROBERTA SZEWALSKIEGO POLSKIEJ AKADEMII NAUK, Gdańsk, PL BUP 20/14

OFERTA SPRZEDAŻY TURBOGENERATORA

Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka

RYSZARD BARTNIK ANALIZA TERMODYNAMICZNA I EKONOMICZNA MODERNIZACJI ENERGETYKI CIEPLNEJ Z WYKORZYSTANIEM TECHNOLOGII GAZOWYCH

Modelowanie bilansu energetycznego pomieszczeń (1)

Kierunkowe efekty kształcenia wraz z odniesieniem do efektów obszarowych. Energetyka studia I stopnia

Optymalizacja rezerw w układach wentylatorowych spełnia bardzo ważną rolę w praktycznym podejściu do zagadnienia efektywności energetycznej.

Instrukcja stanowiskowa

WPŁYW SZYBKOŚCI STYGNIĘCIA NA WŁASNOŚCI TERMOFIZYCZNE STALIWA W STANIE STAŁYM

PL B1 STEFANIAK ZBYSŁAW T. M. A. ZAKŁAD INNOWACJI TECHNICZNYCH, ELBLĄG, PL BUP 02/ WUP 04/10

Temat /6/: DYNAMIKA UKŁADÓW HYDRAULICZNYCH. WIADOMOŚCI PODSTAWOWE.

SPIS TREŚCI SPIS WAŻNIEJSZYCH OZNACZEŃ WSTĘP KRÓTKA CHARAKTERYSTYKA SEKTORA ENERGETYCZNEGO W POLSCE... 14

PRZEWODNIK PO PRZEDMIOCIE

OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH. Opracował. Dr inż. Robert Jakubowski

POPRAWA SPRAWNOŚCI CIEPLNEJ BLOKÓW ENERGETYCZNYCH POPRZEZ WYKORZYSTANIE ODZYSKANEGO CIEPŁA ODPADOWEGO

Politechnika Łódzka Wydział Mechaniczny Instytut obrabiarek i technologii budowy maszyn. Praca Magisterska

Elektroenergetyka Electric Power Industry. Elektrotechnika I stopień ogólnoakademicki. niestacjonarne

Badania właściwości dynamicznych sieci gazowej z wykorzystaniem pakietu SimNet TSGas 3

Energetyka odnawialna i nieodnawialna. Siłownie parowe. Wykład WSG Bydgoszcz Prowadzący: prof. Andrzej Gardzilewicz

ANALIZA TERMODYNAMICZNA ULTRA- NADKRYTYCZNEGO BLOKU WĘGLOWEGO Z TURBINĄ POMOCNICZĄ

SZCZEGÓŁOWY OPIS PRZEDMIOTU ZAMÓWIENIA

Rok akademicki: 2013/2014 Kod: SEN s Punkty ECTS: 2. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Akademia Górniczo- Hutnicza Im. Stanisława Staszica w Krakowie

INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH POLITECHNIKA ŚLĄSKA W GLIWICACH

Urządzenia nastawcze

Obiegi gazowe w maszynach cieplnych

S Y L A B U S P R Z E D M I O T U

Dr inż. Andrzej Tatarek. Siłownie cieplne

PRZEGLĄD KONSTRUKCJI JEDNOFAZOWYCH SILNIKÓW SYNCHRONICZNYCH Z MAGNESAMI TRWAŁYMI O ROZRUCHU BEZPOŚREDNIM

Metoda diagnozowania uszczelnień labiryntowych w maszynach przepływowych. Piotr Krzyślak Marian Winowiecki

Modelowanie matematyczne obiegu gazowo-parowego na potrzeby diagnostyki cieplnej eksploatacji

ZAGADNIENIA KOGENERACJI ENERGII ELEKTRYCZNEJ I CIEPŁA

Pytania zaliczeniowe z Gospodarki Skojarzonej w Energetyce

Sterowanie napędów maszyn i robotów

ANALIZA EKONOMICZNA QUASI-NIEUSTALONEJ SKOJARZONEJ PRACY DWÓCH BLOKÓW ENERGETYCZNYCH O MOCY 370 MW ZASILAJĄCYCH RÓWNOLEGLE WYMIENNIKI CIEPŁOWNICZE

