Medical Electronics: Imaging (2)



Podobne dokumenty
Medical electronics part 10 Physiological transducers

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

MoA-Net: Self-supervised Motion Segmentation. Pia Bideau, Rakesh R Menon, Erik Learned-Miller

Michał Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (3)

Medical Imaging. Politechnika Łódzka, ul. śeromskiego 116, Łódź, tel. (042)

Hard-Margin Support Vector Machines

Medical electronics part 9a Electroencephalography (EEG)

BIOPHYSICS. Politechnika Łódzka, ul. Żeromskiego 116, Łódź, tel. (042)

tum.de/fall2018/ in2357

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

IDENTYFIKACJA I ANALIZA PARAMETRÓW GEOMETRYCZNYCH I MECHANICZNYCH KOŚCI MIEDNICZNEJ CZŁOWIEKA

Przetwarzanie i analiza obrazów biomedycznych

Obrazowanie kręgosłupa w badaniu TK i MR w różnych grupach wiekowych

POLITECHNIKA KOSZALIŃSKA. Zbigniew Suszyński. Termografia aktywna. modele, przetwarzanie sygnałów i obrazów

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Medical Imaging. Politechnika Łódzka, ul. śeromskiego 116, Łódź, tel. (042)

Electromagnetism Q =) E I =) B E B. ! Q! I B t =) E E t =) B. 05/06/2018 Physics 0

Microsystems in Medical Applications Liquid Flow Sensors

Michał Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (1)

An evaluation of GoldAnchor intraprostatic fiducial marker stability during the treatment planning

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

OPBOX ver USB 2.0 Mini Ultrasonic Box with Integrated Pulser and Receiver

IMAGE TEXTURE ANALYSIS IN BIOMEDICAL APPLICATIONS

RIGHT VENTRICLE DETECTION ON MRI IMAGES FOR VERIFICATION MORFOMETRIC SYMPTOMS OF PULMONARY HYPERTENSION

Medical electronics part 9b Electroencephalography (EEG)

KARTA MODUŁU / KARTA PRZEDMIOTU A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW B. OGÓLNA CHARAKTERYSTYKA PRZEDMIOTU. Kod modułu

Zarządzanie sieciami telekomunikacyjnymi

4. EKSPLOATACJA UKŁADU NAPĘD ZWROTNICOWY ROZJAZD. DEFINICJA SIŁ W UKŁADZIE Siła nastawcza Siła trzymania

Układy reprogramowalne i SoC Język VHDL (część 4)

Spektroskopia Ramanowska

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

WARSZAWA LIX Zeszyt 257

Lecture 18 Review for Exam 1

DEFINING REGIONS THAT CONTAIN COMPLEX ASTRONOMICAL STRUCTURES

Model standardowy i stabilność próżni

Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout

Cystatin C as potential marker of Acute Kidney Injury in patients after Abdominal Aortic Aneurysms Surgery preliminary study

Inverse problems - Introduction - Probabilistic approach

Wprowadzenie do cytometrii przepływowej: co i jak mierzy cytometr

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

SPIS TREŚCI SPIS WAŻNIEJSZYCH OZNACZEŃ WSTĘP KRÓTKA CHARAKTERYSTYKA SEKTORA ENERGETYCZNEGO W POLSCE... 14

Architektura komputerów Wprowadzenie do algorytmów

STATISTICAL METHODS IN BIOLOGY

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

STUDY AND ADJUSTMENT OF DERMOSCOPIC IMAGE PROCESSING ALGORITHMS FOR LESION BORDER DETECTION 1

KONSPEKT DO LEKCJI MATEMATYKI W KLASIE 3 POLO/ A LAYER FOR CLASS 3 POLO MATHEMATICS

Previously on CSCI 4622

DATA ACQUISITION AND ANALYSIS FOR FLUORESCENCE TARGETED BIOPSY AKWIZYCJA I ANALIZA DANYCH DLA CELÓW BIOPSJI Z WYKORZYSTANIEM OBRAZÓW FOTODYNAMICZNYCH


PN-ISO 10843:2002/AC1

Helena Boguta, klasa 8W, rok szkolny 2018/2019

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

OpenPoland.net API Documentation

Auditorium classes. Lectures

Knovel Math: Jakość produktu

Dotyczy: Certyfikat dla Blatów kuchennych z powłoką antybakteryjną.

