NUMERICAL SIMULATION OF CRACKING PROCESS OF POLYMER COMPOSITES ON EXAMPLE OF SENB SAMPLE



Podobne dokumenty
INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

SYMULACJA TŁOCZENIA ZAKRYWEK KORONKOWYCH SIMULATION OF CROWN CLOSURES FORMING

Knovel Math: Jakość produktu

Optymalizacja konstrukcji wymiennika ciepła

Kompozyty 11: 4 (2011)

ROZPRAWY NR 128. Stanis³aw Mroziñski

Krytyczne czynniki sukcesu w zarządzaniu projektami

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

DETECTION OF MATERIAL INTEGRATED CONDUCTORS FOR CONNECTIVE RIVETING OF FUNCTION-INTEGRATIVE TEXTILE-REINFORCED THERMOPLASTIC COMPOSITES

t Rysunek 2: Wykres drgań podstawy wspornika u(t)

WSTĘPNE MODELOWANIE ODDZIAŁYWANIA FALI CIŚNIENIA NA PÓŁSFERYCZNY ELEMENT KOMPOZYTOWY O ZMIENNEJ GRUBOŚCI

MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ

NUMERYCZNA ANALIZA ROZKŁADÓW NACISKU WYSTĘPUJĄCYCH W STANDARDOWYCH WĘZŁACH TRIBOLOGICZNYCH

ZAAWANSOWANE METODY OBLICZEŃ NAPRĘśEŃ I ODKSZTAŁCEŃ NA PRZYKŁADZIE ANALIZY KORPUSU SILNIKA ELEKTRYCZNEGO DO KOMBAJNU ŚCIANOWEGO KA200

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2015/2016

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Wpływ naprężeń w kierunku grubości elementu na powstanie pęknięcia delaminacjnego w złączach spawanych krzyżowych

IDENTYFIKACJA I ANALIZA PARAMETRÓW GEOMETRYCZNYCH I MECHANICZNYCH KOŚCI MIEDNICZNEJ CZŁOWIEKA

Zarządzanie sieciami telekomunikacyjnymi

Outline of a method for fatigue life determination for selected aircraft s elements

Streszczenie rozprawy doktorskiej

METODYKA WYZNACZANiA WYNiKÓW ODSTAJĄCYCH DLA TESTÓW WYTRZYMAŁOŚCiOWYCH KOMPOZYTÓW

Materiałowe i technologiczne uwarunkowania stanu naprężeń własnych i anizotropii wtórnej powłok cylindrycznych wytłaczanych z polietylenu

Akademia Morska w Szczecinie. Wydział Mechaniczny

TO ADVANCED MODELLING OF END PLATE JOINTS

I. Temat ćwiczenia: Definiowanie zagadnienia fizycznie nieliniowego omówienie modułu Property

Lecture 18 Review for Exam 1

BADANIA WYTRZYMA OŒCI NA ŒCISKANIE PRÓBEK Z TWORZYWA ABS DRUKOWANYCH W TECHNOLOGII FDM

IDENTYFIKACJA PARAMETRÓW CHARAKTERYZUJĄCYCH OBCIĄŻENIE SEKCJI OBUDOWY ZMECHANIZOWANEJ SPOWODOWANE DYNAMICZNYM ODDZIAŁYWANIEM GÓROTWORU

Analiza parametrów mechaniki pękania w warunkach I modelu obciążenia betonu

STATISTICAL METHODS IN BIOLOGY

ANALYSIS OF FATIGUE CRACK GROWTH RATE UNDER MIXED-MODE LOADING

deep learning for NLP (5 lectures)

POLITECHNIKA WARSZAWSKA. Wydział Zarządzania ROZPRAWA DOKTORSKA. mgr Marcin Chrząścik

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

ELASTOOPTYKA I ANALIZA NUMERYCZNA STANU NAPRĘśEŃ W BADANIACH POLISTYRENU METODĄ DMTA

INFLUENCE OF SELECTED METHOD TO ESTIMATE COMPOSITE MATERIAL ELASTICITY PROPERTIES ON RESULTS OF FINITE ELEMENT ANALYSIS

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

ZESZYTY NAUKOWE NR 5(77) AKADEMII MORSKIEJ W SZCZECINIE. Symulacyjne wyznaczanie charakterystyk statycznych dla typoszeregu odbojnic cylindrycznych