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY Katedra Energetyki i Aparatury Przemysłowej PRACA SEMINARYJNA

PL B1. ABB Spółka z o.o.,warszawa,pl BUP 03/02. Paweł Mróz,Wrocław,PL WUP 02/08 RZECZPOSPOLITA POLSKA

Sterowanie Napędów Maszyn i Robotów

Oprogramowanie TERMIS. Nowoczesne Zarządzanie i Optymalizacja Pracy. Sieci Cieplnych.

Cieplne Maszyny Przepływowe. Temat 1 Wstęp. Część I Podstawy teorii Cieplnych Maszyn Przepływowych.

Specjalność na studiach I stopnia: Kierunek: Energetyka Źródła Odnawialne i Nowoczesne Technologie Energetyczne (ZONTE)

sksr System kontroli strat rozruchowych

LABORATORIUM MECHANIKI PŁYNÓW

ZJAWISKA W OBWODACH TŁUMIĄCYCH PODCZAS ZAKŁÓCEŃ PRACY TURBOGENERATORA

Chłodnictwo i Kriogenika - Ćwiczenia Lista 7

Kierunek: Energetyka Odnawialna i Zarządzanie Energią Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne.

tom XLIII(2013), nr 1-2, 49 59

POPRAWA EFEKTYWNOŚCI ENERGETYCZNEJ UKŁADU NAPĘDOWEGO POMPY WODY ZASILAJĄCEJ DUŻEJ MOCY

Rok akademicki: 2015/2016 Kod: RBM ET-s Punkty ECTS: 3. Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

ZASTOSOWANIE METOD OPTYMALIZACJI W DOBORZE CECH GEOMETRYCZNYCH KARBU ODCIĄŻAJĄCEGO

Zdjęcia Elektrowni w Skawinie wykonał Marek Sanok

PRZEWODNIK PO PRZEDMIOCIE

Analiza obciążeń cieplnych podczas rozruchu nadkrytycznych turbin parowych z chłodzeniem zewnętrznym

POPRAWA EFEKTYWNOŚCI ENERGETYCZNEJ ELEKTROCIEPŁOWNI POPRZEZ WPROWADZENIE POMPY CIEPŁA DO INSTALACJI BLOKU ENERGETYCZNEGO

Algorytm obliczeń optymalnej struktury wymienników ciepłowniczych przystosowujących blok o mocy elektrycznej 380 MW do pracy skojarzonej

NOWOCZESNE TECHNOLOGIE ENERGETYCZNE Rola modelowania fizycznego i numerycznego

Energetyka konwencjonalna

PRZEWODNIK PO PRZEDMIOCIE

Materiały szkoleniowe

Technika Samochodowa

Dr inż. Andrzej Tatarek. Siłownie cieplne

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY

FDS 6 - Nowe funkcje i możliwości. Modelowanie instalacji HVAC część 1: podstawy.

Rola stacji gazowych w ograniczaniu strat gazu w sieciach dystrybucyjnych

Transkrypt:

