Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka

Podobne dokumenty
Wymagania edukacyjne klasa trzecia.

WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE

REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM

ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM

PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

1. Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi 1 LICZBA GODZIN LEKCYJNYCH

Wymagania edukacyjne klasa druga.

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

TEMAT 1. LICZBY I DZIAŁANIA Liczby Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

TEMAT 1. LICZBY I DZIAŁANIA Liczby Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

Wymagania edukacyjne klasa pierwsza.

MATEMATYKA - gimnazjum - cele i wymagania z podstawy programowej

Lista działów i tematów

Matematyka Wymagania edukacyjne, kryteria oceniania i sposoby sprawdzania osiągnięć edukacyjnych uczniów

Egzamin gimnazjalny 2015 część matematyczna

Przedmiotowe zasady oceniania matematyka

Wymagania edukacyjne na poszczególne oceny

MATEMATYKA KLASA III GIMNAZJUM

Regulamin XVI Regionalnego Konkursu Matematycznego "Czas na szóstkę"

Regulamin XV Regionalnego Konkursu Matematycznego Czas na szóstkę

III etap edukacyjny MATEMATYKA

Przedmiotowe System Oceniania z matematyki na podstawie programu "Matematyka z plusem"

Rozkład wyników ogólnopolskich

WYMAGANIA EDUKACYJNE Z MATEMATYKI MATEMATYKA WOKÓŁ NAS WSiP

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania

KONKURSY PRZEDMIOTOWE MKO DLA UCZNIÓW WOJEWÓDZTWA MAZOWIECKIEGO

KONKURSY PRZEDMIOTOWE MKO DLA UCZNIÓW WOJEWÓDZTWA MAZOWIECKIEGO w roku szkolnym 2013/2014. Program merytoryczny konkursu z matematyki dla gimnazjum

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości;

Przedmiotowe zasady oceniania w oddziałach gimnazjalnych matematyka

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012. CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE

Przedmiotowy system oceniania matematyka

MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI.

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum

wymagania programowe z matematyki kl. III gimnazjum

Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132

Ułamki i działania 20 h

ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

Wymagania edukacyjne na poszczególne stopnie szkolne klasa III

ZESPÓŁ SZKÓŁ W OBRZYCKU

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania

Karty diagnozy osiągnięć ucznia

WYMAGANIA EDUKACUJNE Z MATEMATYKI Z PLUSEM DLA KLASY VIII WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ TEMAT

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:

Wymagania edukacyjne z matematyki - gimnazjum

Wymagania edukacyjne szczegółowe w Gimnazjum

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania na poszczególne stopnie szkolne

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb

Temat lekcji Zakres treści Wymagania podstawowe Wymagania ponadpodstawowe

Nie tylko wynik Plan wynikowy dla klasy 2 gimnazjum

Wymagania dla klasy siódmej. Treści na 2 na 3 na 4 na 5 na 6 Uczeń: Uczeń: Uczeń: Uczeń: Uczeń: DZIAŁ 1. LICZBY

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 3 (oddział gimnazjalny)

Egzamin Gimnazjalny z WSiP LISTOPAD Analiza wyników próbnego egzaminu gimnazjalnego Część matematyczno-przyrodnicza MATEMATYKA

Wyniki procentowe poszczególnych uczniów

Agnieszka Kamińska, Dorota Ponczek. Matematyka na czasie Rozkład materiału i plan wynikowy dla klasy 2

Zakres tematyczny - PINGWIN. Klasa IV szkoły podstawowej 1. Zakres treści programowych z I etapu kształcenia. 2. Liczby naturalne i działania:

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 3 (oddział gimnazjalny)

Wymagania programowe na poszczególne oceny. Klasa 2. Potęgi o wykładnikach naturalnych i całkowitych. Poziom wymagań edukacyjnych:

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 2

KRYTERIA OCENIANIA Z MATEMATYKI w klasie 2a w roku szkolnym 2017/18. realizowany program nauczania: Matematyka na czasie, 4 godziny tygodniowo

WYMAGANIA EDUKACYJNE

Wymagania na poszczególne oceny szkolne Klasa 7

Końcoworoczne kryteria oceniania dla klasy II z matematyki Rok szkolny 2015/2016 przygotowała mgr inż. Iwona Śliczner

