IZOTERMY SORPCJI PARY WODNEJ SUSZONYCH I KANDYZOWANYCH OWOCÓW

Podobne dokumenty
WPŁYW TEMPERATURY NA WŁAŚCIWOŚCI SORPCYJNE LIOFILIZOWANEJ MARCHWI

WPŁYW TEMPERATURY NA WŁAŚCIWOŚCI SORPCYJNE SUSZU JABŁEK. Katarzyna Kędzierska, Zbigniew Pałacha

WPŁYW DODATKU BŁONNIKA NA WŁAŚCIWOŚCI SORPCYJNE OWOCOWYCH NADZIEŃ CUKIERNICZYCH

WŁAŚCIWOŚCI SORPCYJNE WYBRANYCH MIESZANIN PROSZKÓW SPOśYWCZYCH O SKŁADZIE BIAŁKOWO-WĘGLOWODANOWYM

WŁAŚCIWOŚCI SORPCYJNE WYBRANYCH GATUNKÓW RYŻU. Zbigniew Pałacha, Aleksandra Sas

WPŁYW TEMPERATURY NA WŁAŚCIWOŚCI SORPCYJNE SUSZU PIECZAREK

WPŁYW ODWADNIANIA OSMOTYCZNEGO NA WŁAŚCIWOŚCI SORPCYJNE LIOFILIZOWANYCH TRUSKAWEK

WPŁYW SUROWCA I SPOSOBU PROWADZENIA PROCESU NA WŁAŚCIWOŚCI FIZYCZNE OTRZYMANEGO SUSZU

BADANIE STANU WODY W NASIONACH WYBRANYCH ROŚLIN STRĄCZKOWYCH METODĄ WYKORZYSTUJĄCĄ IZOTERMY SORPCJI

ZALEŻNOŚĆ WSPÓŁCZYNNIKA DYFUZJI WODY W KOSTKACH MARCHWI OD TEMPERATURY POWIETRZA SUSZĄCEGO

BADANIE STANU WODY W WYBRANYCH MĄKACH Z WYKORZYSTANIEM METODY OPARTEJ NA IZOTERMACH SORPCJI. Zbigniew Pałacha, Ewelina Walczak

WŁAŚCIWOŚCI SORPCYJNE CIASTEK KRUCHYCH Z MĄKĄ Z CIECIERZYCY

WPŁYW WARUNKÓW PRZECHOWYWANIA NA WŁAŚCIWOŚCI MECHANICZNE CIASTEK BISZKOPTOWYCH

BŁĘDY OKREŚLANIA MASY KOŃCOWEJ W ZAKŁADACH SUSZARNICZYCH WYKORZYSTUJĄC METODY LABORATORYJNE

ZASTOSOWANIE SPEKTROSKOPII ODBICIOWEJ DO OZNACZANIA ZAWARTOŚCI WODY W SERACH. Agnieszka Bilska, Krystyna Krysztofiak, Piotr Komorowski

KOMPUTEROWY MODEL UKŁADU STEROWANIA MIKROKLIMATEM W PRZECHOWALNI JABŁEK

WPŁYW RODZAJU SUBSTANCJI OSMOTYCZNEJ NA ADSORPCJĘ PARY WODNEJ PRZEZ LIOFILIZOWANE TRUSKAWKI

Dobór parametrów składowania cukru na podstawie izoterm sorpcji. mgr inż. Zbigniew Tamborski

MASA WŁAŚCIWA NASION ZBÓś W FUNKCJI WILGOTNOŚCI. Wstęp. Materiał i metody

Zagadnienia do pracy klasowej: Kinetyka, równowaga, termochemia, chemia roztworów wodnych

PORÓWNANIE WŁAŚCIWOŚCI SORPCYJNYCH ZIARNA WYBRANYCH ODMIAN KOMOSY RYŻOWEJ (CHENOPODIUM QUINOA WILLD.)

WPŁYW SZYBKOŚCI STYGNIĘCIA NA WŁASNOŚCI TERMOFIZYCZNE STALIWA W STANIE STAŁYM

OKREŚLANIE WŁASNOŚCI MECHANICZNYCH SILUMINU AK20 NA PODSTAWIE METODY ATND

Wojewódzki Konkurs Przedmiotowy z Chemii dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013

Zjawiska powierzchniowe

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII... DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2011/2012 eliminacje wojewódzkie

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2016/2017 eliminacje rejonowe

Woltamperometryczne oznaczenie paracetamolu w lekach i ściekach

WPŁYW ODWADNIANIA OSMOTYCZNEGO NA WŁAŚCIWOŚCI MECHANICZNE LIOFILIZOWANYCH TRUSKAWEK

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW 2017/2018. Eliminacje szkolne