MODELOWANIE INŻYNIERSKIE ISSN 896-77X 33, s. -8, Gliwice 2007 MODEL MATEMATYCZNY TURBOZESPOŁU PAROWEGO DLA SYMULATORA BLOKU ENERGETYCZNEGO WYBRANE ZAGADNIENIA KRZYSZTOF BADYDA, GRZEGORZ NIEWIŃSKI Instytut Techniki Cieplnej, Politechnika Warszawska e-mail: badyda@itc.pw.edu.pl, grzeniew@itc.pw.edu.pl Streszczenie. Instrumenty numerycznej analizy dynamiki stanów przejściowych stwarzają nowe możliwości w projektowaniu, doborze układów automatyki i sterowania w instalacjach energetycznych oraz szkolenia personelu ruchowego. W artykule przedstawiono wyniki prac nad modelem matematycznym turbozespołu parowego dla symulatora bloku energetycznego dużej mocy. Przedstawiono wybrane rezultaty numerycznej symulacji procesu zmiany obciążenia na przykładzie turbiny parowej 3K25 z układem regeneracji.. WSTĘP W obecnym stuleciu energetyka zawodowa stanęła przed ogromnym wyzwaniem. Z jednej strony istnieje coraz większy nacisk na zmniejszenie szkodliwego wpływu energetyki na otaczające nas środowisko naturalne, a z drugiej wymóg zapewnienia niezawodności, optymalizacji i bezpieczeństwa eksploatacji urządzeń oraz dostarczania taniej energii elektrycznej. Pomocne w realizacji tych dwóch sprzecznych ze sobą celów, oprócz zmiany technologii konwersji energii, w klasycznej energetyce, może być modelowanie matematyczne jako metoda dążąca do optymalizacji procesu. Prowadzenie prac eksperymentalnych z wykorzystaniem rzeczywistych obiektów jest kosztowne, wiąże się z dużym ryzykiem uszkodzeń badanych obiektów, a czasami jest wręcz niemożliwe. Z tego względu, mimo licznych realizowanych prac badawczych, własności instalacji energetycznych szczególnie stanów nieustalonych należą do najsłabiej rozpoznanych. Możliwość poprawy tej sytuacji powstanie dzięki upowszechnieniu symulacji komputerowej jako narzędzia służącego do badania własności dynamicznych nowo projektowanych i eksploatowanych urządzeń i instalacji przemysłowych, w tym energetycznych. Symulator rozumiany jest tu jako urządzenie (program komputerowy), będące modelem wybranego obiektu rzeczywistego, odtwarzające jego (zazwyczaj tylko wybrane) własności. Za pomocą symulatora można zatem prowadzić badania eksperymentalne z pominięciem wykorzystania obiektu rzeczywistego. Prace nad programami symulującymi numerycznie ruch bloków energetycznych były i są prowadzone przez liczne ośrodki. Ponieważ jednak uzyskiwane wyniki mają duże znaczenie, nie są one zwykle publikowane, a na rynku oferowane są jedynie gotowe programy komercyjne.