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny

REGULAMIN WOJEWÓDZKIEGO KONKURSU MATEMATYCZNEGO DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA WIELKOPOLSKIEGO NA ROK SZKOLNY 2011/2012

REGULAMIN WOJEWÓDZKIEGO KONKURSU MATEMATYCZNEGO DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA WIELKOPOLSKIEGO NA ROK SZKOLNY 2011/2012

Wymagania edukacyjne dla klasy drugiej POTĘGI I PIERWIASTKI

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy VII szkoły podstawowej

Rozkład łatwości zadań

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) dopełniające (ocena bardzo dobra) rozszerzające (ocena dobra)

rozszerzające (ocena dobra) podstawowe (ocena dostateczna)

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PYTANIA TEORETYCZNE Z MATEMATYKI

klasa I Dział Główne wymagania edukacyjne Forma kontroli

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

konieczne (ocena dopuszczająca) Temat rozszerzające (ocena dobra)

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Wymagania edukacyjne na poszczególne oceny Matematyka na czasie dla klasy 2

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum

Wymagania edukacyjne z matematyki w klasie 7 szkoły podstawowej

Lista działów i tematów

MATEMATYKA DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY ŚRÓDROCZNE I ROCZNE Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) dopełniające (ocena bardzo dobra) rozszerzające (ocena dobra)

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) rozszerzające (ocena dobra) dopełniające (ocena bardzo dobra)

WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII

Podstawą do uzyskania pozytywnego stopnia za I i II półrocze jest wykazanie się ( w formie pisemnej)

Matematyka z kluczem. Szkoła podstawowa nr 18 w Sosnowcu. Przedmiotowe zasady oceniania klasa 7

Transkrypt:

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie 2. Styczna do okręgu WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 9) oblicza pola i obwody trójkątów i czworokątów; 22) rozpoznaje wielokąty foremne i korzysta z ich podstawowych własności 8) korzysta z własności kątów i przekątnych w prostokątach, równoległobokach, rombach i w trapezach; 9) oblicza pola i obwody trójkątów i czworokątów; 4) rozpoznaje kąty środkowe; 19) konstruuje symetralną odcinka 21) konstruuje okrąg opisany na trójkącie; 2) rozpoznaje wzajemne położenie prostej i okręgu, rozpoznaje styczną do okręgu; 3) korzysta z faktu, że styczna do okręgu jest prostopadła do promienia poprowadzonego do punktu styczności;

3. Okrąg wpisany w trójkąt 4. Wielokąty foremne 5. Wielokąty foremne okręgi wpisane i opisane 1. Przykłady graniastosłupów 2) rozpoznaje wzajemne położenie prostej i okręgu, rozpoznaje styczną do okręgu; 3) korzysta z faktu, że styczna do okręgu jest prostopadła do promienia poprowadzonego do punktu styczności; 9) oblicza pola i obwody trójkątów i czworokątów; 19) konstruuje dwusieczną kąta; 21) konstruuje okrąg wpisany w trójkąt; 19) konstruuje symetralną odcinka i dwusieczną kąta; 22) rozpoznaje wielokąty foremne i korzysta z ich podstawowych własności. 5) oblicza długość okręgu i łuku okręgu; 6) oblicza pole koła, pierścienia kołowego, wycinka kołowego; 9) oblicza pola i obwody trójkątów i czworokątów; 22) rozpoznaje wielokąty foremne i korzysta z ich podstawowych własności. 1) rozpoznaje graniastosłupy;

2. Siatki graniastosłupów. Pole powierzchni 3. Objętość prostopadłościanu. Jednostki objętości 4. Objętość graniastosłupa 9) oblicza pola i obwody trójkątów i czworokątów; 1) rozpoznaje graniastosłupy i ostrosłupy prawidłowe; 2) oblicza pole powierzchni graniastosłupa prostego, (także w zadaniach osadzonych w kontekście praktycznym); 2) oblicza pole powierzchni i objętość graniastosłupa prostego (także w zadaniach osadzonych w kontekście praktycznym); 3) zamienia jednostki objętości. 1) rozpoznaje graniastosłupy; 2) oblicza pole powierzchni i objętość graniastosłupa prostego (także w zadaniach osadzonych w kontekście praktycznym); 5. Odcinki w graniastosłupach 1. Rodzaje ostrosłupów 1) rozpoznaje graniastosłupy; 2) oblicza pole powierzchni i objętość graniastosłupa prostego (także w zadaniach osadzonych w kontekście praktycznym); 1) rozpoznaje ostrosłupy prawidłowe;

