Wprowadzenie. Łukasz ZAWADZKI, Mariusz LECH. i rejestracji zmian ciśnienia wody w porach gruntu w czasie. Ze względu na ciągły rozwój cywilizacyjny,

Podobne dokumenty
ZASTOSOWANIE BADAŃ GEOTECHNICZNYCH DO ROZPOZNANIA WARUNKÓW LOKALIZACJI OBIEKTÓW GOSPODARKI ODPADAMI

Katedra Inżynierii Wodnej i Rekultywacji Środowiska SGGW Department of Hydraulic Engineering and Environmental Recultivation WULS

RAPORT Z BADAŃ CPT KOMUNALNEJ, NOWOMYŚLIWSKIEJ, NIEPODLEGŁOŚCI PRZEPROWADZONYCH W REJONIE ULIC: ORAZ GRYFA POMORSKIEGO W MIĘDZYZDROJACH

Wykorzystanie metody funkcji transformacyjnych do analizy nośności i osiadań pali CFA

Zakres wiadomości na II sprawdzian z mechaniki gruntów:

POMIAR CIŚNIENIA WODY W PORACH METODĄ SONDOWANIA STATYCZNEGO W ASPEKCIE OCENY WYTRZYMAŁOŚCIOWEJ GRUNTÓW

Identyfikacja rodzaju gruntu oraz parametrów wytrzymałościowych podłoża na podstawie wyników badań sondą statyczną CPTU.

PROGNOZA NOŚNOŚCI PALI NA PODSTAWIE BADAŃ POLOWYCH WEDŁUG NORM PN-EN-1997 I PN-B-02482

Sondowania statyczne CPTU Sprzęt, interpretacja, jakość

Analiza oceny rodzaju gruntu ustalonego na podstawie. Zmierzone podczas badań sondą statyczną CPTU wielkości q c

Wstęp. Jerzy WYSOCKI, Paweł ORŁOWSKI

Łukasz ZAWADZKI, Mariusz LECH, Kazimierz GARBULEWSKI

Dobór parametrów odkształceniowych i wytrzymałościowych gruntów organicznych do projektowania posadowienia budowli

Pomiary hydrometryczne w zlewni rzek

gruntów Ściśliwość Wytrzymałość na ścinanie

ANALIZA WPŁYWU RODZAJU OBCIĄŻENIA NA ODKSZTAŁCALNOŚĆ PODŁOŻA SŁABONOŚNEGO

WPŁYW SZYBKOŚCI STYGNIĘCIA NA WŁASNOŚCI TERMOFIZYCZNE STALIWA W STANIE STAŁYM

Wykorzystanie badań in situ do wyznaczania parametrów geotechnicznych gruntów organicznych

Ocena stateczności nasypu na podłożu organicznym według Eurokodu 7 1 Stability assessment of embankment on organic soils using Eurocode 7

Nasyp przyrost osiadania w czasie (konsolidacja)

Analiza konsolidacji gruntu pod nasypem

IDENTYFIKACJA KONSYSTENCJI GRUNTÓW MAŁO SPOISTYCH NA PODSTAWIE CHARAKTERYSTYK PENETRACJI Z BADANIA STATYCZNEGO SONDOWANIA

Katedra Geoinżynierii SGGW w Warszawie Department of Geotechnical Engineering WULS SGGW

Katedra Geoinżynierii SGGW w Warszawie Department of Geotechnical Engineering WULS SGGW

OCENA PARAMETRÓW GRUNTÓW ORGANICZNYCH DO PROJEKTOWANIA WZMOCNIENIA PODŁOŻA DROGI EKSPRESOWEJ NA PODSTAWIE BADAŃ IN SITU

Egzamin z MGIF, I termin, 2006 Imię i nazwisko

Ocena stateczności etapowo budowanego nasypu na podłożu organicznym Stability assessment of stage-constructed embankment on organic subsoil

UWARUNKOWANIA DOBORU METODY OKREŚLANIA WSPÓŁCZYNNIKA FILTRACJI W GRUNTACH SPOISTYCH

OCENA WZMOCNIENIA PODŁOŻA METODĄ WYMIANY DYNAMICZNEJ NA PODSTAWIE PRÓBNYCH OBCIĄŻEŃ KOLUMN

Dokumentacja geotechniczna dla dojazdu wraz z parkingiem do inwestycji na rogu ul. Kościuszki i Al. Wojska Polskiego w Pruszkowie.

