KONDUKCYJNA WYMIANA CIEPŁA - STYKOWY POMIAR TEMPERATURY

Podobne dokumenty
WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ

POMIAR TEMPERATURY TERMOLEMENTAMI I TERMOMETRAMI REZYSTANCYJNYMI

Termodynamika. Wydział Inżynierii Mechanicznej i Robotyki I rok inż. Pomiary temperatury Instrukcja do ćwiczenia

1. Wprowadzenie: dt q = - λ dx. q = lim F

2. CHARAKTERYSTYKI TERMOMETRYCZNE TERMOELEMENTÓW I METALOWYCH OPORNIKÓW TERMOMETRYCZNYCH

Termodynamika. Wydział Inżynierii Mechanicznej i Robotyki II rok inż. Pomiar temperatury Instrukcja do ćwiczenia

POMIARY TEMPERATURY I

NAGRZEWANIE ELEKTRODOWE

Temat nr 3: Pomiar temperatury termometrami termoelektrycznymi

Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej

WYBRANE ELEKTRYCZNE CZUJNIKI-PRZETWORNIKI TEMPERATURY

LABORATORIUM METROLOGII

PODSTAWY AUTOMATYKI I. URZĄDZENIA POMIAROWE W UKŁADACH AUTOMATYCZNEJ REGULACJI. Ćwiczenie nr 1 WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH

Ćwiczenie nr 5: BADANIE CHARAKTERYSTYK TEMPERATUROWYCH REZYSTANCYJNYCH ELEMENTÓW ELEKTRONICZNYCH

Temperatura, PRZYRZĄDY DO POMIARU TEMPERATURY

4. BADANIE TERMOMETRÓW TERMOELEKTRYCZNYCH

Pomiar współczynnika przewodzenia ciepła ciał stałych

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia II. Wyznaczanie charakterystyk statycznych czujników temperatury

FIZYKA KLASA 7 Rozkład materiału dla klasy 7 szkoły podstawowej (2 godz. w cyklu nauczania)

POLITECHNIKA WROCŁAWSKA LABORATORIUM POMIARÓW WIELKOSCI NIEELEKTRYCZNYCH. Instrukcja do ćwiczenia. Pomiary temperatur metodami stykowymi.

Badanie półprzewodnikowych elementów bezzłączowych

Czujniki temperatur, termopary

CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE PUNKTU INWERSJI

Badanie elementów składowych monolitycznych układów scalonych II

Czujniki temperatury

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i prędkości.

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 9. Czujniki temperatury

Linearyzatory czujników temperatury

WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/ ) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych

SERIA IV ĆWICZENIE 4_3. Temat ćwiczenia: Badanie termistorów i warystorów. Wiadomości do powtórzenia:

Instytut Inżynierii Biomedycznej i Pomiarowej. Wydział Podstawowych Problemów Techniki. Politechnika Wrocławska

Projektowanie systemów pomiarowych

wymiana energii ciepła

Ćwiczenie. Elektryczne metody pomiaru temperatury

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

WOJSKOWA AKADEMIA TECHNICZNA WYDZIAŁ MECHANICZNY INSTYTUT POJAZDÓW MECHANICZNYCH I TRANSPORTU

Ć wiczenie 2 POMIARY REZYSTANCJI, INDUKCYJNOŚCI I POJEMNOŚCI

Układ pomiaru temperatury termoelementem typu K o dużej szybkości. Paweł Kowalczyk Michał Kotwica

PROMIENIOWANIE TEMPERATUROWE -BEZSTYKOWY POMIAR TEMPERATURY

POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY KATEDRA ELEKTROTECHNIKI TEORETYCZNEJ I METROLOGII. Systemy pomiarowe. Kod przedmiotu: KS 04456

mgr Anna Hulboj Treści nauczania

PRZEPŁYW CIEPŁA PRZEZ PRZEGRODY BUDOWLANE

Termodynamika. Energia wewnętrzna ciał

ZAKRES AKREDYTACJI LABORATORIUM WZORCUJĄCEGO Nr AP 074

ZADANIE 28. Wyznaczanie przewodnictwa cieplnego miedzi

Wybrane elementy elektroniczne. Rezystory NTC. Rezystory NTC

Laboratorium Podstaw Elektrotechniki i Elektroniki

POMIARY TEMPERATURY. 1. Cel ćwiczenia. 2. Przebieg ćwiczenia. 3. Pomiar temperatury.