The Overview of Civilian Applications of Airborne SAR Systems

Zaawansowane programowanie w języku C++ Przeciążanie operatorów

Few-fermion thermometry

BIOPHYSICS. Politechnika Łódzka, ul. Żeromskiego 116, Łódź, tel. (042)

KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y. 2. Współczynnik korelacji Pearsona

t Rysunek 2: Wykres drgań podstawy wspornika u(t)

Regionalny Dyrektor Ochrony Środowiska ul. 28 czerwca 1956 Poznań

Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy

GMWØJCIK Publications


ZASTOSOWANIE METOD NAKŁADANIA OBRAZÓW W WYBRANYCH PROBLEMACH Z ZAKRESU INŻYNIERII BIOMEDYCZNEJ

deep learning for NLP (5 lectures)

PRZEWODNIK PO PRZEDMIOCIE. Negotiation techniques. Management. Stationary. II degree

Strangeness in nuclei and neutron stars: many-body forces and the hyperon puzzle

ASSESSMENT OF THE INFLUENCE OF FILTERING SCANNED HISTORICAL AERIAL IMAGES ON THE ACCURACY OF DIGITAL AERIAL TRIANGULATION

Laboratorium Technik Obrazowania

Nauczycielem wszystkiego jest praktyka Juliusz Cezar. Nauka to wiara w ignorancję ekspertów Richard Feynman

Relaxation of the Cosmological Constant

TACHOGRAPH SIMULATOR DTCOSIM

Studia podyplomowe realizowane w ramach zadania 5 Systemy mobilne i techniki multimedialne

Urbanek J., Jabłoński A., Barszcz T ssswedfsdfurbanek J., Jabłoński A., Barszcz T., Wykonanie pomiarów

Problems of Corneal Endothelial Image Binarization

Suplement do dyplomu

1 / 5. Inżynierii Mechanicznej i Robotyki. Mechatronic Engineering with English as instruction language. stopnia

DIAGNOSIS OF WORKING MECHANISMS IN MACHINERY AND EQUIPMENT

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

Nonlinear data assimilation for ocean applications

IDENTYFIKACJA PARAMETRÓW CHARAKTERYZUJĄCYCH OBCIĄŻENIE SEKCJI OBUDOWY ZMECHANIZOWANEJ SPOWODOWANE DYNAMICZNYM ODDZIAŁYWANIEM GÓROTWORU

Pomiary hydrometryczne w zlewni rzek

Unbiased Cosmological Parameter Estimation from Emission Line Surveys with Interlopers

Krytyczne czynniki sukcesu w zarządzaniu projektami

POLISH LICENCE PLATE NUMBERS RECOGNITION SYSTEM

Convolution semigroups with linear Jacobi parameters

Wprowadzenie do programu RapidMiner, część 2 Michał Bereta 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów

Testy jednostkowe - zastosowanie oprogramowania JUNIT 4.0 Zofia Kruczkiewicz

Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc

Probability definition

STRESZCZENIE. Przyjęto dopuszczalny błąd statystyczny na poziomie p 0,05, p 0,01 oraz p 0,001.

Forested areas in Cracow ( ) evaluation of changes based on satellite images 1 / 31 O

Arrays -II. Arrays. Outline ECE Cal Poly Pomona Electrical & Computer Engineering. Introduction

Gradient Coding using the Stochastic Block Model

Transkrypt:

Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie Andrzej Materka Medical Electronics: Imaging (2) Innowacyjna dydaktyka bez ograniczeń zintegrowany rozwój Politechniki Łódzkiej zarządzanie Uczelnią, nowoczesna oferta edukacyjna i wzmacniania zdolności do zatrudniania osób niepełnosprawnych Zadanie nr 27 Nowy kierunek nauczania w języku angielskim - Biomedical Engineering - studia stacjonarne I stopnia 90-924 Łódź, ul. Żeromskiego 116, tel. 042 631 28 83 www.kapitalludzki.p.lodz.pl

Model of image acquisition system Image formation system Digital image (2D, 2½D, 3D, video) Investigated object 2