Acta Agrophysica, 2009, 14(3),

OPISYWANIE IZOTERM SORPCJI WYBRANYMI RÓWNANIAMI Z WYKORZYSTANIEM PROGRAMU EXCEL

PORÓWNANIE WŁAŚCIWOŚCI SORPCYJNYCH WYBRANYCH RODZAJÓW SKROBI

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

Współpraca Zamiejscowego Wydziału Leśnego w Hajnówce z firmą EKO-Herba

Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu

WPŁYW OBRÓBKI TERMICZNEJ ZIEMNIAKÓW NA PRĘDKOŚĆ PROPAGACJI FAL ULTRADŹWIĘKOWYCH

Analiza termiczna Krzywe stygnięcia

WPŁYW TEMPERATURY NA PRZEBIEG IZOTERM SORPCJI WODY PRZEZ CUKIER

ZASTOSOWANIE SPEKTROSKOPII ODBICIOWEJ W ZAKRESIE BLISKIEJ PODCZERWIENI DO OZNACZANIA ZAWARTOŚCI WODY W MAŚLE

Informacja do zadań Woda morska zawiera średnio 3,5% soli.

Konkurs przedmiotowy z chemii dla uczniów gimnazjów 13 stycznia 2017 r. zawody II stopnia (rejonowe)

SORPCJA PARY WODNEJ PRZEZ MIESZANINY PROSZKÓW SPOśYWCZYCH I ICH AGLOMERATÓW. Karolina Szulc, Andrzej Lenart

MATLAB A SCILAB JAKO NARZĘDZIA DO MODELOWANIA WŁAŚCIWOŚCI REOLOGICZNYCH

ZWIĄZKI MIĘDZY CECHAMI ELEKTRYCZNYMI A AKTYWNOŚCIĄ WODY ŚRUTY PSZENICZNEJ

PROCESY JEDNOSTKOWE W TECHNOLOGIACH ŚRODOWISKOWYCH WYMIANA JONOWA

WPŁYW AGLOMERACJI NA WŁAŚCIWOŚCI OGÓLNE WIELOSKŁADNIKOWEJ ŻYWNOŚCI W PROSZKU

JAKOŚĆ CHLEBA WYPIEKANEGO W WARUNKACH DOMOWYCH

WPŁYW TECHNICZNEGO UZBROJENIA PROCESU PRACY NA NADWYŻKĘ BEZPOŚREDNIĄ W GOSPODARSTWACH RODZINNYCH

OKREŚLENIE WŁAŚCIWOŚCI MECHANICZNYCH SILUMINU AK132 NA PODSTAWIE METODY ATND.

WPŁYW MODYFIKACJI CHEMICZNEJ SKROBI I STOPNIA HYDROLIZY NA IZOTERMY SORPCJI PARY WODNEJ HYDROLIZATÓW

SZACOWANIE WŁASNOŚCI MECHANICZNYCH SILUMINU AK9 NA PODSTAWIE METODY ATND

Wprowadzenie. Małgorzata KLENIEWSKA. nawet już przy stosunkowo niewielkim stężeniu tego gazu w powietrzu atmosferycznym.

ANALIZA TWARDOŚCI SELERA W CZASIE SUSZENIA

OCENA MOŻLIWOŚCI WYZNACZANIA IZOTERM SORPCJI DYNAMICZNĄ METODĄ DVS NA PRZYKŁADZIE BETONU KOMÓRKOWEGO KLASY 700

OPTYMALIZACJA STEROWANIA MIKROKLIMATEM W PIECZARKARNI

WPŁYW TEMPERATURY NA CECHY DIELEKTRYCZNE MIODU

WPŁYW BLANSZOWANIA NA REHYDRACJĘ PIETRUSZKI KORZENIOWEJ SUSZONEJ SUBLIMACYJNIE

W PŁYW POW LEKANIA NA KINETYKĘ ADSORPCJI PARY W ODNEJ PRZEZ NAPÓJ KAKAOW Y W PROSZKU

Zadanie 2. (1 pkt) Uzupełnij tabelę, wpisując wzory sumaryczne tlenków w odpowiednie kolumny. CrO CO 2 Fe 2 O 3 BaO SO 3 NO Cu 2 O

2.1. Charakterystyka badanego sorbentu oraz ekstrahentów

ADSORPCJA PARY W ODNEJ PRZEZ ŻYWNOŚĆ W PROSZKU

XIV Konkurs Chemiczny dla uczniów gimnazjum województwa świętokrzyskiego. II Etap - 18 stycznia 2016

KONKURS CHEMICZNY DLA GIMNAZJUM ETAP WOJEWÓDZKI

Zadanie 2. [2 pkt.] Podaj symbole dwóch kationów i dwóch anionów, dobierając wszystkie jony tak, aby zawierały taką samą liczbę elektronów.