2 K. BADYDA, G. NIEWIŃSKI W artykule przedstawione zostały wyniki prac związanych z modelowaniem matematycznym instalacji energetycznych na przykładzie turbozespołu parowego, wykorzystane do budowy symulatora bloku energetycznego o mocy 200 MW. W dostępnych publikacjach prezentowane są modele turbiny parowej (bez układu regeneracji) [9], [0], natomiast brak jest informacji o kompleksowych modelach matematycznych instalacji turbozespołu parowego dużej mocy, opartego na zasadach zachowania masy i energii, a nie na zależnościach empirycznych. 2. MODEL TURBOZESPOŁU PAROWEGO W obecnej dobie rozwoju technik obliczeniowych, w badaniach zjawisk cieplnoprzepływowych instalacji energetycznych powinno się odchodzić od stosowania wyłącznie modeli opartych na założeniach empirycznych i doświadczalnych [5], [0]. Jednocześnie spośród metod modelowania, opartych na równaniach bilansowych, podejściem, umożliwiającym badanie dynamik turbozespołu, jest podejście dyskretne (bezwymiarowe), zakładające stosowanie modeli o stałych skupionych. Podstawowym założeniem takiego podejścia jest podział obiektu na elementy, w których zachodzą procesy decydujące o zachowaniu się instalacji i uśrednieniu parametrów stanu czynnika roboczego najczęściej w środkowym punkcie takiego elementu. W turbozespole parowym są elementy o różnych zdolnościach akumulacyjnych. W wyniku tego występują silnie zróżnicowane stałe czasowe, charakteryzujące zachodzące w nich procesy nieustalone. W szczególności można wyodrębnić te elementy, w których stałe czasowe procesów są znacząco różne od stałej czasowej turbozespołu parowego, rozpatrywanego jako całość (Ti << Tt << Ti). Procesy rozprężania, dławienia i zamiany energii pary wodnej na pracę w grupach stopni, dławnicach czy zaworach charakteryzują się małą stałą czasową i mogą być traktowane jako chwilowy ciąg stanów ustalonych. Natomiast procesy związane z akumulacją ciepła w materiałach konstrukcyjnych turbozespołu charakteryzują się duża bezwładnością, co stwarza możliwość modelowania ich quasi-stacjonarnie [], [0]. Na drodze analizy typowego układu turbozespołu parowego można wyróżnić dwie klasy modeli, zgodnie z wcześniej przyjętymi ustaleniami: elementy maszyn i urządzeń energetycznych, które mają zdolności akumulacyjne masy bądź energii czynnika roboczego modelowane dynamicznie (np. komory upustowe i przestrzenie akumulacyjne w układzie przepływowym turbiny, modele rurociągów parowych i wymienników regeneracyjnych) elementy, w których stała czasowa procesu akumulacji jest znacząco różna od stałej czasowej turbozespołu lub takie, które nie mają zdolności akumulacyjnych masy i energii, modelowane statycznie, za pomocą charakterystyk (np. model pompy skroplin i wody zasilającej, stopnia regulacyjnego i grup stopni nieregulowanych, dławnicy labiryntowej, zaworów, straty ciśnienia i wtrysku wody w międzystopniowym przegrzewaczu pary) Budowa i opis poszczególnych elementów, a także ogólna postać i metody rozwiązania zero-wymiarowego modelu turbozespołu parowego, opisano szerzej w pozycjach literaturowych [], [2], [9]. Uzupełnienie modelu elementów instalacji energetycznej, jako całościowego modelu turbozespołu parowego stanowią charakterystyki własności termodynamicznych czynnika roboczego.

MODEL MATEMATYCZNY TURBOZESPOŁU PAROWEGO DLA SYMULATORA BLOKU 3 Podstawowymi zaletami modelowania 0-D, w porównaniu z modelami wymiarowymi, są przede wszystkim prostota, naturalność, mniejsza pracochłonność oraz krótkie czasy obliczeń symulacyjnych. Przykładowy schemat zastępczy turbiny parowej 3K25 z układem regeneracji, sporządzony według przyjętej koncepcji modelowania dynamiki zjawisk zachodzących w instalacjach energetycznych, został przedstawiony na rys.. Rys.. Schemat zastępczy turbiny parowej 3K25 z układem regeneracji