Examples of image acquisition methods Source of energy Acquisition technique Excitation Carrier of the visualized information Radiography X-ray radiation X-ray radiation External Internal Mammography As above As above Tomografia komputerowa As above As above Ultrasonography Acoustic wave Acoustic wave Visual imaging Visual light Visual light Scintigraphy, SPECT PET Gamma radiation of isotope marker Gamma photons emitted at positon anihilation (decay of isotope marker) Thermography Infrared radiation Internal and external Magnetic resonance imaging Pulse of magnetic field or radio-frequency waveform Radiowave Fluorescence microscopy Laser light Visual light (fluorescence) 3

Image formation system: X-ray examination Subject body Source of X-ray radiation Bone Film or detector Fluorescent screen 4

Image formation system: computed tomograhy Source of X-ray radiation Subject body Rotation Array of detectors Image reconstruction 5

Theory and techniques of medical imaging applications Application (diagnosis, therapy) Physiology of investigated organ Physics of imaging Image acquisition instrument (scanner) Image processing, analysis, and numerical modeling Need for collaboration of engineers and scientists of different disciplines! 6

Diagnostic system design Physiology of investigated organ Physics of imaging Properties of objects (tissues, organs,...) (physiology, static/moving, density of matter, anatomy/function) Physical phenomena of image formation (source of exciting energy, measured signal) Properties of instrumentation (signal to noise ratio, linearity and efficiency of detectors, artefacts) Method of image formation (scanning trajectory, MRI sequence protocol, timefrequency resolution compromise, method of image reconstruction) Methods of image processing and analysis Application (diagnosis, therapy) Image processing, analysis, and numerical modeling Image acquisition instrument (scanner) 7

Statistical approach to image analysis Measurement uncertainty errors Biological variability (tissues, organs, patients, diseases, normal state, pathology) Image acquisition technique (resolution, image discretization, object projection, intensity quantization, geometric distortion, body movement during measurement, detector noise) Image processing methods (parameters og image preprocessing filter, binarization threshold, image compression level) 8

Evaluation of image acquisition techniques Image analysis always involves a randomness. Table of diagnostic test results Person diagnosed as healthy Person diagnosed as non-healthy TN: true negative, FP: false positive Healthy person TN FP Non-healthy person FN TP FN: false negative TP: true positive Sensitivity Specificity Example n = 300 persons, n1 = 100 healthy, n2 = 200 non-healthy TP = 97 persons, FN = 3 persons TN = 176 persons FP = 24 persons C = 0.97, S = 0.88 9

Diagnostic system design Sensitivity Specificity Maximization of sensitivity (test of disease occurence is positive when a person is ill indeed) Maximization of specificity (test does not give a positive results when a person is healthy) 10

Goals and stages of image analysis Object parameters measurement using image segmentation Object parameters measurement through model fitting Automatic image interpretation 11

Object parameters measurement using image segmentation 3D scene Image acquisition Preprocessing Thresholding Postprocessing Image segmentation Feature extraction 3D scene parameters 12

Preprocessing example: image averaging Assumptions x k [..] x[i,j] = x*[i,j] + v[i,j] y[..] true intensity noise - the mean value of noise is zero - samples of noise are statistically independent and have the same probability density distribution - the visualized object does not change its position K number of averaged images Mean value: μ=x*[i,j] Variance: σ 2 /K 13

Preprocessing example: nonuniform illumination Grayscale image Axonometric projection Histogram Binary image 14

Preprocessing example: correction of nonuniform illumination Grayscale image Axonometric projection Histogram Binary image 15

Example: quantitative analysis of axons cross-sections http://pl.wikipedia.org/wiki/kolimator Image acquisition - tissue sample, - illumination, - microscope, - digital camera, - identification of geometric distortion, - calibration. 16

Example: quantitative analysis of axons cross-sections Preprocessing - correction of geometric distortion, - reduction of average brightness nonuniformity. Thresholding Image histogram 17

Example: quantitative analysis of axons cross-sections Postprocessing - removal of regions touching image boundary, - filling of holes, - contour smoothing, - removal of small regions. 18

Example: quantitative analysis of axons cross-sections A P F x F y # [µm 2 ] [µm] [µm] [µm] 1 858 117 38 36 2 2063 179 61 51 3 649 110 23 45 4 1034 133 37 46 5 405 81 24 29 6 1353 144 45 47 7 928 118 34 39 8 938 139 37 49 9 497 102 19 42 10 951 119 38 36 11 1298 148 38 51 12 1215 142 36 51 13 195 57 16 20 14 1489 227 66 58 Feature extraction - object identification and labelling, - finding contours, - calculation of geometric parameters (features), - fitting models. 15 974 127 41 37 19