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z CHEMII DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2016/2017 ETAP TRZECI

WYBRANE WŁAŚCIWOŚCI SUSZONYCH KONWEKCYJNIE JABŁEK WSTĘPNIE ODWADNIANYCH OSMOTYCZNIE W WARUNKACH ZMIENNEGO CIŚNIENIA

KONTROLA STALIWA GXCrNi72-32 METODĄ ATD

Prognoza terminu sadzenia rozsady sałaty w uprawach szklarniowych. Janusz Górczyński, Jolanta Kobryń, Wojciech Zieliński

X Konkurs Chemii Nieorganicznej i Ogólnej rok szkolny 2011/12

WPŁYW CZASU PRZECHOWYWANIA ZIARNA PSZENICY NA ZMIANĘ JEGO CECH JAKOŚCIOWYCH

Inżynieria Rolnicza 3(121)/2010

XXI KONKURS CHEMICZNY DLA GIMNAZJALISTÓW ROK SZKOLNY 2013/2014

Konkurs przedmiotowy z chemii dla uczniów gimnazjów 6 marca 2015 r. zawody III stopnia (wojewódzkie)

SORPCJA WILGOCI SORPCJA WILGOCI

Odpowiedź:. Oblicz stężenie procentowe tlenu w wodzie deszczowej, wiedząc, że 1 dm 3 tej wody zawiera 0,055g tlenu. (d wody = 1 g/cm 3 )

Roztwory elekreolitów

WPŁYW BLANSZOWANIA PAPRYKI NA ENERGOCHŁONNOŚĆ PROCESU SUBLIMACYJNEGO SUSZENIA ORAZ NA REHYDRACJĘ SUSZU PODCZAS PRZECHOWYWANIA

-wszystkie substancje (pierwiastki lub zw chem) które biorą udział w reakcji chemicznej nazywamy reagentami

Wykład 6. Klasyfikacja przemian fazowych

Ćwiczenie 2: Właściwości osmotyczne koloidalnych roztworów biopolimerów.

ANALIZA MIKROFALOWEGO SUSZENIA SELERA KORZENIOWEGO W WARUNKACH OBNIśONEGO CIŚNIENIA. KINETYKA SUSZENIA I SKURCZ SUSZARNICZY

Zadanie: 1 (3 pkt) Metanoamina (metyloamina) rozpuszcza się w wodzie, a także reaguje z nią.

WPŁYW METODY SUSZENIA NA REHYDRACJĘ SELERA

Badanie dylatometryczne żeliwa w zakresie przemian fazowych zachodzących w stanie stałym

VI Podkarpacki Konkurs Chemiczny 2013/2014

STRUKTURA STOPÓW UKŁADY RÓWNOWAGI FAZOWEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

OBRÓBKA CIEPLNA SILUMINU AK132

4. WYZNACZENIE IZOTERMY ADSORPCJI METODĄ ECP

Zadanie 2. [3 pkt.] Podaj wzory trzech związków o budowie jonowej, w których wszystkie kationy i aniony tworzące te związki mają po 18 elektronów.

Materiały polimerowe laboratorium

WNIOSEK REKRUTACYJNY NA ZAJĘCIA KÓŁKO OLIMPIJSKIE Z CHEMII - poziom PG

XXIV KONKURS CHEMICZNY DLA GIMNAZJALISTÓW ROK SZKOLNY 2016/2017

X / \ Y Y Y Z / \ W W ... imię i nazwisko,nazwa szkoły, miasto

Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ

1 Kinetyka reakcji chemicznych

WYBRANE WŁAŚCIWOŚCI FIZYCZNE POWŁOK JADALNYCH SERWATKOWYCH

Instrukcja dla uczestnika. II etap Konkursu. U z u p e ł n i j s w o j e d a n e p r z e d r o z p o c z ę c i e m r o z w i ą z y w a n i a z a d a ń

Roztwory buforowe (bufory) (opracowanie: dr Katarzyna Makyła-Juzak)

Transkrypt:

SCIENTIARUM POLONORUMACTA Acta Sci. Pol., Technol. Aliment. 4(1) 2005, 63-71 IZOTERMY SORPCJI PARY WODNEJ SUSZONYCH I KANDYZOWANYCH OWOCÓW Ewa Gondek, Piotr P. Lewicki Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Streszczenie. Wyznaczono izotermy sorpcji pary wodnej dostępnych na rynku suszonych i kandyzowanych owoców (rodzynki, mango ananas, papaja, morela). Uzyskane izotermy reprezentują III typ izoterm według klasyfikacji Brunauera i in. [1940]. Do ich opisu zaproponowano równanie opracowane przez Pelega [1993]. Uzyskane izotermy w większości przypadków charakteryzowały się występowaniem nieciągłości w przedziale aktywności wody -, co przypisano przemianom fazowym cukrów. Wykazano, że uwzględnienie przerwania izotermy w obliczeniach pozwala na lepsze dopasowanie analizowanego równania do uzyskanych wyników. Słowa kluczowe: izotermy sorpcji, suszone i kandyzowane owoce, równanie Pelega, krystalizacja cukrów WSTĘP Procesy fizyczne, chemiczne, biochemiczne i mikrobiologiczne determinujące trwałość żywności są ściśle związane z obecnością i stanem wody w produktach spożywczych. Wielu cennych informacji na ten temat dostarcza izoterma sorpcji, czyli zależność między aktywnością wody a zawartością wody w produkcie. Znajomość przebiegu izoterm adsorpcji pary wodnej produktu pozwala między innymi na: przewidywanie kinetyki i projektowanie procesu suszenia, przewidywanie charakteru zepsucia produktu, przewidywanie okresu trwałości żywności, określenie optymalnej zawartości wody i aktywności wody produktu. Izotermy adsorpcji pary wodnej umożliwiają również charakterystykę mikrostruktury oraz teoretyczną interpretację zjawisk fizycznych zachodzących na powierzchni kontaktu żywność-substancja lotna [Świtka i Krasowski 1990, Lenart 1991]. Większość produktów spożywczych to substancje o złożonym składzie chemicznym i niejednorodnej strukturze, a więc eksperymentalne wyznaczenie izoterm sorpcji jest konieczne, gdyż teoretyczne przewidywanie ich przebiegu byłoby niemożliwe. Adres do korespondencji Corresponding author: dr inż. Ewa Gondek, Wydział Technologii Żywności Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie, ul. Nowoursynowska 159c, 02-765 Warszawa, e-mail: gondek@alpha.sggw.waw.pl

64 E. Gondek, P.P. Lewicki Tradycyjnie suszone i kandyzowane owoce są stosowane jako urozmaicenie produktów piekarskich i ciastkarskich, mogą być również spożywane oddzielnie, jako przekąski. W ostatnich latach zyskały również dużą popularność jako dodatki do preparowanych produktów zbożowych (płatków, preparowanych ziaren zbóż). Stosunkowo niewielu badaczy analizowało właściwości sorpcyjne suszonych owoców. Bolin [1980] badał sorpcję i desorpcję wody przez rodzynki sułtańskie w 25 C, a Vagenas i in. [1986] w 30 C. Saravacos i in. [1986] analizowali izotermy adsorpcji rodzynek w zakresie temperatur 20-35 C. Abdelhag i Labuza [1987] prezentowali izotermy brzoskwiń, Maroulis i in. [1988] rodzynek, fig, śliwek i brzoskwiń, Tsami i in. [1990] rodzynek, porzeczek, fig, śliwek i brzoskwiń, a Palou i in. [1995] osmotycznie odwadnianej papai. Do opisu izoterm sorpcji owoców publikowanych w literaturze najczęściej stosowano równanie GAB. Wykazano jednak, że równanie to może być użyte do opisu eksperymentu tylko wówczas, gdy stałe k i c tego równania zawierają się w następujących przedziałach: 4 < k 1 i 5,67 < c [Lewicki 1997]. W większości z przytoczonych opracowań warunek ten nie jest spełniony. Należy więc poszukiwać innych modeli matematycznych, które lepiej opisywałyby sorpcję pary wodnej przez tego typu produkty. MATERIAŁY I METODY Materiał badawczy stanowiły suszone i kandyzowane owoce dostępne na rynku [firmy Bakaliowa Kraina]. W surowcu oznaczono zawartość wody metodą suszenia pod obniżonym ciśnieniem w temperaturze 70 C, przez 24 godziny [Lewicki i Wolf 1995] oraz aktywność wody w aparacie Aqua Lab model CX-2 firmy Decagon Devices Inc., o dokładności ± 03 w temperaturze 25±1,5 C. Metoda statyczno-eksykatorowa Badane produkty (rodzynki, mango ananas, papaja, morela), pobrane bezpośrednio z opakowania, umieszczono w eksykatorach. Jako czynniki higrostatyczne zastosowano nasycone roztwory soli i roztwory kwasu siarkowego o określonej gęstości (tab. 1). Produkty przechowywano w warunkach stałej wilgotności względnej dla 0 a w 0,903, przez 3 miesiące. Następnie próbki ważono i mierzono aktywność wody. W higrostatach o aktywnościach wody powyżej umieszczano tymol, w celu ochrony przed rozwojem mikroflory i ważono w odstępach kilkudniowych, aż do wystąpienia pierwszych objawów zepsucia. Na podstawie zmiany masy określono zawartość wody w owocach po przechowywaniu. Metody matematyczne Izotermy adsorpcji pary wodnej opisano empirycznym równaniem Pelega [1993] korzystając z programu Table Curve 2D v3 [Jandel Scientific]. Acta Sci. Pol.