PRACE ORYGINALNE ORIGINAL PAPERS

NATĘŻENIE POLA ELEKTRYCZNEGO PRZEWODU LINII NAPOWIETRZNEJ Z UWZGLĘDNIENIEM ZWISU

Rozkłady prędkości przepływu wody w korytach z roślinnością wodną Distributions of water velocities in open-channels with aquatic vegetation

WPŁYW TEMPERATURY W POMIESZCZENIACH POMOCNICZYCH NA BILANS CIEPŁA W BUDYNKACH DLA BYDŁA

Wykonawstwo robót fundamentowych związanych z posadowieniem fundamentów i konstrukcji drogowych z głębiej zalegającą w podłożu warstwą słabą.

Podłoże warstwowe z przypowierzchniową warstwą słabonośną.

Maciej Kordian KUMOR. BYDGOSZCZ - TORUŃ stycznia 2012 roku. Katedra Geotechniki Wydział Budownictwa i Inżynierii Środowiska

OKREŚLENIE WŁAŚCIWOŚCI MECHANICZNYCH SILUMINU AK132 NA PODSTAWIE METODY ATND.

NOŚNOŚĆ PALI POJEDYNCZYCH

WPŁYW METODYKI OZNACZANIA GRANIC ATTERBERGA NA UZYSKIWANE WARTOŚCI STOPNIA PLASTYCZNOŚCI

PROJEKT GEOTECHNICZNY

Kryteria kontroli jakości zagęszczania wgłębnego gruntów niespoistych

NOŚNOŚĆ PALI POJEDYNCZYCH

CHARAKTERYSTYKA I ZASTOSOWANIA ALGORYTMÓW OPTYMALIZACJI ROZMYTEJ. E. ZIÓŁKOWSKI 1 Wydział Odlewnictwa AGH, ul. Reymonta 23, Kraków

WIELOMIANOWE MODELE WŁAŚCIWOŚCI MECHANICZNYCH STOPÓW ALUMINIUM

REJESTRACJA PROCESÓW KRYSTALIZACJI METODĄ ATD-AED I ICH ANALIZA METALOGRAFICZNA

Wykorzystanie wzoru na osiadanie płyty statycznej do określenia naprężenia pod podstawą kolumny betonowej

Analiza nośności pionowej oraz osiadania pali projektowanych z wykorzystaniem wyników sondowań CPT

Fundamenty palowe elektrowni wiatrowych, wybrane zagadnienia

Wytrzymałość gruntów organicznych ściśliwych i podmokłych.

OKREŚLANIE WŁASNOŚCI MECHANICZNYCH SILUMINU AK20 NA PODSTAWIE METODY ATND

INTERPRETACJA I PORÓWNANIE WYNIKÓW SONDOWAŃ CPTU ORAZ WYBRANYCH TESTÓW IN SITU W PYŁACH OKOLIC KRAKOWA W ODNIESIENIU DO BADAŃ LABORATORYJNYCH

Wykorzystanie czteroelektrodowego stożka CPTU 15 cm 2 do oceny wybranych parametrów podłoża gruntowego

Porównanie oporów stożka sondy statycznej CPTU i sondy dynamicznej DPH

PRACE NAUKOWO PRZEGLĄDOWE

Agnieszka DĄBSKA. 1. Wprowadzenie

Pale fundamentowe wprowadzenie

CPT-pro. Program do analizy i prezentacji wyników badań polowych oraz tworzenia dokumentacji geologicznej i geotechnicznej.

POLOWO OBWODOWY MODEL DWUBIEGOWEGO SILNIKA SYNCHRONICZNEGO WERYFIKACJA POMIAROWA

PRACE NAUKOWO-PRZEGLĄDOWE

Wprowadzenie. Małgorzata KLENIEWSKA. nawet już przy stosunkowo niewielkim stężeniu tego gazu w powietrzu atmosferycznym.

Katedra Geoinżynierii SGGW w Warszawie Department of Geotechnical Engineering Warsaw University of Life Sciences SGGW

Katedra Geoinżynierii SGGW w Warszawie Departament of Geotechnical Engineering WULS SGGW

ZMIANY WŁAŚCIWOŚCI GLEBY W WARSTWIE ORNEJ POD WPŁYWEM NACISKÓW KÓŁ AGREGATÓW CIĄGNIKOWYCH

POSADOWIENIE BEZPOŚREDNIE DRUGI STAN GRANICZNY

Stateczność dna wykopu fundamentowego

PRACE NAUKOWO-PRZEGLĄDOWE

CZYNNIKI WPŁYWAJĄCE NA OCENĘ WSKAŹNIKA SZTYWNOŚCI (I R ) Z BADAŃ IN SITU

ZASTOSOWANIE MODELU GOMPERTZ A W INŻYNIERII ROLNICZEJ

BADANIA PORÓWNAWCZE PAROPRZEPUSZCZALNOŚCI POWŁOK POLIMEROWYCH W RAMACH DOSTOSOWANIA METOD BADAŃ DO WYMAGAŃ NORM EN

OPINIA GEOTECHNICZNA

Nauka Przyroda Technologie

PROJEKT GEOTECHNICZNY

, u. sposób wyznaczania: x r = m. x n, Zgodnie z [1] stosuje się następujące metody ustalania parametrów geotechnicznych:

BADANIA ZRÓŻNICOWANIA RYZYKA WYPADKÓW PRZY PRACY NA PRZYKŁADZIE ANALIZY STATYSTYKI WYPADKÓW DLA BRANŻY GÓRNICTWA I POLSKI

OCENA PORÓWNAWCZA WYNIKÓW OBLICZEŃ I BADAŃ WSPÓŁCZYNNIKA PRZENIKANIA CIEPŁA OKIEN

OPINIA GEOTECHNICZNA wraz z dokumentacją badań podłoża gruntowego

SZACOWANIE WŁASNOŚCI MECHANICZNYCH SILUMINU AK9 NA PODSTAWIE METODY ATND

CZTEROKULOWA MASZYNA TARCIA ROZSZERZENIE MOŻLIWOŚCI BADAWCZYCH W WARUNKACH ZMIENNYCH OBCIĄŻEŃ

OPINIA GEOTECHNICZNA DOTYCZĄCA PROJEKTOWANEJ PRZEBUDOWY ULICY KONWALIOWEJ I IRYSÓW W WESOŁEJ

NAPRĘŻENIA ŚCISKAJĄCE PRZY 10% ODKSZTAŁCENIU WZGLĘDNYM PRÓBEK NORMOWYCH POBRANYCH Z PŁYT EPS O RÓŻNEJ GRUBOŚCI

4. EKSPLOATACJA UKŁADU NAPĘD ZWROTNICOWY ROZJAZD. DEFINICJA SIŁ W UKŁADZIE Siła nastawcza Siła trzymania

Opinia geotechniczna dla projektu Przebudowy mostu nad rzeką Wołczenicą w ciągu drogi powiatowej 1012Z.

Pracownia specjalistyczna z Geoinżynierii. Studia stacjonarne II stopnia semestr I

INTERPRETACJA BADAŃ POLOWYCH A EUROKOD 7

WYKORZYSTANIE ETAPOWEJ BUDOWY Z PRZECIĄŻENIEM DO WZMOCNIENIA PODŁOŻA ORGANICZNEGO NASYPU DROGI EKSPRESOWEJ

OPTYMALIZACJA STEROWANIA MIKROKLIMATEM W PIECZARKARNI

ANALIZA WŁAŚCIWOŚCI TRAKCYJNYCH DARNI W ZMIENNYCH WARUNKACH GRUNTOWYCH

NIEPEWNOŚĆ POMIARÓW POZIOMU MOCY AKUSTYCZNEJ WEDŁUG ZNOWELIZOWANEJ SERII NORM PN-EN ISO 3740

ZADANIA. PYTANIA I ZADANIA v ZADANIA za 2pkt.

Zagęszczanie gruntów.

ANALIZA MOŻLIWOŚCI ANALITYCZNEJ APROKSYMACJI KRZYWEJ OBCIĄŻENIE OSIADANIE DLA TESTÓW STATYCZNYCH PALI ŻELBETOWYCH W GRUNTACH SYPKICH

ANALiZA WPŁYWU PARAMETRÓW SAMOLOTU NA POZiOM HAŁASU MiERZONEGO WEDŁUG PRZEPiSÓW FAR 36 APPENDiX G

ZASTOSOWANIE RÓWNANIA BOUSSINESQUE A DO OKREŚLANIA NAPRĘŻEŃ W GLEBIE WYWOŁANYCH ODDZIAŁYWANIEM ZESTAWÓW MASZYN

Wykopy - wpływ odwadniania na osiadanie obiektów budowlanych.

WPŁYW TECHNICZNEGO UZBROJENIA PROCESU PRACY NA NADWYŻKĘ BEZPOŚREDNIĄ W GOSPODARSTWACH RODZINNYCH

ROZPOZNANIE GEOLOGICZNO-INŻYNIERSKIE

Fundamentem nazywamy tę część konstrukcji budowlanej lub inżynierskiej, która wsparta jest bezpośrednio na gruncie i znajduje się najczęściej poniżej

Projekt ciężkiego muru oporowego

Transkrypt:

Przegląd Naukowy Inżynieria i Kształtowanie Środowiska nr 62, 2013: 435 443 (Prz. Nauk. Inż. Kszt. Środ. 62, 2013) Scientific Review Engineering and Environmental Sciences No 62, 2013: 435 443 (Sci. Rev. Eng. Env. Sci. 62, 2013) Łukasz ZAWADZKI, Mariusz LECH Katedra Geoinżynierii, SGGW Department of Geotechnical Engineering, WULS SGGW Interpretacja wyników rozpraszania ciśnienia wody w porach gruntu z badań CPTU pod kątem określania właściwości hydraulicznych podłoża gruntowego Interpretation of CPTU dissipation test results to determine soil hydraulic properties Słowa kluczowe: przepuszczalność hydrauliczna, współczynnik filtracji, współczynnik konsolidacji, CPTU, badania terenowe Key words: hydraulic conductivity, permeability, coefficient of consolidation, CPTU, field testing Wprowadzenie Sondowania statyczne stanowią obecnie jedno z najczęściej wykonywanych badań in situ stosowanych do rozpoznawania właściwości podłoża gruntowego. Badania CPTU umożliwiają uzyskanie wielu charakterystyk gruntowych, w tym właściwości hydraulicznych (współczynnik filtracji i współczynnik konsolidacji). Dokonywane jest to poprzez wykonanie testu rozpraszania wzbudzonej nadwyżki ciśnienia wody w porach gruntu, polegającego na zatrzymaniu sondowania na żądanej głębokości i rejestracji zmian ciśnienia wody w porach gruntu w czasie. Ze względu na ciągły rozwój cywilizacyjny, a co za tym idzie inwestycji ingerujących w środowisko wodno-gruntowe znajomość właściwości hydraulicznych podłoża nabiera coraz większego znaczenia. Rozpoznanie przepuszczalności hydraulicznej gruntów pozwala m.in. na symulowanie przebiegu osiadań związanych ze zjawiskiem konsolidacji czy określenie kierunku i prędkości transferu zanieczyszczeń w podłożu gruntowym. Określenie parametrów filtracyjnych podłoża gruntowego na podstawie sondowań CPTU wiąże się nie tylko z wykonaniem samego pomiaru, ale także z interpretacją uzyskanych wyników. W literaturze można spotkać wiele podejść obliczeniowych umożliwiających wyznaczenie parametrów przepływu na podstawie badań CPTU, jednak Interpretacja wyników rozpraszania ciśnienia wody w porach gruntu... 435

stosowanie różnych podejść często nie pozwala jednoznacznie oszacować wartości badanego parametru. Parametry przepływu z badań CPTU Parametry przepływu na podstawie badań CPTU można uzyskać w sposób pośredni z wykorzystaniem teorii konsolidacji poprzez pomiar rozpraszania się w czasie nadwyżki ciśnienia wody w porach gruntu powstałej podczas wciskania sondy. Wyniki badania przedstawiane są zazwyczaj w postaci zależności u-log (t), U-log (t) bądź u- t, gdzie t jest to czas, u jest to wartość pomierzonego ciśnienia, U jest to znormalizowane ciśnienie wody w porach gruntu obliczone wg wzoru: (1) gdzie: u t wartość ciśnienia w czasie (t), u 0 ciśnienie hydrostatyczne, u i początkowa wartość ciśnienia w t = 0. W praktyce można wyróżnić dwa podstawowe rodzaje przebiegu krzywych rozpraszania wzbudzonej nadwyżki ciśnienia (rys. 1). Rozpraszanie monotoniczne (standardowe), które charakteryzuje się spadkiem wartości wzbudzonego ciśnienia w czasie aż do momentu osiągnięcia wartości ciśnienia hydrostatycznego. Tego rodzaju przebieg krzywej dyssypacji występuje najczęściej w gruntach normalnie skonsolidowanych (OCR = 1) i słabo prekonsolidowanych (OCR > 1). Drugim charakterystycznym rodzajem przebiegu testu dyssypacji jest krzywa dylatancyjna (niestandardowa) występująca w gruntach silnie prekonsolidowanych (OCR >> 1), gdzie w początkowej fazie badania odnotowuje się wzrost wartości ciśnienia do osiągnięcia pewnego maksimum, po czym następuje spadek wartości ciśnienia w czasie do momentu osiągnięcia ciśnienia hydrostatycznego podobnie jak w rozpraszaniu monotonicznym. czas/time [s] czas/time [s] RYSUNEK 1. Znormalizowane wynik testu rozpraszania: a na głębokości 5,86 m, b na głębokości 9,24 m FIGURE 1. Normalized dissipation test results: a depth 5.86 m, b depth 9.24 m 436 Ł. Zawadzki, M. Lech