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

Analiza korelacyjna i regresyjna

SPRAWDZANIE I WZORCOWANIE APARATURY POMIAROWEJ

Wzorcowanie termometrów i termopar

LABORATORIUM METROLOGII

Ćwiczenie nr 10. Pomiar rezystancji metodą techniczną. Celem ćwiczenia jest praktyczne zapoznanie się z różnymi metodami pomiaru rezystancji.

WYZNACZANIE ZMIAN TERMICZNYCH REZYSTANCJI METALI I PÓŁPRZEWODNIKÓW

Podstawy fizyki wykład 6

Instrukcja do laboratorium z fizyki budowli.

Państwowa Wyższa Szkoła Zawodowa

SYSTEMY POMIAROWE POLITECHNIKA KRAKOWSKA ZAGADNIENIA DR INŻ. JAN PORZUCZEK

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Temperaturowa charakterystyka termistora typu NTC

ELEMENTY ELEKTRONICZNE TS1C

WIROWYCH. Ćwiczenie: ĆWICZENIE BADANIE PRĄDÓW ZAKŁ AD ELEKTROENERGETYKI. Opracował: mgr inż. Edward SKIEPKO. Warszawa 2000

Zakład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I. Grupa. Nr ćwicz.

FIZYKA klasa VII

PRACOWNIA FIZYKI MORZA

Układy regulacji i pomiaru napięcia zmiennego.

POMIARY ELEKTRYCZNE WIELKOŚCI NIEELEKTRYCZNYCH 2

Ćwiczenie nr 123: Dioda półprzewodnikowa

WAT - WYDZIAŁ ELEKTRONIKI INSTYTUT SYSTEMÓW ELEKTRONICZNYCH. Przedmiot: CZUJNIKI I PRZETWORNIKI Ćwiczenie nr 1 PROTOKÓŁ / SPRAWOZDANIE

POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI. Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU

INSTYTUT ELEKTROENERGETYKI POLITECHNIKI ŁÓDZKIEJ BADANIE PRZETWORNIKÓW POMIAROWYCH

Regulacja dwupołożeniowa (dwustawna)

Spis treści. 1. Wprowadzenie 15. Wstęp Definicja pomiaru i terminów z nim związanych Podstawowe pojęcia 19

LABORATORIUM TERMODYNAMIKI ĆWICZENIE NR 3 L3-1

Instytut Inżynierii Biomedycznej i Pomiarowej. Wydział Podstawowych Problemów Techniki. Politechnika Wrocławska

Ćwiczenie nr 34. Badanie elementów optoelektronicznych

Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie

CHARAKTERYSTYKA PIROMETRÓW I METODYKA PRZEPROWADZANIA POMIARÓW

Laboratorium Podstaw Pomiarów

Politechnika Warszawska Instytut Techniki Cieplnej, MEiL, ZSL

BADANIE WŁAŚCIWOŚCI PRZETWORNIKÓW DO POMIARU TEMPERATURY

Pomiary małych rezystancji

WYZNACZANIE CHARAKTERYSTYK ELEKTRYCZNYCH ŹRÓDEŁ ŚWIATŁA

Analiza zderzeń dwóch ciał sprężystych

ZAKRES AKREDYTACJI LABORATORIUM WZORCUJĄCEGO Nr AP 013

Ćwiczenie 375. Badanie zależności mocy promieniowania cieplnego od temperatury. U [V] I [ma] R [ ] R/R 0 T [K] P [W] ln(t) ln(p)