Izotermy sorpcji pary wodnej suszonych i kandyzowanych owoców 65 Tabela 1. Aktywność wody roztworów kwasu siarkowego i nasyconych roztworów soli w temperaturze 25 C [Ruegg 1980] Table 1. Water activity of sulphuric acid and saturated salts solutions at 25 C [Ruegg 1980] Rodzaj substancji Chemical substance Gęstość lub stężenie roztworu Density or concentration of solution kg m -3 CaCl 2 suchy bezwodny dry 0 Aktywność wody Water activity H 2 SO 4 1635 31 LiCl roztwór nasycony saturated solution 13 H 2 SO 4 1495 57 CH 3 COOK roztwór nasycony saturated solution 25 MgCl 2 roztwór nasycony saturated solution 29 K 2 CO 3 roztwór nasycony ssaturated solution 38 Mg[NO 3 ] 2 roztwór nasycony saturated solution 29 NaNO 2 roztwór nasycony saturated solution 48 NaCl roztwór nasycony saturated solution 53 [NH 4 ] 2 SO 4 roztwór nasycony saturated solution 10 BaCl 2 roztwór nasycony saturated solution 0.903 B w D w u = A a + C a (1) gdzie: A, B, C, D stałe, a w aktywność wody, u zawartość wody, g wody g s.s.. Ocenę przydatności równania do opisu uzyskanych izoterm przeprowadzono analizując wartość średniego odchylenia kwadratowego RMS. RMS= ue u o u e N 2 100% (2) gdzie: N liczba danych, e eksperymentalny, o obliczony. OMÓWIENIE I DYSKUSJA WYNIKÓW Spośród badanych owoców pobranych bezpośrednio z opakowania najwyższą aktywnością wody cechowały się morele, których a w = 49. Oznacza to, że produkt wymagał zabezpieczenia przed rozwojem pleśni. Zwykle oferowane do sprzedaży mo- Technologia Alimentaria 4(1) 2005