Przegląd metod stosowanych do określania parametrów hydraulicznych na podstawie wyników rozpraszania nadwyżki ciśnienia wody w porach gruntu z badań CPTU W literaturze można spotkać wiele podejść interpretacyjnych zarówno nomogramów, jak i zależności empirycznych, które umożliwiają wyznaczenie współczynnika konsolidacji oraz współczynnika filtracji na podstawie testu dyssypacji. Jednak większość przedstawianych metod interpretacji może być zaimplementowana jedynie do wyników testu rozpraszania o przebiegu monotonicznym (tab. 1). Jako główny parametr do obliczeń przyjmowany jest najczęściej czas połowicznego rozproszenia powstałej nadwyżki ciśnienia wody w porach gruntu t 50. Współczynnik filtracji (k) i współczynnik konsolidacji (c h ) są od siebie zależne i mogą być wyznaczone z równania (Mayne 2001, Robertson i Cabal 2012): (2) gdzie: M moduł ściśliwości [kpa], γ w ciężar objętościowy wody [kn m 3 ]. Większy problem sprawia interpretacja wyników rozpraszania o przebiegu dylatancyjnym, gdyż obecnie nie ma dobrej i łatwej metody interpretacji krzywych o przebiegu niestandardowym (Chai i in. 2012). Sully i inni (1999) zaproponowali dwie proste metody korekty krzywych rozpraszania niestandardowego, w taki sposób aby można było wykorzystać do określenia parametrów przepływu te same zależności jak w przypadku krzywych standardowych. Pierwsza z metod polega na odcięciu części krzywej TABELA 1. Wzory do określania parametrów przepływu na podstawie testu rozpraszania TABLE 1. Formulas for determining the flow parameters from dissipation test Wzór/Formula Jednostki/Units Źródło/ Source (3) k [cm s 1 ]; t 50 [s] (4) (5) c h [cm 2 min 1 ]; t 50 [s] T 50 = 1,2 [-] (dla u 2 ) r 0 = 1,78 [cm] (dla u 2 ) c h [cm 2 min 1 ]; t 50 [s] I R [-] r 0 = 1,78 [cm] (dla u 2 ) T* = 0,245 [-] (dla u 2 ) Mayne (2001) za Parez i Fauriel Lunne i in. (1997) za Torstensson Chai i in. (2012) za Teh i Houlsby (6) c h [cm 2 min 1 ]; t 50 [s] Robertson (2010) T 50 Czynnik czasu/time factor. r 0 Promień sondy/probe radius. T* Zmodyfikowany czynnik czasu/modified time factor. I R Wskaźnik sztywności gruntu/rigidity index. Interpretacja wyników rozpraszania ciśnienia wody w porach gruntu... 437

i przesunięciu czasu rozpoczęcia rozpraszania do punktu, gdzie ciśnienie osiąga wartość maksymalną (rys. 2a). Druga metoda polega na wykreśleniu krzywej rozpraszania w zależności od pierwiastka kwadratowego z czasu i wstecznej ekstrapolacji ciśnienia początkowego poprzez wyrównanie linią prostą części wykresu reprezentującego rozpraszanie monotoniczne (rys. 2b). Metody zaproponowane przez Sully ego i innych (1999) są proste do zastosowania, ale nie uwzględniają w pełni mechanizmu powodującego powstanie krzywych dylatancyjnych (Chai i in. 2012). 50 50m 0,67 0,3 tu max I 1 18,5 R t50 200 t gdzie: t 50 czas połowicznego rozproszenia wzbudzonej nadwyżki ciśnienia liczony od maksymalnej wartości wzbudzonego ciśnienia, t umax czas, po którym została osiągnięta maksymalna wartość ciśnienia. Burns i Mayne (Mayne 2001) przedstawili metodykę analizy krzywych t RYSUNEK 2. Skorygowana krzywa rozpraszania dylatancyjnego: a metodą odcięcia części wykresu w punkcie maksymalnego ciśnienia porowego Sully i in. (1999), b metodą wstecznej ekstrapolacji Sully i in. (1999) FIGURE 2. The corrected dilatory dissipation curve: a shifting the origin of time method to point where the measured pore water pressure is maximum Sully et al. (1999), b back extrapolation method Sully et al. (1999) Chai i inni (2004) zaproponowali wzór empiryczny umożliwiający uzyskanie skorygowanego czasu (t 50m ), który następnie może być wykorzystany w zależnościach przedstawionych dla rozpraszania standardowego. Przedstawiona przez wcześniej wymienionych autorów zależność ma następującą postać: rozproszenia, która może być wykorzystywana zarówno do wyznaczania parametrów przepływu w przypadku krzywych o przebiegu standardowym, jak i niestandardowym. Wymaga ona jednak rozwiązania rygorystycznych równań, z których wynik uzyskiwany jest poprzez przeprowadzanie kolejnych iteracji war- 438 Ł. Zawadzki, M. Lech