NIESTACJONARNY PRZEPŁYW CIEPŁA W TŁOKU DOŁADOWANEGO SILNIKA Z ZAPŁONEM SAMOCZYNNYM

WPŁYW PROCESU TARCIA NA ZMIANĘ MIKROTWARDOŚCI WARSTWY WIERZCHNIEJ MATERIAŁÓW POLIMEROWYCH

Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH

DOI: / /32/37

Auditorium classes. Lectures

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

ROZPRAWA DOKTORSKA. Model obliczeniowy ogrzewań mikroprzewodowych

PRÓBA WERYFIKACJI WYNIKÓW SYMULACJI PROCESU WTRYSKIWANIA W WARUNKACH RZECZYWISTYCH

INFLUENCE OF POLYESTER MACROFIBERS ON SELECTED PHYSICAL AND MECHANICAL PROPERTIES OF CEMENT COMPOSITES

APPLICATION OF THE FINITE-ELEMENT METHOD FOR DETERMINING THE STIFFNESS OF ROLLING BEARINGS

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

Dr hab. inż. Dariusz BOROŃSKI, prof. nadzw. UTP 1. Miejsce pracy: 2. Dyscyplina: 3. Specjalność: 4. Zainteresowania naukowe:

Formation of Graded Structures and Properties in Metal Matrix Composites by use of Electromagnetic Field

ANALIZA BELKI DREWNIANEJ W POŻARZE

Hard-Margin Support Vector Machines

ANALIZA NUMERYCZNA DEFORMACJI WALCOWEJ PRÓBKI W ZDERZENIOWYM TEŚCIE TAYLORA

PRACE INSTYTUTU ODLEWNICTWA TRANSACTIONS OF FOUNDRY RESEARCH INSTITUTE

Adres do korespondencji: Instytut Metalurgii i Inżynierii Materiałowej PAN, Kraków, ul. Reymonta 25

ANDRZEJ GONTARZ, ANNA DZIUBIŃSKA

Mgr inż. Krzysztof KRAWIEC. Rozprawa doktorska. Streszczenie

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 3(89)/2012

WPŁYW OBCIĄŻEŃ ZMĘCZENIOWYCH NA WYSTĘPOWANIE ODMIAN POLIMORFICZNYCH PA6 Z WŁÓKNEM SZKLANYM

WPŁYW PRZETWÓRSTWA ORAZ WYGRZEWANIA NA WŁAŚCIWOŚCI DYNAMICZNE KOMPOZYTU POLIAMIDU 6,6 Z WŁÓKNEM SZKLANYM

SHEAR LAG EFFECT IN THE NUMERICAL EXPERIMENT

Institutional Determinants of IncomeLevel Convergence in the European. Union: Are Institutions Responsible for Divergence Tendencies of Some