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY CIEPLNE KARTY ĆWICZEŃ LABORATORYJNYCH V. 2011

POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI. Temperaturowa zależność statycznych i dynamicznych charakterystyk złącza p-n

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych

Ćwiczenie 1 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

ĆWICZENIE nr 5. Pomiary wielkości nieelektrycznych

Ćwiczenie 3 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

FIZYKA LABORATORIUM prawo Ohma

Wyznaczanie współczynnika przewodnictwa

Pomiar rezystancji metodą techniczną

Transkrypt:

IŃSTYTUT INFORMATYKI STOSOWANEJ POLITECHNIKI ŁÓDZKIEJ Ćwiczenie Nr1 KONDUKCYJNA WYMIANA CIEPŁA - STYKOWY POMIAR TEMPERATURY 1.WPROWADZENIE Przewodzenie ciepła (kondukcja) jest to wymiana ciepła między bezpośrednio stykającymi się częściami jednego ciała lub różnych ciał, polegająca na przekazywaniu energii kinetycznej mikroskopowego ruchu cząstek (atomów, cząsteczek, jonów, elektronów). Przewodzenie ciepła występuje zarówno w ciałach stałych jak i płynach (cieczach i gazach). Wymiana ciepła wyłącznie przez przewodzenie odbywa się w ciałach stałych nieprzenikliwych dla promieniowania temperaturowego oraz w nieprzenikliwych dla tego promieniowania płynach, gdy nie występują w nich makroskopowe przemieszczenia względem siebie części płynu (np. przy odgórnym nagrzewaniu nieruchomego płynu). Dla kondukcyjnego pola izotropowego relację pomiędzy gęstością strumienia cieplnego q i gradientem temperatury grad opisuje prawo Fouriera: q = - grad (1) gdzie: - przewodność cieplna właściwa (konduktywność cieplna) w W/(m K). Przewodność cieplna właściwa różnych ciał nie jest wielkością stałą i zależy od ich struktury, ciężaru właściwego, ciśnienia, temperatury i niekiedy wilgotności. Najistotniejsza jest zależność od temperatury, przy czym może ona mieć charakter rosnący lub malejący. Przewodność cieplna właściwa gazów mieści się w granicach 0,005 0,5 W/(m K) i jest rosnącą funkcją temperatury. Dla cieczy (z wyjątkiem ciekłych metali) mieści się w granicach 0,09 0,7 W/(m K). Dla większości cieczy jest malejącą funkcją temperatury, rośnie z temperaturą dla wody i gliceryny. Pod pojęciem ciała stałego rozumie się nie tylko substancje o litej budowie, ale także materiały porowate, włókniste, zawierające w swej strukturze przestrzenie wypełnione gazem. Stąd też wynika szeroki zakres zmienności przewodności cieplnej właściwej ciał stałych 0,02 420 W/(m K). Te najniższe wartości zbliżone do wartości przewodności cieplnej właściwej gazów dotyczą właśnie materiałów porowatych i włóknistych. Najlepszymi przewodnikami ciepła są metale, a wśród nich srebro. Przewodność cieplna właściwa materiałów izolacyjnych rośnie wraz ze wzrostem temperatury, zaś dla większości metali maleje. Kondukcyjna wymiana ciepła umożliwia dokonanie stykowego pomiaru temperatury. Elektryczne termometry stykowe mierzą temperaturę cieczy, gazów i ciał stałych poprzez