tości w taki sposób, aby wyznaczona krzywa była jak najlepiej dopasowana do rzeczywistego przebiegu krzywej uzyskanej podczas badania. Podczas dopasowywania krzywych konieczne jest dostosowanie wielu parametrów gruntowych, dlatego do zastosowania tej metody konieczne jest użycie odpowiedniego programu komputerowego. Analiza wyników badań rozpraszania na terenie kampusu SGGW Teren, na którym przeprowadzono badania, zlokalizowany jest na wysoczyźnie morenowej. Powierzchniową warstwę stanowią piaski gliniaste i pyły w stanie twardoplastycznym. Pod nimi zalegają piaski średnie i drobne w stanie średnio zagęszczonym. Poniżej występują warstwy silnie prekonsolidowanych glin piaszczystych brązowych w stanie twardoplastycznym, w których występują przeławicenia piasków i piasków gliniastych. Pod glinami piaszczystymi brązowymi zalegają gliny piaszczyste szare w stanie twardoplastycznym i półzwartym. Pod glinami piaszczystymi szarymi zalegają w stropie bardzo zagęszczone piaski, drobne i średnie (Rabarijoely i Garbulewski 2012). Badania CPTU zostały przeprowadzone w celu rozpoznania parametrów filtracyjnych glin piaszczystych zalegających w podłożu kampusu SGGW. Podczas sondowania wykonano testy rozpraszania w glinach brązowych na głębokości 5,86 m (rys. 1a) oraz w glinach szarych na głębokości 9,24 m (rys. 1b). Wyniki badań przeprowadzonych przez Rabarijoely ego i Garbulewskiego (2012) wskazują, że grunty zalegające w podłożu na głębokości 5,86 m są silnie prekonsolidowane (OCR 6 8). Dla gruntów silnie prekonsolidowanych krzywe dyssypacji mają przebieg niestandardowy, co potwierdza uzyskany wynik badania. Z wyników analizy krzywej rozpraszania dylatancyjnego uzyskanej na głębokości 5,86 m i proponowanych metod jej korekty wynika, że współczynnik filtracji gruntów zalegających w podłożu oscyluje w granicach k = 10 8 10 10 m s 1. Z obliczeń współczynnika konsolidacji na podstawie wzorów (4), (5) i (6) wynika, że c h tych gruntów znajduje się w zakresie 0,34 6,00 cm 2 min 1 (tab. 2). Proponowane metody korekty krzywych rozpraszania dylatancyjnego nie pozwalają jednoznacznie określić parametrów przepływu gruntu, wykazując kilkukrotne różnice w uzyskanych wynikach obliczeń. Jednocześnie wyniki uzyskane z obliczeń opartych na krzywych skorygowanych według metody Sully ego i innych (1999) są kilkukrotnie niższe niż wyniki uzyskane z wykorzystaniem korekty t 50m, zaproponowanej przez Chaia i innych (2004) rysunek 3. Badanie rozpraszania ciśnienia wody w porach w prekonsolidowanych glinach piaszczystych szarych na głębokości 9,24 m wykazało, że krzywa rozpraszania ma przebieg monotoniczny (rys. 1b). Wynika to z faktu, że sondowanie zostało zatrzymane na stropie bardzo zagęszczonych piasków drobnych i średnich, a wzbudzona nadwyżka ciśnienia uległa częściowemu rozproszeniu w warstwie piasków. Z analizy krzywej rozpraszania monotonicznego uzyskanej na Interpretacja wyników rozpraszania ciśnienia wody w porach gruntu... 439

TABELA 2. Wyniki analizy krzywej rozpraszania dylatancyjnego na głębokości 5,86 m TABLE 2. Results of analysis of dilatory dissipation curve from depth 5.86 m Metoda korekty t 50 /Time t 50 correction method Nr wzoru/ Obliczany parametr/ Sully i in. (1999) Sully i in. (1999) Chai i in (2004) /Formula /Calculated parameter Rys. 2a/Fig. 2a Rys. 2b/Fig. 2b Rys. 3/Fig. 3 number t 50 = 11,33 min t 50 = 8,07 min t 50m = 1,67 min 3 k h [m s 1 ] 2,9 10 9 4,4 10 9 3,2 10 8 3 2 c h [cm 2 min 1 ] 15,6 23,8 170,5 4 2 k h [m s 1 ] 1,0 10 10 1,4 10 10 6,9 10 10 4 c h [cm 2 min 1 ] 0,34 0,47 2,29 5 2 k h [m s 1 ] 1,10 10 10 1,55 10 10 7,50 10 10 5 c h [cm 2 min 1 ] 0,60 0,84 4,05 6 2 k h [m s 1 ] 1,64 10 10 2,30 10 10 1,11 10 9 6 c h [cm 2 min 1 ] 0,88 1,24 6,00 Parametry wykorzystane w obliczeniach/ Parameters used in calculations: M = 90 MPa moduł ściśliwości obliczony na podstawie wyników badania CPTU, α M = 8,25 Mayne (2001)/constrained modulus calculated from CPTU test data, α M = 8.25 Mayne (2001). I R = 75 wskaźnik sztywności gruntu określony na podstawie nomogramu Keyveny & Mitchell Mayne (2001)/rigidity index estimated from Keyveny & Mitchell Mayne nomogram (2001). RYSUNEK 3. Wyznaczenie skorygowanego czasu t 50m metodą Chai i in. (2004) FIGURE 3. Evaluation of corrected time t 50m by Chai et al. (2004) method głębokości 9,24 m wynika, że współczynnik filtracji gruntów zalegających w podłożu wynosi k = 10 9 10 11 m s 1. Obliczenia współczynnika konsolidacji (c h ) na podstawie wzorów (4), (5) i (6) wskazują, że znajduje się on w zakresie 0,36 0,94 cm 2 min 1 (tab. 3). Wyniki obliczeń parametrów przepływu uzyskane na podstawie analizy krzywej rozpraszania standardowego 440 Ł. Zawadzki, M. Lech