2. Siatki ostrosłupów. Pole powierzchni 3. Objętość ostrosłupa 9) oblicza pola i obwody trójkątów i czworokątów; 1) rozpoznaje ostrosłupy prawidłowe; 2) oblicza pole powierzchni i objętość ostrosłupa (także w zadaniach osadzonych w kontekście praktycznym); 1) rozpoznaje ostrosłupy prawidłowe; 2) oblicza pole powierzchni i objętość ostrosłupa (także w zadaniach osadzonych w kontekście praktycznym); 3) zamienia jednostki objętości. 1) rozpoznaje ostrosłupy prawidłowe; 4. Obliczanie długości odcinków w ostrosłupach 2) oblicza pole powierzchni i objętość ostrosłupa (także w zadaniach osadzonych w kontekście praktycznym);

1. Odczytywanie danych statystycznych 2. Co to jest średnia? 3. Zbieranie i opracowywanie danych statystycznych 9. Statystyka opisowa i wprowadzenie do rachunku prawdopodobieństwa. Uczeń: 1) interpretuje dane przedstawione za pomocą tabel, diagramów słupkowych i kołowych, wykresów; 2) wyszukuje, selekcjonuje i porządkuje informacje z dostępnych źródeł; 9. Statystyka opisowa i wprowadzenie do rachunku prawdopodobieństwa. Uczeń: 1) interpretuje dane przedstawione za pomocą tabel, diagramów słupkowych i kołowych, wykresów; 4) wyznacza średnią arytmetyczną i medianę zestawu danych; 9. Statystyka opisowa i wprowadzenie do rachunku prawdopodobieństwa. Uczeń: 2) wyszukuje, selekcjonuje i porządkuje informacje z dostępnych źródeł; 3) przedstawia dane w tabeli, za pomocą diagramu słupkowego lub kołowego; 4) wyznacza średnią arytmetyczną i medianę zestawu danych;

TEMAT 1. Lekcja organizacyjna 2. System dziesiątkowy 3. System rzymski WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. Liczby wymierne dodatnie. Uczeń: 4) zaokrągla rozwinięcia dziesiętne liczb; 5) oblicza wartości nieskomplikowanych wyrażeń arytmetycznych zawierających ułamki zwykłe i dziesiętne; 6) szacuje wartości wyrażeń arytmetycznych; 7) stosuje obliczenia na liczbach wymiernych do rozwiązywania problemów w kontekście praktycznym, w tym do zamiany jednostek (jednostek prędkości, gęstości itp.). 3. Potęgi. Uczeń: 5) zapisuje liczby w notacji wykładniczej, tzn. w postaci a 10 k, gdzie 1 a<10 oraz k jest liczbą całkowitą. 1. Liczby wymierne dodatnie. Uczeń: 1)odczytuje i zapisuje liczby naturalne dodatnie w systemie rzymskim (w zakresie do 3.000).

4. Liczby wymierne i niewymierne 1. Liczby wymierne dodatnie. Uczeń: 3) zamienia ułamki zwykłe na ułamki dziesiętne (także okresowe), zamienia ułamki dziesiętne skończone na ułamki zwykłe; 4) zaokrągla rozwinięcia dziesiętne liczb. 2. Liczby wymierne (dodatnie i niedodatnie). Uczeń: 1) interpretuje liczby wymierne na osi liczbowej. 3. Potęgi. Uczeń: 1) oblicza potęgi liczb wymiernych o wykładnikach naturalnych; 3) porównuje potęgi o różnych wykładnikach naturalnych i takich samych podstawach oraz porównuje potęgi o takich samych wykładnikach naturalnych i różnych dodatnich podstawach; 4) zamienia potęgi o wykładnikach całkowitych ujemnych na odpowiednie potęgi o wykładnikach naturalnych. 4. Pierwiastki. Uczeń: 1) oblicza wartości pierwiastków drugiego i trzeciego stopnia z liczb, które są odpowiednio kwadratami lub sześcianami liczb wymiernych.