bezpośredni styk czujnika termometrycznego z badanym medium. Wymiana ciepła między czujnikiem a medium może odbywać się na drodze kondukcji, konwekcji i radiacji. Do najczęściej stosowanych termometrów stykowych należą: - termometry termoelektryczne, - termometry rezystancyjne, - termometry półprzewodnikowe. Ze stykowym pomiarem temperatury nieodłącznie związane są błędy dynamiczne pomiaru wynikające z bezwładności cieplnej czujnika. Przy nagłym zanurzeniu czujnika w danym medium termometr wskaże prawidłową wartość temperatury dopiero po pewnym czasie. Termometry termoelektryczne Siła termoelektryczna termoelementu wykonanego z dwóch metali AB, których spoina pomiarowa ma temperaturę, zaś spoina odniesienia ma temperaturę o jest funkcją obu tych temperatur. Aby siła termoelektryczna była zależna tylko od temperatury mierzonej, temperatura odniesienia o musi mieć stałą i znaną wartość. Zależność E AB =f( ) przy o =0 C nazywa się charakterystyką termometryczną termoelementu AB (rys1). Rys.1. Charakterystyki termometryczne znormalizowanych termoelementów. Do przedłużenia termoelementu, a przez to do odsunięcia wolnych końców termoelementu od urządzenia grzejnego, służą przewody kompensacyjne; posiadają one taką samą charakterystykę termometryczną jak dany termoelement w zakresie temperatury stosowania danych przewodów. Przy łączeniu przewodów kompensacyjnych należy przestrzegać zgodności ich biegunowości z biegunowością termoelementu oraz aby miejsca łączeń obu końców termoelementu znajdowały się w tej samej temperaturze ł (rys2). Rys.2. Termoelement AB z przewodami kompensacyjnymi A B.

W celu wyeliminowania wpływu zmian temperatury odniesienia o na wskazania termometru stosuje się urządzenia do jej stabilizacji (punkt stały 0 C, termostat 50 C), bądź urządzenia do korekcji wpływu tych zmian (urządzenia zewnętrzne lub wbudowane w przyrząd pomiarowy). Termometry rezystancyjne W termometrach rezystancyjnych wykorzystywana jest zależność rezystancji przewodnika metalowego od temperatury, którą ująć można w sposób przybliżony wzorem: gdzie: R - rezystancja w temperaturze w, R 0 - rezystancja w 0 C w, - cieplny współczynnik zmiany rezystancji w 1/ C. R =R 0 (1+ ) (2) Zależność R=f( ) nazywa się charakterystyką termometryczną rezystora termometrycznego (rys3). Rys.3. Charakterystyki termometryczne rezystorów termometrycznych o rezystancji znamionowej R 0 =100. Termometry półprzewodnikowe Do termometrów półprzewodnikowych zaliczyć można następujące termometry: - termistorowe i krzemowe wykorzystujące zmianę rezystancji z temperaturą, - diodowe i tranzystorowe wykorzystujące zmianę napięcia na złączu p-n z temperaturą, - scalone, stanowiące monolityczne zespolenie półprzewodnikowych czujników z elektronicznymi układami formującymi sygnał wyjściowy. W termometrach termistorowych stosowane są termistory o rezystancji malejącej z temperaturą (termistory NTC); zależność rezystancji termistora R T od temperatury T w K nazywana jest charakterystyką termometryczną termistora i wyraża się zależnością: R T =R To exp[b(1/t-1/t o )] (3) gdzie: B- stała zależna od materiału termistora w K, T o - temperatura odniesienia w K (najczęściej 298 lub 293 K), R To - rezystancja znamionowa (w temperaturze T o ) w.

Charakter krzywej R T =f(t) przedstawiony jest na rys. 4. Rys.4. Zależność rezystancji termistora R T od temperatury T. Cieplny współczynnik zmiany rezystancji termistora zdefiniowany jako: wyraża się wzorem: T =(dr T /dt)*(1/r T ) (4) T =-(B/T 2 ) [1/K] (5) Wartości To (w temp. T o ) zawierają się w granicach od ok. 0,02 do ok. 0,06 [1/K]. Pozostałe termometry półprzewodnikowe opisane są w [1]. 2.CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z działaniem termometrów termoelektrycznych, rezystancyjnych oraz termistorowych. 3.PROGRAM ĆWICZENIA 3.1.Stanowiska badawcze Do badania termometru termoelektrycznego zastosowany będzie układ pomiarowy przedstawiony na rys.5. Rys.5. Układ do pomiaru charakterystyki termometrycznej termoelementu.