TABELA 3. Wyniki analizy krzywej rozpraszania monotonicznego na głębokości 9,24 m TABLE 3. Results of analysis of monotonic dissipation curve from depth 9.24 m Nr wzoru/formula number k h c h k h [m s 1 ] c h [cm 2 min 1 ] 3 2 3,1 10 9 16,78 2 4 6,6 10 11 0,36 2 5 1,2 10 10 0,63 2 7 1,7 10 10 0,94 Parametry wykorzystane w obliczeniach/parameters used in calculations: M = 100 MPa moduł ściśliwości obliczony na podstawie wyników badania CPTU, α M = 8,25 (Mayne 2001)/constrained modulus calculated from CPTU test data, α M = 8.25 (Mayne 2001). I R = 75 wskaźnik sztywności gruntu określony na podstawie nomogramu Keyveny Mitchell (Mayne (001)/rigidity index estimated from Keyveny & Mitchell nomogram (Mayne 2001). wykazują znacznie większą zbieżność niż wyniki uzyskane na podstawie analizy krzywej niestandardowej. Jednocześnie obliczenia wykazały, że największe różnice wartości występowały przy stosowaniu wzoru Pareza i Fauriela wzór (3). Analiza i porównanie metod wyznaczania współczynnika konsolidacji wzór (4), (5) i (6), w zależności od zmiennego czasu t 50, oraz zmian wskaźnika sztywności gruntu I R (rys. 4), potwierdza fakt, że najlepszą metodą wyznaczania współczynnika konsolidacji jest wzór zaproponowany przez Houlsby ego i Teha wzór (5). Jest to związane z możliwością uwzględnienia w obliczeniach wskaźnika sztywności gruntu, co pozwala na wprowadzenie dodatkowego parametru związanego z naruszeniem strefy gruntu wokół sondy podczas badania. Dzięki temu możliwe jest bardziej precyzyjne oszacowanie parametrów przepływu gruntu. Jednocześnie na podstawie przeprowadzonej RYSUNEK 4. Porównanie metod wyznaczania współczynnika konsolidacji z badań rozpraszania ciśnienia w zależności od t 50 : a porównanie 3 metod, b zmiana wartości współczynnika konsolidacji w zależności od wskaźnika sztywności (I R ) wzór (5) FIGURE 4. Comparison of methods for determining coefficient of consolidation from dissipation test according to t 50 : comparison of 3 methods, b change of coefficient of consolidation values according to change of rigidity index (I R ) formula (5) Interpretacja wyników rozpraszania ciśnienia wody w porach gruntu... 441