4 K. BADYDA, G. NIEWIŃSKI 3. WYNIKI SYMULACJI Analizę dynamiki stanów nieustalonych przeprowadzono za pomocą autorskiego programu komputerowego. Program napisany został w języku FORTRAN, który do tej pory uważany jest za najlepszy do rozwiązywania skomplikowanych zagadnień numerycznych (w tym całkowania układów równań różniczkowych). Modułowa budowa modelu turbozespołu parowego, a co za tym idzie i samego symulatora, umożliwia w prosty sposób jego rozbudowę o dodatkowe elementy, które w obecnym opisie matematycznym nie zostały uwzględnione, lub zastosowanie innych, bardziej wydajnych procedur numerycznych. 3. Zmiana obciążenia turbozespołu parowego Zmniejszenie obciążenia bloku energetycznego jest typowym zakłóceniem jego aktualnych warunków pracy, niebędącym przy tym stanem awaryjnym. Jako stan początkowy procesu symulacji zostały wybrane szczególne warunki pracy stan znamionowy. W 50. sekundzie symulacji wprowadzono zakłócenie. Zmniejszenie obciążenia wprowadzone zostało w formie zamknięcia czwartego zaworu rozrządu i zmniejszenie stopnia otwarcia trzeciego zaworu o 25%. W celu lepszego pokazania penetracji zakłóceń rozchodzących się w układzie przepływowym całego turbozespołu (łącznie z układem regeneracji) w zaprezentowanym zakłóceniu przyjęto szybki proces zamykania i otwierania zaworów rozrządu. (ok. 5 sek. na całkowite zamknięcie zaworu). Po upływie 5 minut wprowadzono zakłócenie odwrotne w celu powrotu do warunków pracy z początku symulacji. W trakcie symulacji założono idealną regulację zmiany prędkości obrotowej wału na poziomie 3000 obr/min. Wyniki symulacji przedstawiono na rysunkach 2, w formie bezwymiarowej, gdzie stanem odniesienia jest stan znamionowy. Na rys.2 ukazano charakterystyki zmian podstawowych parametrów cechujących turbozespół (temperatura wody na wejściu do kotła, moc, sprawność i strumień masy pary pobieranej przez turbozespół). Na rys.3 pokazano przebieg zmian ciśnienia pary wodnej w upustach nieregulowanych. 4 PODSUMOWANIE Wydaje się, że autorom udało się poprawnie zamodelować procesy cieplno-przepływowe zachodzące w turbozespole, o czym świadczą otrzymane wyniki zmian parametrów termodynamicznych w stanach nieustalonych. Wyniki zaprezentowane w pracy zgodne są z ogólną teoretyczną wiedzą w tym zakresie. Przedstawiona na rys.3 zmiana ciśnienia pary w upuście ma identyczny charakter z przebiegami zmian spotykanymi w literaturze [4] i [6]. Pozostałe zaprezentowane przebiegi zmian ciśnienia, strumienia masy czy entalpii mają oczekiwany charakter, jednakże ze względu na brak kompletnych danych z rzeczywistego obiektu (ze względu na trudności dokonania pomiarów niektórych wielkości oraz sposób ich archiwizacji) niemożliwa jest ich pełna weryfikacja. Dodatkowo analiza wyników symulacji wykazała konieczność rozbudowy modelu i uwzględnienia wszystkich czynników wpływających na pracę turbozespołu parowego, a z drugiej strony zastosowania bardziej wydajnych algorytmów rozwiązywania złożonych, sztywnych układów równań różniczkowych.

MODEL MATEMATYCZNY TURBOZESPOŁU PAROWEGO DLA SYMULATORA BLOKU 5 Z odc Z,2 Z 3.05 0.9 0.95 0.9 0.7 5 gr3 gr2 gr reg gr4 0.6 0 50 00 Z4 900 950 000 Rys.2. Ciśnienie pary za rozrządem pary i zaworem odcinającym (Z-Z4 zawory rozrządu pary, Z_odc zawór odcinający) 0.75 0 400 800 200 600 Rys.4. Ciśnienie pary w turbinie (Reg za stopniem regulacyjnym, gr-gr4 za odpowiednią grupą stopni nieregulowanych) G/G0 Z,2 Z 3 Zodc 0.95 0.6 0.4 0.9 gr8 0.2 0 0 50 00 Z4 900 950 000 Rys.3. Strumień pary masy przepływający przez rozrząd pary i zawór odcinający (oznaczenia zgodne z rys.2) 5 gr5, 6, 7 0 400 800 200 600 Rys.5. Ciśnienia pary w układzie przepływowym turbiny (gr5-gr8 -za odpowiednią grupą stopni)

6 K. BADYDA, G. NIEWIŃSKI G/G0 0.95 0.96 0.9 0.92 odgaz 5 gr4 gr3 reg gr2 gr 0 400 800 200 600 Rys.6. Strumień masy pary przepływ przez turbinę (oznaczenia zgodne z rys.4.) 8 4 xn4 xn3 xn5 xn2 0 400 800 200 600 Rys.8. Ciśnienie panujące w wymiennikach regeneracyjnych części NP.(oznaczenia zgodne z rys..).04 G/G0.04 0.96 0.96 0.92 0.92 8 4 gr8 gr5 gr7 gr6 8 4 xw2 xw xw3 0 400 800 200 600 Rys.7. Strumień masy pary przepływ przez turbinę (oznaczenia zgodne z rys.5) 0 400 800 200 600 Rys.9. Ciśnienie panujące w wymiennikach regeneracyjnych części WP.(oznaczenia zgodne z rys..)