5. Podstawowe działania na liczbach 1. Liczby wymierne dodatnie. Uczeń: 2) dodaje, odejmuje, mnoży i dzieli liczby wymierne zapisane w postaci ułamków zwykłych lub rozwinięć dziesiętnych skończonych zgodnie z własną strategią obliczeń (także z wykorzystaniem kalkulatora); 3) zamienia ułamki zwykłe na ułamki dziesiętne (także okresowe), zamienia ułamki dziesiętne skończone na ułamki zwykłe; 5) oblicza wartości nieskomplikowanych wyrażeń arytmetycznych zawierających ułamki zwykłe i dziesiętne; 7) stosuje obliczenia na liczbach wymiernych do rozwiązywania problemów w kontekście praktycznym, w tym do zamiany jednostek (jednostek prędkości, gęstości itp.). 2. Liczby wymierne (dodatnie i niedodatnie). Uczeń: 3) dodaje, odejmuje, mnoży i dzieli liczby wymierne; 4) oblicza wartości nieskomplikowanych wyrażeń arytmetycznych zawierających liczby wymierne. 3. Potęgi. Uczeń: 1) oblicza potęgi liczb wymiernych o wykładnikach naturalnych; 4) zamienia potęgi o wykładnikach całkowitych ujemnych na odpowiednie potęgi o wykładnikach naturalnych. 4. Pierwiastki. Uczeń: 1) oblicza wartości pierwiastków drugiego i trzeciego stopnia z liczb, które są odpowiednio kwadratami lub sześcianami liczb wymiernych.

6. Działania na potęgach i pierwiastkach 7. Obliczenia procentowe 3. Potęgi. Uczeń: 1) oblicza potęgi liczb wymiernych o wykładnikach naturalnych; 2) zapisuje w postaci jednej potęgi: iloczyny i ilorazy potęg o takich samych podstawach, iloczyny i ilorazy potęg o takich samych wykładnikach oraz potęgę potęgi (przy wykładnikach naturalnych); 4) zamienia potęgi o wykładnikach całkowitych ujemnych na odpowiednie potęgi o wykładnikach naturalnych; 5) zapisuje liczby w notacji wykładniczej, tzn. w postaci a 10 k, gdzie 1 a<10 oraz k jest liczbą całkowitą. 4. Pierwiastki. Uczeń: 1) oblicza wartości pierwiastków drugiego i trzeciego stopnia z liczb, które są odpowiednio kwadratami lub sześcianami liczb wymiernych; 2) wyłącza czynnik przed znak pierwiastka oraz włącza czynnik pod znak pierwiastka; 3) mnoży i dzieli pierwiastki drugiego stopnia; 4) mnoży i dzieli pierwiastki trzeciego stopnia. 5. Procenty. Uczeń: 1) przedstawia część pewnej wielkości jako procent lub promil tej wielkości i odwrotnie; 2) oblicza procent danej liczby; 3) oblicza liczbę na podstawie danego jej procentu; 4) stosuje obliczenia procentowe do rozwiązywania problemów w kontekście praktycznym.

8. Obliczenia procentowe (cd.) 9. Przekształcenia algebraiczne 5. Procenty. Uczeń: 4) stosuje obliczenia procentowe do rozwiązywania problemów w kontekście praktycznym, np. oblicza ceny po podwyżce lub obniżce o dany procent, wykonuje obliczenia związane z VAT, oblicza odsetki dla lokaty rocznej. 6. Wyrażenia algebraiczne. Uczeń: 1) opisuje za pomocą wyrażeń algebraicznych związki między różnymi wielkościami; 2) oblicza wartości liczbowe wyrażeń algebraicznych; 3) redukuje wyrazy podobne w sumie algebraicznej; 4) dodaje i odejmuje sumy algebraiczne; 5) mnoży jednomiany, mnoży sumę algebraiczną przez jednomian oraz, w nietrudnych przykładach, mnoży sumy algebraiczne; 6) wyłącza wspólny czynnik z wyrazów sumy algebraicznej poza nawias.