analizy (rys. 4) wynika, że wzór (4) może być stosowany dla gruntów o małej sztywności (c h(wzór 4) = c h(wzór 5) dla gruntów o I R 25), a wzór (6) do gruntów o większej sztywności (c h(wzór 6) = c h(wzór 5) dla gruntów o I R 160). Ponadto, należy zachować ostrożność przy przeliczaniu współczynnika filtracji na współczynnik konsolidacji (i odwrotnie) przy zastosowaniu wzoru (2). Błędne oszacowanie modułu ściśliwości (M) może prowadzić do znacznego przeszacowania (niedoszacowania) wyznaczanego parametru. Podsumowanie i wnioski Specyfika wielu obecnie powstających obiektów wymaga często znajomości właściwości hydraulicznych podłoża gruntowego. Jedną z metod umożliwiającą uzyskanie parametrów przepływu gruntów stanowią sondowania statyczne CPTU będące jednymi z podstawowych badań podłoża w warunkach in situ. Określenie parametrów filtracyjnych podłoża gruntowego na podstawie sondowań CPTU wiąże się nie tylko z wykonaniem samego pomiaru, ale także z interpretacją uzyskanych wyników badań. W literaturze można spotkać wiele podejść obliczeniowych umożliwiających wyznaczenie parametrów przepływu na podstawie badań CPTU. Brak doświadczenia i nieumiejętne stosowanie proponowanych w literaturze wzorów i nomogramów może prowadzić do błędów przy obliczaniu wartości poszukiwanego parametru. Na podstawie przeprowadzonych badań i ich analizy można sformułować następujące wnioski: proponowane w literaturze metody analizy krzywych rozpraszania standardowego pozwalają na uzyskanie zbliżonych wartości parametrów hydraulicznych, w przypadku występowania krzywej rozpraszania o przebiegu monotonicznym wzór (4) może być stosowany dla gruntów o małej sztywności (I R 25), a wzór (6) do gruntów o I R 160, proponowane w literaturze metody korekty krzywych dylatancyjnych nie umożliwiają jednoznacznego określenia parametrów przepływu, metody interpretacji krzywych niestandardowych wciąż wymagają rozwoju. Literatura CHAI J.-C., CARTER J.P., MIURA N., HINO T. 2004: Coefficient of consolidation from piezocone dissipation test. Proc. of International Symposium on Lowland Technology. International Symposium on Cone Penetration Testing, California, 2010. CHAI J., SHENG D., CARTER J.P., ZHU H. 2012: Coefficient of consolidation from non-standard piezocone dissipation curves. Computers and Geotechnics 41: 13 22. LUNNE T., ROBERTSON P.K., POWEL J.J. M. 1997: Cone Penetration Testing in Geotechnical Practice. Blackie Academic and Professional, London. MAYNE P.W. 2001: Stress-strain-strength-flow parameters from enhanced in-situ tests. International Conference on in-situ measurement of soil properties & case histories, Bali, Indonesia. RABARIJOELY S., GARBULEWSKI K. 2012: Grunty przykład materiałów z pamięcią, Prz. Nauk. Inż. Kszt. Środ. 57: 182 194. ROBERTSON P.K. 2010: Estimating in-situ soil permeability from CPT & CPTu. Proc. 2nd. 442 Ł. Zawadzki, M. Lech

ROBERTSON P.K., CABAL K.L. 2012: Guide to Cone Penetration Testing for Geotechnical Engineering 5 th Edition. Gregg Drilling & Testing. SULLY J.P., ROBERTSON P.K., CAMPANELLA R.G., WOELLER D.J. 1999: An approach to evaluation of field CPTU dissipation data in overconsolidated fine-grained soils. Canadian Geotechnical Journal 36: 369 381. Streszczenie Interpretacja wyników rozpraszania ciśnienia wody w porach gruntu z badań CPTU pod kątem określania właściwości hydraulicznych podłoża gruntowego. W artykule przedstawiono metody wyznaczania właściwości filtracyjnych podłoża na podstawie badań rozpraszania ciśnienia wody w porach za pomocą sondowań statycznych CPTU. Pokazano podejścia interpretacyjne proponowane przez różnych autorów zarówno do analizy krzywych rozpraszania monotonicznego (standardowego), jak i krzywych charakteryzujących się dylatancyjnym (niestandardowym) przebiegiem rozpraszania powstałej nadwyżki ciśnienia. Przedstawiono także wyniki testów rozpraszania ciśnienia wody w porach gruntu uzyskane na terenie kampusu SGGW wraz z ich interpretacją i porównaniem wyników otrzymanych poprzez zastosowanie różnych podejść obliczeniowych. Ponadto dokonano porównania kilku podejść obliczeniowych ukazujące różnice w uzyskiwanych wynikach w zależności od zmienności parametrów stosowanych do obliczeń. Summary Interpretation of CPTU dissipation test results to determine soil hydraulic properties. The article presents a methods for determining soil hydraulic parameters based on field measurements of the CPTU probe. The interpretation approach by various authors for the analysis of both monotonic dissipation curve and dilatory dissipation curve have been shown and compared. The paper presents also the example test results of water flow parameters carried out in the SGGW campus in Warsaw with their interpretation and comparison of results obtained by using different computational approaches. Furthermore, a comparison of several computational approaches showing the differences in the results obtained according to the variation of the parameters used for calculations is shown. Authors address: Łukasz Zawadzki, Mariusz Lech Szkoła Główna Gospodarstwa Wiejskiego Katedra Geoinżynierii ul. Nowoursynowska 159, 02-776 Warszawa e-mail: lukasz_zawadzki@sggw.pl mariusz_lech@sggw.pl Interpretacja wyników rozpraszania ciśnienia wody w porach gruntu... 443