MODEL MATEMATYCZNY TURBOZESPOŁU PAROWEGO DLA SYMULATORA BLOKU 7.0 h/h0 280 240 P [MW], G[kg/s], T [degc] P T η [%] 4 0.72 200 0.99 xn3 G 0.6 60 0.98 0.97 xn2 xn4 xn5 odgaz 0 400 800 200 600 Rys.0. Entalpia wody zasilającej na wyjściu z wymienników reg. części NP. (oznaczenia zgodne z rys..) 20 80 0 400 800 200 600 Rys.2. Zmiana podstawowych parametrów turbozespołu (T temp wody do kotła; P moc, G strumień masy pary na wlocie, η sprawność turbozespołu) η 0.48 0.36.02 h/h0 p [bar] I II 0 III 0.98 xw IV V 0.96 xw2 VI 0.94 xw3 VII 0.92 0 400 800 200 600 Rys.. Entalpia wody zasilającej na wyjściu z wymienników reg. części WP (oznaczenia zgodne z rys..). 0. 00 20 40 60 80 G [kg/s] Rys.3. Charakterystyka ciśnienia pary w upuście w zależności od ilości pary pobieranej przez turbozespół (I VII numery upustów liczone od cz. WP)

8 K. BADYDA, G. NIEWIŃSKI LITERATURA. Badyda K.: Zagadnienia modelowania matematycznego instalacji energetycznych. Rozprawa habilitacyjna. Politechnika Warszawska 200. 2. Badyda K., Niewiński G.: Model matematyczny układu regeneracji dla symulatora turbozespołu parowego. Modelowanie Inżynierskie, Tom, nr 32, Gliwice 2006, s. 7 24. 3. Flynn D.: Thermal power plant simulation and control. The IEE, London 2003. 4. Jesionek K., Wiewiórowska M., Woszczak K.: Modelowanie współpracy turbiny 3K25 z układem regeneracji. Zeszyty Naukowe Katedry Mechaniki Stosowanej z. 3. Politechnika Śląska, Gliwice 2000, s. 4-46 5. Kirpluk M.: Modelowanie matematyczne złożonych obiektów energetycznych do budowy symulatorów. VII Konferencja Problemy Badawcze Energetyki Cieplnej, Konferencje Politechniki Warszawskiej z.24, Warszawa 2005. 6. Laudyn D., Pawlik M., Strzelczyk F.: Elektrownie. Warszawa: WNT, 990. 7. Lewandowski J., Miller A., Uzunow N., Świrski K.: Modelowanie matematyczne procesów cieplno-przepływowych w układach maszyn i urządzeń energetycznych. W: I konferencja Problemy Badawcze Energetyki Cieplnej, Warszawa 993. 8. Paranjape R. D.: Modeling and control of a supercritical coal fired boile. Dissertation Texas Tech University 996. 9. Uzunow M.: Wpływ dyskretyzacji układu przepływowego turbiny parowej na wyniki symulacji procesów nieustalonyc. Praca doktorska. Politechnika Warszawska 200. 0. Živković D.: Nonlinear mathematical model of the condensing steam turbine. FACTA UNIVERSITATIS, Series: Mechanical Engineering Vol., No 7, 2000, s. 87 878.. G. I. Doverman, I. I. Bukshtein, V.I. Gombolewski, G. V. Manucharova, V. A. Mironova.: Nonlinear mathematical model of a gas- and oil-fired 800MW Boiler-turbine unit. Thermal Engineering 98, 28, No. 6, s. 322-326. MATHEMATICAL MODEL OF A STEAM TURBINE FOR A POWER UNIT SIMULATOR - SELECTED ITEMS Summary. The numerical analysis of dynamics properties creates new capabilities in designing and equipment automations and control selection in power installations as well as maintenance staff training. Results from development of mathematical model of a turbine system digital simulator are presented in the paper. An example of simulation results for load change of steam turbine with feed-water heating system are presented.