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2017/2018

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

PRACA DYPLOMOWA Magisterska

OKREŚLENIE PARAMETRÓW MATERIAŁOWYCH KOŚCI BELECZKOWEJ NA PODSTAWIE SYMULACJI NA POZIOMIE MIKROSKOPOWYM

EKSPERYMENTALNE ORAZ NUMERYCZNE BADANIA WŁAŚCIWOŚCI MECHANICZNYCH PRÓBEK OPONY SAMOCHODU TERENOWEGO- ANALIZA PORÓWNAWCZA

XXIII Konferencja Naukowa POJAZDY SZYNOWE 2018

ASPEKTY PROJEKTOWANIA PASOWAŃ W POŁĄCZENIACH OSIOWOSYMETRYCZNYCH

SYNTEZA SCENARIUSZY EKSPLOATACJI I STEROWANIA

F-16 VIRTUAL COCKPIT PROJECT OF COMPUTER-AIDED LEARNING APPLICATION WEAPON SYSTEM POWER ON PROCEDURE

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

THE INFLUENCE OF THE ENGINE LOAD ON VALUE AND TEMPERATURE DISTRIBUTION IN THE VALVE SEATS OF TURBO DIESEL ENGINE

WPŁYW NAPRĘśEŃ WŁASNYCH NA GEOMETRYCZNE INPERFEKCJE WAŁU KORBOWEGO W TRAKCIE PROCESU OBRÓBKI MECHANICZNEJ CZĘŚĆ II

SPIS TREŚCI SPIS WAŻNIEJSZYCH OZNACZEŃ WSTĘP KRÓTKA CHARAKTERYSTYKA SEKTORA ENERGETYCZNEGO W POLSCE... 14

COMPUTER SIMULATIONS OF THE HOLES STRAIN BEHAVIOR IN BODIES DURING MACHINING

Wybrane problemy numerycznej symulacji trójpunktowego zginania próbek z kości korowej

MODELLING AND ANALYSIS OF THE MOBILE PLATFORM UNDER ITS WORK CONDITIONS

Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo

Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS

SYMULACJA NUMERYCZNA KRZEPNIĘCIA KIEROWANEGO OCHŁADZALNIKAMI ZEWNĘTRZNYMI I WEWNĘTRZNYMI

Porównanie zdolności pochłaniania energii kompozytów winyloestrowych z epoksydowymi

ĆWICZENIE Nr 1. Laboratorium CAD/MES. Przedmiot: Modelowanie właściwości materiałów. Opracował: dr inż. Hubert Dębski

Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS

Regionalny Dyrektor Ochrony Środowiska ul. 28 czerwca 1956 Poznań

PRZEWODNIK PO PRZEDMIOCIE. Negotiation techniques. Management. Stationary. II degree

ZASTOSOWANIE ANALOGII BIOLOGICZNEJ DO

LOAD BEARING CAPACITY OF WOODEN BEAMS REINFORCED WITH COMPOSITE SHEETS

Opracowanie technologii wytwarzania wyrobów ze. stopów Mg o podwyższonej biozgodności. Development of technologies of the production of Mg

WPŁYW FAZ CHODU NA STAN NAPRĘŻENIA W MODELU STOPY PROTEZOWEJ


MODELOWANIE MES STRUKTUR O KARBACH SZEREGOWYCH FEM MODELING OF STRUCTURES WITH SERIAL NOTCHES

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 4 DOI: /v

ANALIZA WYTĘŻENIA ZWOI GWINTU W POŁĄCZENIU ŚRUBA- NAKRĘTKA ANALYSIS OF THREAD COIL EFFORT IN THE SCREW NUT JOINT

ANALIZA NUMERYCZNA STANU NAPRĘŻENIA W OBSZARZE STAŁO-CIEKŁYM ODLEWU

Zapytanie ofertowe dotyczące wykonania zadań w ramach projektu COMPRESS nr 4/COMPRESS/2018

Zbigniew H. ŻUREK BADANIA STANU FERROMAGNETYCZNYCH ELEMENTÓW MASZYN W POLU MAGNETYCZNYM

Transkrypt:

Kompozyty 11: 4 (2011) 299-303 Dariusz Kwiatkowski 1*, Hubert Dębski 2 1 Czestochowa University of Technology, Institute of Polymer Processing and Production Management, Armii Krajowej 19c, 42-201 Częstochowa, Poland 2 Lublin University of Technology, Department of Machine Design Fundamentals, ul. Nadbystrzycka 36, 20-616 Lublin, Poland * Corresponding author. E-mail: kwiatkowski@ipp.pcz.pl Otrzymano (Received) 07.06.2011 NUMERICAL SIMULATION OF CRACKING PROCESS OF POLYMER COMPOSITES ON EXAMPLE OF SENB SAMPLE The numerical calculations made in the work included the analysis of stress distribution near the rift top and determination of the stress intensity coefficient (WIN) as well as the J integral during three-point bending of SENB samples made from composites with a matrix of two well-known thermoplastics: PP and PA6 with a 25% content of glass fibre. Analysis of the composites crack development and propagation was also done performed. The numerical tool used for FEM calculations is the ABAQUS/Standard computer program that has modern calculation procedures in this field. The numerical calculations were made taking into consideration the experimental data determining the conditions of cracking process initiation of the composite material. The results of the numerical calculations were verified by the results of the experiments. The numerical calculations that were made concerned a geometrically non-linear problem. They were conducted with use of the incremental- -iterative Newton-Raphson method. The numerical analysis was performed in two steps. The first step was a preliminary analysis that allowed estimation of the stress level in the composites near the rift top that initiated the cracking process, as well as forecasting the possibility of further propagation occurrence (or exclusion of this phenomenon) in the material region. In the second step of calculations corresponding to the critical value of deflection, numerical calculations taking into account the development and propagation of the crack were made using a more advanced technique for modeling cracking - the Cohesive Zone Method (CZM). Keywords: polymeric composites, cracking process, fracture toughness, numerical simulation, polypropylene, polyamide 6, glass fibre, SENB SYMULACJA NUMERYCZNA PROCESU PĘKANIA KOMPOZYTÓW POLIMEROWYCH NA PRZYKŁADZIE PRÓBKI SENB Przeprowadzone w pracy obliczenia numeryczne obejmowały analizę rozkładów napręŝenia w pobliŝu wierzchołka rysy i wyznaczenie współczynnika intensywności napręŝeń WIN oraz całki J podczas trójpunktowego zginania próbek SENB wykonanych z kompozytów na osnowie dwóch znanych tworzyw termoplastycznych PP i PA6 z 25% zawartością włókna szklanego. Dokonano równieŝ analizy rozwoju i propagacji pękania tych kompozytów polimerowych. Zastosowanym w obliczeniach MES narzędziem numerycznym jest program ABAQUS/Standard, posiadający nowoczesne procedury obliczeniowe w tym zakresie. Obliczenia numeryczne prowadzono z uwzględnieniem danych doświadczalnych określających warunki inicjacji procesu pękania danego kompozytu polimerowego. Wyniki obliczeń numerycznych zostały zweryfikowane z rezultatami badań eksperymentalnych. Wykonane obliczenia numeryczne stanowiły zagadnienie geometrycznie nieliniowe z wykorzystaniem przyrostowo-iteracyjnej metody Newtona-Raphsona. Analiza numeryczna prowadzona była w dwóch etapach. Pierwszy etap obliczeń stanowił wstępną analizę, pozwalającą oszacować poziom wytęŝenia kompozytów polimerowych w pobliŝu wierzchołka rysy inicjującego proces pękania oraz dokonać oceny moŝliwości wystąpienia dalszej propagacji (lub jej wykluczenie) w obszarze materiału. W drugim etapie obliczeń, odpowiadającym osiągnięciu krytycznej wartości ugięcia, przeprowadzono obliczenia numeryczne uwzględniające rozwój i propagację pęknięcia z wykorzystaniem bardziej zaawansowanej techniki modelowania procesu pękania - Cohesive Zone Method (CZM). Słowa kluczowe: kompozyty polimerowe, proces pękania, odporność na pękanie, symulacje numeryczne, polipropylen, poliamid 6, włókno szklane, SENB INTRODUCTION The Finite Element Method (FEM) is one of the most commonly used methods to solve different engineering problems. It is a modern calculation tool that supplements and widens the possibilities of stress state analysis of construction elements. In this method, a finite division of the Ω area (discretization) into finite elements averaging the physical state of the body is made and calculations are made only for nodes coming from this division. Beyond the nodes, the determined property is approximated on the basis of the values in the nearest nodes [1-3]. The numerical calculations made in the work included analysis of stress distribu-