Badania termometru rezystancyjnego i termistorowego przeprowadzone będą w układzie pomiarowym pokazanym na rys.6. Rys.6. Układ do pomiaru charakterystyki termometrycznej czujnika rezystancyjnego Pt 100 oraz termistora. 3.2.Wyznaczenie charakterystyki termometrycznej termoelementu Stosując układ pomiarowy z rys.5 pomierzyć miernikiem cyfrowym METEX na zakresie 200mV napięcia stałego siłę termoelektryczną badanego termoelementu NiCr- NiAl(K) w funkcji temperatury r. Jako temperaturę rzeczywistą r należy przyjąć wskazania termometru cyfrowego. Pomiary wykonać dla ustalonych wartości: r = ok. 200, 400, 600 i 800 C. Dla ułatwienia oceny stanu ustalonego należy obserwować wskazania rejestratora. Temperaturę w piecu regulować ręcznie przy pomocy autotransformatora zasilającego elementy grzejne pieca. Dla każdego pomiaru podać właściwą wartość siły termoelektrycznej E N z normy [2] oraz określić odchyłki E i klasę badanego czujnika. Tabela 1. Wyniki pomiarów charakterystyki termometrycznej badanego termoelementu K. r C E mv E N mv E=E-E N mv Klasa - 3.3.Wyznaczenie charakterystyki termometrycznej czujnika rezystancyjnego oraz termistora Stosując układ pomiarowy z rys.6 pomierzyć miernikiem cyfrowym METEX rezystancję czujnika rezystancyjnego (na zakresie 200 ) oraz rezystancję termistora (na zakresie 200k ) w funkcji temperatury r. Jako temperaturę rzeczywistą r należy przyjąć wskazania termometru rtęciowego. Warunki nagrzewania i czas pomiaru poda prowadzący zajęcia. Dla każdego pomiaru dotyczącego czujnika rezystancyjnego Pt100 podać właściwą wartość rezystancji R Pt,N z normy [3] oraz określić odchyłki R i klasę badanego czujnika.

Tabela 2. Wyniki pomiarów charakterystyki termometrycznej czujnika termistorowego oraz czujnika rezystancyjnego Pt100. r C R termistora k R Pt R Pt,N R=R Pt -R Pt,N Klasa - 4.OPRACOWANIE WYNIKÓW Wyniki pomiarów zamieszczone w tabeli 1 przedstawić wykreślnie w postaci krzywej E=f( r ) i porównać ją z odpowiednią charakterystyką przedstawioną na rys.1. Wyniki pomiarów zamieszczone w tabeli 2 przedstawić wykreślnie w postaci krzywych R=f( r ). Wyznaczoną charakterystykę dla czujnika rezystancyjnego porównać z odpowiednią krzywą z rys.3. Na podstawie charakterystyki R=f( r ) dla termistora wyznaczyć wartości R To (dla T o =298K) i To oraz obliczyć stałą materiału termistora B. 5.LITERATURA [1] Michalski L., Eckersdorf K.: Termometria. Politechnika Łódzka, Łódź 1998. [2] Charakterystyka termometryczna termoelementu K(NiCr-NiAl), PN-81/M-53854.06 [3] Charakterystyka termometryczna rezystora Pt100, PN-83/M-53852 [4] Zgraja J.: Wykład z przedmiotu Podstawy wymiany i generowania ciepła. PYTANIA KONTROLNE 1. Na czym polega kondukcyjna wymiana ciepła? 2. Co mówi prawo Fouriera? 3. Jakie ciała mają największą a jakie najmniejszą przewodność cieplną właściwą? 4. Od czego zależy siła termoelektryczna termoelementu? 5. Jak należy łączyć termoelement z przewodami kompensacyjnymi? 6. Co to jest charakterystyka termometryczna rezystora termometrycznego? 7. Jakie typy termometrów zaliczamy do termometrów półprzewodnikowych?