10. Równania i układy równań 11. Powtórzenie wiadomości Praca klasowa i jej omówienie 1. Odczytywanie wykresów 6. Wyrażenia algebraiczne. Uczeń: 7) wyznacza wskazaną wielkość z podanych wzorów, w tym geometrycznych i fizycznych. 7. Równania. Uczeń: 1) zapisuje związki między wielkościami za pomocą równania pierwszego stopnia z jedną niewiadomą, w tym związki między wielkościami wprost proporcjonalnymi i odwrotnie proporcjonalnymi; 2) sprawdza, czy dana liczba spełnia równanie stopnia pierwszego z jedną niewiadomą; 3) rozwiązuje równania stopnia pierwszego z jedną niewiadomą; 4) zapisuje związki między nieznanymi wielkościami za pomocą układu dwóch równań pierwszego stopnia z dwiema niewiadomymi; 5) sprawdza, czy dana para liczb spełnia układ dwóch równań stopnia pierwszego z dwiema niewiadomymi; 6) rozwiązuje układy równań stopnia pierwszego z dwiema niewiadomymi; 7) za pomocą równań lub układów równań opisuje i rozwiązuje zadania osadzone w kontekście praktycznym. 8. Wykresy funkcji. Uczeń: 4) odczytuje i interpretuje informacje przedstawione za pomocą wykresów funkcji (w tym wykresów opisujących zjawiska występujące w przyrodzie, gospodarce, życiu codziennym).

2. Odczytywanie wykresów (cd.) 3. Pojęcie funkcji. Zależności funkcyjne 4. Wzory a wykresy 8. Wykresy funkcji. Uczeń: 4) odczytuje i interpretuje informacje przedstawione za pomocą wykresów funkcji (w tym wykresów opisujących zjawiska występujące w przyrodzie, gospodarce, życiu codziennym). 8. Wykresy funkcji. Uczeń: 3) odczytuje z wykresu funkcji: wartość funkcji dla danego argumentu, argumenty dla danej wartości funkcji, dla jakich argumentów funkcja przyjmuje wartości dodatnie, dla jakich ujemne, a dla jakich zero. 8. Wykresy funkcji. Uczeń: 3) odczytuje z wykresu funkcji: wartość funkcji dla danego argumentu, argumenty dla danej wartości funkcji, dla jakich argumentów funkcja przyjmuje wartości dodatnie, dla jakich ujemne, a dla jakich zero. 4) odczytuje i interpretuje informacje przedstawione za pomocą wykresów funkcji (w tym wykresów opisujących zjawiska występujące w przyrodzie, gospodarce, życiu codziennym); 5) oblicza wartości funkcji podanych nieskomplikowanym wzorem i zaznacza punkty należące do jej wykresu.

5. Zależności między wielkościami proporcjonalnymi 6. Powtórzenie wiadomości Praca klasowa i jej omówienie 1. Trójkąty 8. Wykresy funkcji. Uczeń: 3) odczytuje z wykresu funkcji: wartość funkcji dla danego argumentu, argumenty dla danej wartości funkcji, dla jakich argumentów funkcja przyjmuje wartości dodatnie, dla jakich ujemne, a dla jakich zero; 4) odczytuje i interpretuje informacje przedstawione za pomocą wykresów funkcji (w tym wykresów opisujących zjawiska występujące w przyrodzie, gospodarce, życiu codziennym); 5) oblicza wartości funkcji podanych nieskomplikowanym wzorem i zaznacza punkty należące do jej wykresu. 6. Wyrażenia algebraiczne. Uczeń: 1) opisuje za pomocą wyrażeń algebraicznych związki między różnymi wielkościami. 8. Wykresy funkcji. Uczeń: 1) zaznacza w układzie współrzędnych na płaszczyźnie punkty o danych współrzędnych; 2) odczytuje współrzędne danych punktów. 9) oblicza pola i obwody trójkątów.

2. Czworokąty 3. Koła i okręgi 4. Wzajemne położenie dwóch okręgów 8. Wykresy funkcji. Uczeń: 1) zaznacza w układzie współrzędnych na płaszczyźnie punkty o danych współrzędnych; 2) odczytuje współrzędne danych punktów. 8) korzysta z własności kątów i przekątnych w prostokątach, równoległobokach, rombach i w trapezach; 9) oblicza pola i obwody czworokątów. 4) rozpoznaje kąty środkowe; 5) oblicza długość okręgu i łuku okręgu; 6) oblicza pole koła, pierścienia kołowego, wycinka kołowego; 9) oblicza pola i obwody trójkątów i czworokątów. 8. Wykresy funkcji. Uczeń: 1) zaznacza w układzie współrzędnych na płaszczyźnie punkty o danych współrzędnych; 2) odczytuje współrzędne danych punktów. 9) oblicza obwody trójkątów.