Example: measuring width of a stripe Image of a stripe Axonometric projection w 20

Example: measuring width of a stripe Binary image after thresholding 21

Example: measuring width of a stripe Object (bright stripe on dark background) Object brightness profile (along line AB) Analog image brightness profile Analog image brightness profile (noise added) 22

Example: measuring width of a stripe - discretization error points of bright stripe points of dark background : uniform distribution, between and For each the result is the same! Estimator of stripe width Standard deviation of the estimator The estimator is unbiased, but is not consistent. 23

Errors caused by segmentation Local threshold Global threshold Thresholding (constant threshold value (global threshold), at nonuniform brightness of background and objects, changes the shape of objects) Discretization (details of analog image cannot be distinguished within pixels) Binarization (all the gray levels are replaced by one of two values of brighntess) Segmentation introduces irreversible loss of information contained in the image. 24

Object parameters measurement through model fitting 3D scene Image acquisition Preprocessing Model fitting 3D scene parameters 25

Example: measuring width of a stripe Image of a stripe Axonometric projection w Model - brightness profile along image line 26

Model example: parameterized brightness profile 27

Model of brightness variation at the edge of the stripe Δ V V B i x L x R 28

Example: model fitting to edges of the stripe Stripe width estimator Subpixel accuracy 29

Model fitting: active contour (snake) Active contour Node Analysed object dr P. Szczypiński - internal forces of the contour curve - image interaction component, - external forces, 30

3D model of heart muscle for visualization Heart muscle evolution MRI cross-sections Blood flow dr P. Makowski 31

3D model of heart muscle for visualization Triangulation of cross-sections Holobench 3D visualization workstation Grid model, 3D dr P. Makowski Reconstructed heart walls 32

3D model of heart muscle for visualization dr P. Makowski 33

Automatic image interpretation 3D scene image understanding computer vision Image acquisition Preprocessing Model fitting Segmentation Model fitting Feature extraction Model fitting Pattern recognition 3D scene parameters supervised methods unsupervised methods 34

Example: automatic texture segmentation Texture mosaic Image after segmentation http://www-dbv.informatik.uni-bonn.de/image 35

Pattern recognition Grass, class ω 1 Bark, class ω 2 36

Pattern recognition Grass, class ω 1 Bark, class ω 2 sample Texture features (for each sample) y1=s(2,0)sumentrp y2=s(1,1)sumentrp 64 feature vectors: 32 for class ω 1 + 32 for class ω 2 37

Pattern recognition D(Y) 64 points in the feature space: 32 for ω 1 + 32 for ω 2 38

Pattern recognition Pattern: Y ω ω Ω, Ω={ω 1, ω 2,, ω K } Vector of features (observations) Class indicator A set of K classes [y 1, y 2,...y p ] 1 ω 1 [y 1, y 2,...y p ] 2 ω 1 [y 1, y 2,...y p ] N/2+1 ω 2 [y 1, y 2,...y p ] N/2+2 ω 2 [y 1, y 2,...y p ] N/2 ω 1 [y 1, y 2,...y p ] N ω 2 ω 1 ω 2 Classifier ω k 39

Pattern recognition Discriminant functions: D k (Y), k=1,2,,k If Y~ω j, then The border between classes ω j and ω k : D j (Y)-D k (Y) = 0 (hipersurface) Example: D(Y)=D 1 (Y)-D 2 (Y) = 0 (a straight line) D(Y) 40

Pattern recognition: supervised training of a classifier - training set Tuning of weigths - overfitting - test set Observation Y Classifier ω j Class predicted by the classifier Training algorithm Known class Error calculation ω j Example: Linear classifier 41

Pattern recognition: brain MRI example Scull + test objects Regions of interest 42

Pattern recognition: brain MRI example Polystyren beads of different size Beads suspended in agar gel (test objects) MRI cross-section of test objects (2-3.2 mm, 0.8-1.3 mm) D. Jirak, M. Dezortova, M. Hajek, Praha 43

Pattern recognition: brain MRI example Clusters in texture features space 44

Information fusion, image registration http://visiblehuman.epfl.ch/ Head slice CT MRI 45