66 E. Gondek, P.P. Lewicki rele zawierają około 20-32% wody, co odpowiada aktywności wody 3 i zabezpieczane są dwutlenkiem siarki w celu zapewnienia stabilności mikrobiologicznej. Najniższą aktywność wody miały owoce mango (a w = 88), co odpowiadało zawartości wody 6,72%. Produkt ten, podobnie jak pozostałe, nie wymagał więc dodatkowego zabezpieczenia przed rozwojem mikroorganizmów (tab. 2). Tabela 2. Wilgotność i aktywność wody owoców pobranych bezpośrednio z opakowań Table 2. Moisture content and water activity of fruits taken directly from packages Produkt Product Wilgotność Moisture content % Aktywność wody Water activity Ananas Pineapple 15 82 Mango Mango 6,72 88 Morele Apricpot 26 49 Papaja Papaya 13 96 Rodzynki Raisins 12,93 15 Wszystkie uzyskane izotermy cechują się tym samym kształtem, charakterystycznym dla produktów bogatych w cukry proste. Nie obserwuje się przegięcia izotermy w zakresie niskich aktywności wody. Izotermy tego rodzaju należą do izoterm III typu według klasyfikacji Brunauera i in. [1940]. Ten sam typ izoterm suszonych owoców jest opisany w literaturze [Abdelhag i Labuza 1987, Bolin 1980, Maroulis i in. 1988, Palou i in. 1995]. Największą zawartość wody miały rodzynki, np. w środowisku o aktywności wody 28 rodzynki zawierały 70 g wody g s.s., w środowisku o a w = 55 0 g wody g s.s.. Podobne wyniki uzyskali Maroulis i in. [1988] i Tsami i in. [1990]. Najniżej położone były izotermy ananasa, przy a w = 28 zawierał on 35 g wody g s.s. i moreli, przy a w = 55 zawierała 91 g wody g s.s.. Istnieją więc dość duże różnice w zawartości wody w poszczególnych owocach podczas gdy aktywność wody jest taka sama. Przy aktywności wody mieszczącej się w zakresie - występuje przegięcie i wraz z aktywnością wody znacznie wzrasta zawartość wody w owocach. Wszystkie badane produkty umieszczono w higrostatach, pobierając je bezpośrednio z opakowania, a aktywność wody odpowiadającą produktowi zaznaczono na rysunkach pionową linią (rys. 1). Oznacza to, że część izotermy biegnąca od tej linii w stronę niskich aktywności wody określa proces desorpcji pary wodnej, a druga jej część proces adsorpcji. Nie zaobserwowano nieciągłości izotermy w rejonie wyjściowej wartości aktywności wody dla ananasa, rodzynek, moreli i mango, co może świadczyć o braku histerezy w tym obszarze aktywności wody. Brak histerezy może mieć związek z rozpuszczaniem i krystalizacją cukrów [Roman i in. 1982]. Jej brak w temperaturach 45 i 60 C stwierdzili Tsami i in. [1990], badając izotermy suszonych rodzynek, porzeczek, fig, śliwek i moreli. W niższych temperaturach histereza pojawiała się, a wartość aktywności wody, dla której obserwowano histerezę, była odwrotnie proporcjonalna do zawartości cukrów. Bolin [1980], badając rodzynki o wysokiej zawartości cukrów, odnotował występowanie histerezy gdy aktywność wody była niższa niż. Izoterma papai, w odróżnieniu od pozostałych owoców, wykazuje nieciągłość w obszarze aktywności wody Acta Sci. Pol.

Izotermy sorpcji pary wodnej suszonych i kandyzowanych owoców 67 Water content, g water g d.m. Ananas Pineapple 1,0 Water content, g water g d.m. Mango 1,0 Water content, g water g d.m. Morela Apricot Water content, g water g d.m. Papaja Papaya 1,0 1,0 Water content, g water g d.m. Rodzynki Raisins 1,0 Rys. 1. Izotermy sorpcji suszonych i kandyzowanych owoców Fig. 1. Moisture sorption isotherms of dried and candided fruits Technologia Alimentaria 4(1) 2005

68 E. Gondek, P.P. Lewicki zbliżonej do aktywności wody produktu wyjściowego, jednak jej część przedstawiająca proces adsorpcji jest położona wyżej niż część przedstawiająca desorpcję. Opisana sytuacja nie wynika również z występowania histerezy w tym obszarze aktywności wody, lecz raczej z przemian węglowodanów zawartych w produkcie. W miarę wzrostu zawartości wody w produkcie zawierającym cukry krystaliczne dochodzi do rozpuszczania cukrów, co może prowadzić do utworzenia roztworu o stężeniu bliskim nasycenia. Ilość zaadsorbowanej wody znacznie wówczas wzrasta, co wynika z dążności układu do osiągnięcia stanu równowagi termodynamicznej z otoczeniem. Przy adsorpcji wody jest możliwy również odwrotny proces, tzn. przejście cukrów ze stanu amorficznego w krystaliczny. W tym wypadku adsorpcja wody prowadzi do zwiększenia ruchliwości cząsteczek cukru, co umożliwia przejście cukru z metastabilnego stanu bezpostaciowego w stan krystaliczny [Lewicki 1999, Iglesias i in. 2000]. Obecność stanu amorficznego cukrów jest prawdopodobna w tych wypadkach, w których usuwanie wody jest szybkie i wzrost lepkości uniemożliwia krystalizację. W cukrze pudrze, który jest stosowany w postaci powłok na produktach kandyzowanych dominuje stan amorficzny. Uzyskane dane eksperymentalne opisano czteroparametrowym równaniem zaproponowanym przez Pelega [1993]. Równanie to nadaje się zarówno do opisu izoterm II, jak i III typu. Podjęto również próbę zastosowania do opisu eksperymentu równania GAB [Bizot 1983], jednak nie uzyskano zadowalających efektów. Parametry tego równania nie spełniały warunków określonych przez Lewickiego [1997], dopuszczających równanie GAB do opisu danych eksperymentalnych. Opisując izotermy sorpcji równaniem Pelega uzyskano wartości RMS od 15% dla ananasa do 27,58% dla papai. Obliczenia te przeprowadzono uwzględniając wszystkie otrzymane wyniki. Zadowalający efekt uzyskano dla ananasa, mango i rodzynek (tab. 3). Wysokie wartości średniego błędu kwadratowego w wypadku dwu kolejnych produktów skłoniły do dalszych poszukiwań metody opisu eksperymentu. W kolejnych obliczeniach uwzględniono występowanie nieciągłości (przerwania) izoterm w zakresie aktywności wody -. Jest to przedział aktywności wody, w którym mogą zachodzić przemiany fazowe cukrów. Biorąc pod uwagę, że cukier krystaliczny jest z punktu widzenia właściwości sorpcyjnych zupełnie innym materiałem niż cukier w stanie amorficznym, zaproponowano potraktowanie izotermy sorpcji jako procesu dwuetapowego. Opisano izotermy równaniem Pelega [1993] traktując krzywą jako obraz zachowania się materiału, który w trakcie eksperymentu zmienia swoje cechy. Oddzielnie opisano pierwszy i drugi etap izotermy i obliczono sumaryczny średni błąd kwadratowy. Takie założenie spowodowało, że wartość RMS zmalała dla moreli 2,2 raza, dla papai 2,6 raza, a dla rodzynek aż 7,5 raza (tab. 3). Tabela 3. Wartości średniego błędu kwadratowego (RMS) uzyskane dla równania Pelega [1993] Table 3. Root Mean Square obtained for Peleg s equation [1993] RMS, % Izoterma jednoetapowa One-step isotherm Izoterma dwuetapowa Two-steps isotherm ananas pineapple mango mango Produkt Product morela apricot papaja papaya rodzynki raisins 15 11,94 20 27,58 15 9,63 9,02 18 1,45 Acta Sci. Pol.