5. Wielokąty i okręgi 6. Symetrie 2) rozpoznaje wzajemne położenie prostej i okręgu, rozpoznaje styczną do okręgu; 3) korzysta z faktu, że styczna do okręgu jest prostopadła do promienia poprowadzonego do punktu styczności; 4) rozpoznaje kąty środkowe; 5) oblicza długość okręgu i łuku okręgu; 6) oblicza pole koła, pierścienia kołowego, wycinka kołowego; 8) korzysta z własności kątów i przekątnych w prostokątach, równoległobokach, rombach i w trapezach; 9) oblicza pola i obwody trójkątów i czworokątów; 18) rozpoznaje symetralną odcinka i dwusieczną kąta; 22) rozpoznaje wielokąty foremne i korzysta z ich podstawowych własności. 8. Wykresy funkcji. Uczeń: 1) zaznacza w układzie współrzędnych na płaszczyźnie punkty o danych współrzędnych. 16) rozpoznaje pary figur symetrycznych względem prostej i względem punktu. Rysuje pary figur symetrycznych; 17) rozpoznaje figury, które mają oś symetrii, i figury, które mają środek symetrii. Wskazuje oś symetrii i środek symetrii figury. 7. Powtórzenie wiadomości Praca klasowa i jej omówienie

1. Podobieństwo figur 63-65 / 1-3 2. Pola figur podobnych 66-67 / 4-5 3. Prostokąty podobne. Trójkąty prostokątne podobne 68-69 / 6-7 4. Trójkąty prostokątne podobne (cd.) 70-71 / 8-9 11) oblicza wymiary wielokąta powiększonego lub pomniejszonego w danej skali; 13) rozpoznaje wielokąty podobne. 9) oblicza pola i obwody czworokątów; 11) oblicza wymiary wielokąta powiększonego lub pomniejszonego w danej skali; 12) oblicza stosunek pól wielokątów podobnych; 13) rozpoznaje wielokąty podobne. 11) oblicza wymiary wielokąta powiększonego lub pomniejszonego w danej skali; 13) rozpoznaje wielokąty podobne; 15) korzysta z własności trójkątów prostokątnych podobnych. 11) oblicza wymiary wielokąta powiększonego lub pomniejszonego w danej skali; 12) oblicza stosunek pól wielokątów podobnych; 13) rozpoznaje wielokąty przystające i podobne; 15) korzysta z własności trójkątów prostokątnych podobnych. Praca klasowa i jej omówienie 72-72 / 10-11

5. BRYŁY (17 h) 1. Graniastosłupy 74-76 / 1-3 2. Ostrosłupy 77-79 / 4-6 3. Przykłady brył obrotowych 80-81 / 7-8 4. Walec 82-83 / 9-10 5. Stożek 84-85 / 11-12 1) rozpoznaje graniastosłupy; 2) oblicza pole powierzchni i objętość graniastosłupa prostego (także w zadaniach osadzonych w kontekście praktycznym); 3) zamienia jednostki objętości. 1) rozpoznaje ostrosłupy prawidłowe; 2) oblicza pole powierzchni i objętość ostrosłupa (także w zadaniach osadzonych w kontekście praktycznym). 9) oblicza pola i obwody trójkątów i czworokątów. 5) oblicza długość okręgu i łuku okręgu; 6) oblicza pole koła; 7) stosuje twierdzenie Pitagorasa. 2) oblicza pole powierzchni i objętość walca (także w zadaniach osadzonych w kontekście praktycznym). 3) zamienia jednostki objętości. 5) oblicza długość okręgu i łuku okręgu; 6) oblicza pole koła, wycinka kołowego; 7) stosuje twierdzenie Pitagorasa. 2) oblicza pole powierzchni i objętość stożka (także w zadaniach osadzonych w kontekście praktycznym).

6. Kula 86-87 / 13-14 7. Powtórzenie wiadomości 88 / 15 Praca klasowa i jej omówienie 89-90 / 16-17 1. Zamiana jednostek 91-92 / 1-2 2. Czytanie informacji 93-94/ 3-4 6) oblicza pole koła; 7) stosuje twierdzenie Pitagorasa. 2) oblicza pole powierzchni i objętość kuli (także w zadaniach osadzonych w kontekście praktycznym). 1. Liczby wymierne dodatnie. Uczeń: 7) stosuje obliczenia na liczbach wymiernych do rozwiązywania problemów w kontekście praktycznym, w tym do zamiany jednostek (jednostek prędkości, gęstości itp.). 3. Potęgi. Uczeń: 5) zapisuje liczby w notacji wykładniczej, tzn. w postaci a 10 k, gdzie 1 a<10 oraz k jest liczbą całkowitą. 10) zamienia jednostki pola. 3) zamienia jednostki objętości. 1. Liczby wymierne dodatnie. Uczeń: 7) stosuje obliczenia na liczbach wymiernych do rozwiązywania problemów w kontekście praktycznym. 9. Statystyka opisowa i wprowadzenie do rachunku prawdopodobieństwa. Uczeń: 1) interpretuje dane przedstawione za pomocą tabel.

3. Czytanie diagramów 95-96 / 5-6 4. Czytanie map 97-98 / 7-8 5. VAT i inne podatki 99-100 / 9-10 6. Lokaty bankowe 101 / 11 1. Liczby wymierne dodatnie. Uczeń: 7) stosuje obliczenia na liczbach wymiernych do rozwiązywania problemów w kontekście praktycznym. 5. Procenty. Uczeń: 4) stosuje obliczenia procentowe do rozwiązywania problemów w kontekście praktycznym. 9. Statystyka opisowa i wprowadzenie do rachunku prawdopodobieństwa. Uczeń: 1) interpretuje dane przedstawione za pomocą tabel, diagramów słupkowych i kołowych, wykresów. 1. Liczby wymierne dodatnie. Uczeń: 7) stosuje obliczenia na liczbach wymiernych do rozwiązywania problemów w kontekście praktycznym, w tym do zamiany jednostek. 10) zamienia jednostki pola; 11) oblicza wymiary wielokąta powiększonego lub pomniejszonego w danej skali; 12) oblicza stosunek pól wielokątów podobnych. 5. Procenty. Uczeń: 4) stosuje obliczenia procentowe do rozwiązywania problemów w kontekście praktycznym np. oblicza ceny po podwyżce lub obniżce o dany procent, wykonuje obliczenia związane z VAT, oblicza odsetki dla lokaty rocznej. 5. Procenty. Uczeń: 4) stosuje obliczenia procentowe do rozwiązywania problemów w kontekście praktycznym np. oblicza ceny po podwyżce lub obniżce o dany procent, wykonuje obliczenia związane z VAT, oblicza odsetki dla lokaty rocznej.

7. Prędkość, droga, czas 8. Obliczenia w fizyce i chemii 102-103 / 12-13 103-105 / 14-15 1. Liczby wymierne dodatnie. Uczeń: 7) stosuje obliczenia na liczbach wymiernych do rozwiązywania problemów w kontekście praktycznym, w tym do zamiany jednostek (jednostek prędkości, gęstości itp.). 9. Statystyka opisowa i wprowadzenie do rachunku prawdopodobieństwa. Uczeń: 1) interpretuje dane przedstawione za pomocą tabel i wykresów. 1. Liczby wymierne dodatnie. Uczeń: 7) stosuje obliczenia na liczbach wymiernych do rozwiązywania problemów w kontekście praktycznym, w tym do zamiany jednostek (jednostek prędkości, gęstości itp.). 3. Potęgi. Uczeń: 5) zapisuje liczby w notacji wykładniczej, tzn. w postaci a 10k, gdzie 1 a<10 oraz k jest liczbą całkowitą. 5. Procenty. Uczeń: 1) przedstawia część pewnej wielkości jako procent lub promil tej wielkości i odwrotnie. 7. Równania. Uczeń: 1) zapisuje związki między wielkościami za pomocą równania pierwszego stopnia z jedną niewiadomą, w tym związki między wielkościami wprost proporcjonalnymi i odwrotnie proporcjonalnymi. 9. Statystyka opisowa i wprowadzenie do rachunku prawdopodobieństwa. Uczeń: 1) interpretuje dane przedstawione za pomocą tabel, diagramów słupkowych i kołowych, wykresów.