Izotermy sorpcji pary wodnej suszonych i kandyzowanych owoców 69 Pomiary aktywności wody produktu po trzech miesiącach przechowywania wykazały, że nawet po tak długim czasie produkt umieszczony w higrostacie nie zawsze osiąga stan równowagi z otoczeniem. Szczególnie duże różnice między aktywnością wody środowiska a wartością aktywności wody zmierzoną w produkcie zaobserwowano w środowiskach o niskich aktywnościach wody. Materiał w tych warunkach podlegał desorpcji, a proces ten, jak wykazano, z reguły przebiega wolniej niż adsorpcja wody [Gondek 2003]. W obszarze średnich aktywności wody (38-55) badane produkty w większości wypadków osiągnęły stan równowagi. W środowiskach o aktywności wody 1 i 0,903 do stanu równowagi nie dochodzi ze względu na skrócony czas trwania eksperymentu (4-7 tygodni). Na rysunku 2 przedstawiono różnicę między aktywnością wody środowiska a aktywnością wody produktu po trzech miesiącach przechowywania w funkcji aktywności wody środowiska. Wynika z niego, że stosując do wyznaczania izoterm sorpcji wody metodę statyczno-eksykatorową należy mierzyć aktywność wody produktów po przechowywaniu. Nierespektowanie tego zalecenia powoduje, że wyniki są obarczone bardzo dużym błędem, co wykazali również Lewicki i Pomarańska-Łazuka [2003]. 5 0.0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8-5 a w środowiska water activity of environment aw -0-5 rodzynki raisins ananas pineapple mango papaja papaya morela apircot -0 Rys. 2. Różnica między aktywnością wody produktu po przechowywaniu a aktywnością wody środowiska w funkcji aktywności wody środowiska po trzech miesiącach przechowywania Fig. 2. The difference between water activity of product and water activity of environment as a function of water activity of enviroment after 3 months of storage WNIOSKI 1. Izotermy adsorpcji pary wodnej przez suszone i kandyzowane owoce charakteryzują się przebiegiem zgodnym z drugim typem według klasyfikacji Brunauera i in. [1940], charakterystycznym dla produktów bogatych w cukry proste. Technologia Alimentaria 4(1) 2005

70 E. Gondek, P.P. Lewicki 2. Czteroparametrowe równanie zaproponowane przez Pelega dobrze opisuje izotermy adsorpcji pary wodnej przez suszone i kandyzowane owoce. 3. Izotermy, na których obserwuje się przerwania związane z rozpuszczaniem i przemianami fazowymi cukrów powinny być analizowane w dwóch częściach. Pierwsza część dotyczy produktu w którym nie wystąpiła przemiana fazowa, zwykle w niskiej aktywności wody, a druga produktu po przemianie fazowej. PIŚMIENNICTWO Abdelhag E.H., Labuza T.P., 1987. Air drying characteristics of apricots. J. Food Sci. 52, 432-447. Bizot H., 1983. Using the GAB model to construct sorption isotherms. W: Physical Properties of Food. Red. R. Jowitt, F. Escher, B. Hällström, H.F.T. Meffert, W.E.L. Spiess, G. Vos. App. Sci. Pub. London, 43-54. Bolin H.R., 1980. Relation of moisture to water activity in prunes and raisins. J. Food Sci. 45, 1190192. Brunauer S., Deming L.S., Deming W.E., Teller E., 1940. On the theory of van der Waals adsorption of gases. J. Am. Chem. Soc. 62, 1723732. Gondek E., 2003. Wymiana masy w produktach typu muesli i jej wpływ na właściwości mechaniczne i akustyczne płatków zbożowych. Maszyn. Pr. Dokt. SGGW, Warszawa. Iglesias H.A., Schebor C., Buera M.P., Chirife J., 2000. Sorption isotherm and calorimetric behavior of amorphous/crystalline raffinose-water systems. J. Food Sci. 65, 646-650. Lenart A., 1991. Charakterystyka właściwości sorpcyjnych odwadnianej żywności. Przem. Ferment. Owoc. Warz. 35, 1-4. Lewicki P.P., 1997. The applicability of the GAB model to food water sorption isotherms. Int. J. Food Sci. Technol. 32, 553-557. Lewicki P.P., 1999. Właściwości wody w produktach spożywczych. Zesz. Nauk. P. Łódz. Inż. Chem. Proces. 24, 29-46. Lewicki P.P., Pomarańska-Łazuka W., 2003. Errors in static desiccatior method of water sorption isotherms estimation. Int. J. Food Prop. 6 (3), 557-563. Lewicki P.P., Wolf W., 1995. Rheological properties of raisins. Part II. Effect of water activity. J. Food Eng. 26, 29-43. Maroulis Z.B., Tsami D., Marinos-Kouris D., 1988. Application of the GAB model to the moisture sorption isotherms for dried fruits. J. Food Eng. 7, 63-78. Palou E., Lopez-Malo A., Corte P., Welti J., Argaiz A., 1995. Moisture sorption characteristics of blanched and osmotically treated papaya. IFT Annual Meeting. FSTA, abstract. Peleg M., 1993. Assessment of a semi-empirical four parameter general model for sigmoid moisture sorption isotherms. J. Food Proc. Eng. 16, 21-37. Roman G.N., Urbicain M.J., Rotstein E., 1982. Moisture equilibrium in apples at several temperatures. Experimental data and theoretical considerations. J. Food Sci. 47, 1484492. Ruegg M., 1980. Calculation of the activity of water in sulfuric acid solutions at various temperatures. Lebensm. Wiss. Technol. 13, 22-24. Saravacos G.D., Tsiourvas D.A., Tsami E., 1986. Effect of temperature on water adsorption isotherms of sultana raisins. J. Food Sci. 52, 381-383. Świtka J., Krasowski Z., 1990. Zastosowanie izoterm sorpcji wody w technologii żywności. Przem. Spoż. 44, 10507. Tsami E., Marinos-Kouris D., Maroulis Z.B., 1990. Water sorption isotherms of raisins currants, figs, prunes and apricots. J. Food Sci. 55, 1594597. Vagenas G.D., Tsami E., Saravacos G.D., 1986. Moisture sorption isotherms of sultana raisins. Chim. Chronika, New Ser. 15, 77-81. Acta Sci. Pol.

Izotermy sorpcji pary wodnej suszonych i kandyzowanych owoców 71 MOISTURE SORPTION ISOTHERMS OF DRIED AND CANDIED FRUITS Abstract. Moisture sorption isotherms of dried and candied fruits (raisins, mango, apricot, pineapple, papaya) were investigated in this work. The experimental data fitted well with Peleg s equation. The obtained curves represented III rd type of Brunauer et al. [1940] isotherms classification. Most of them were discontinous in the water activity range of 0.4-0.6 which could be due to phase transition of sugars. It was shown that discontinuity should be taken into account for better fitting to the investigated equation. Key words: water sorption isotherms, dried fruits, Peleg s equation, sugars phase transition Zaakceptowano do druku Accepted for print: 14.03.2005 r. Do cytowania - For citation: Gondek E., Lewicki P. P., 2005. Izotermy sorpcji pary wodnej suszonych i kandyzowanych owoców. Acta Sci. Pol., Technol. Aliment. 4(1), 63-71. Technologia Alimentaria 4(1) 2005