300 D. Kwiatkowski, H. Dębski tion near the rift top and determination of the stress intensity coefficient (WIN) as well as the J integral during three-point bending of SENB samples made from composites with a matrix of two well-known thermoplastics: PP and PA6 with a 25% content of glass fibre. Analysis of the polymeric composites crack development and propagation was also conducted. The numerical tool used for FEM calculations is the ABAQUS/Standard computer program that has modern calculation procedures in this field. The numerical calculations were made taking into consideration the experimental data determining the conditions of cracking process initiation of the composite material. The results of the numerical calculations were verified by the results of the experiments. The numerical calculations that were made concerned a geometrically non- -linear problem. They were conducted with use of the incremental-iterative Newton-Raphson method. The numerical analysis was performed in two steps. The first step was a preliminary analysis that allowed estimation of the stress level in the composites near the rift top that initiated the cracking process, as well as forecasting the possibility of further propagation occurrence (or exclusion of this phenomenon) in the material region. In the second step of calculation, corresponding to the critical value of deflection, numerical calculations taking into account the development and propagation of cracks were made using a more advanced technique for modeling cracking - the Cohesive Zone Method (CZM) [4-10]. BASICS AND ASSUMPTIONS Numerical analysis using the finite element method FEM was made on a spatial model of a SENB-type sample used for crack resistance tests. The sample was made from the composites PP and PA6 with a 25% content of glass fibre. The SENB sample was subjected to a 3-point bending test. The drawing of this sample with marked dimensions is presented in Figure 1. Fig. 1. Drawing of SENB sample for crack resistance tests Rys. 1. Schemat próbki do badań odporności na pękanie typu SENB In order to sharpen the vertex of the notch maximally, a fatigue pre-crack in the notch middlewidth was made. A structural mesh of a hexagonal type was used to create the numerical model. Discretization of the SENB sample was based on 20-node solid elements of the C3D20R type, with a second order shape function that have 3 translation degrees of freedom in each node. The elements of the supports and pushing rod were imaged with use of non-deforming elements of the R3D4 type (rigid body). The overall view of the calculation model of the SENB-type sample for crack resistance testing is shown in Figure 2. Fig. 2. General view of calculation model of SENB-type sample for crack resistance tests Rys. 2. Widok ogólny modelu obliczeniowego próbki do badań odporności na pękanie typu SENB The boundary conditions of the numerical model were defined by fixing the bottom supports and the load was realized by pushing the rod displacement in the vertical direction, according to the turn of the displacement vector. Contact interactions of a surfaceto-surface contact type were defined between the supports and the pushing rod and the SENB sample. The numerical model required consideration of the mesh singularity near the rift (fatigue pre-cracking) top from the first calculation step. Splitting the region near the rift into smaller fragments is recommended. It was realized by a mesh consisting of elements in the shape of circles concentric at the rift top. In the first circle, 15-node solid elements of a wedge type - C3D15 with a second order shape function were used. In these elements, the nodes located in the middle of the side edges were dragged to 0.29 of the edge length, counting from the top of the fatigue pre-crack. As a result, singularity of the mesh in the rift top was assured. An example of the division into finite elements with the consideration of 8 circles is shown in Figure 3. The model for the second step of numerical calculations was worked out considering the surfacebased cohesive behaviour modelling technique. This model enables the observation of crack propagation along the initiating rift direction (Fig. 4). The crack propagation direction was determined along the direction of the initiating rift and perpendicularly to the upper edge of the sample. In the numerical model, the interactions of so-called cohesive type contact were taken into account. Determination of the cohesive type contact properties required definition of the material failure parameters that in this case were determined on the grounds of cracking initiation criterion.

Numerical simulation of cracking process of polymer composites on example of SENB sample 301 TABLE 1. Values of Young modulus and Poisson s ratio ν TABELA 1. Wartości modułu Younga i współczynnika Poissona ν Composite Young's modulus E, MPa Poisson's ratio ν PA6 + 25GF 7434 0,4062 PP + 25GF 4525 0,4165 Fig. 3. Mesh near rift top: overall view, view of detail A Rys. 3. Siatka elementów skończonych w pobliŝu wierzchołka rysy: widok ogólny, widok szczegółu A Fig. 4. Model of cohesive zone Rys. 4. Model strefy cohesive The model of linear elasticity was used to describe the properties of the tested composite. The composites of PP and PA6 with 25% of glass fibre content were considered as a quasi-isotropic body. The other assumption was that the strain values are proportional to the stress values in the model until the moment of total crack of the SENB sample. In the linear elastic model, it was assumed that the sample is broken without significant energy dissipation for plastic deformation. Plastic regions can only occur near the notch and are totally controlled by the surrounding elastic regions. Linear-elastic fracture mechanics is used for the analysis of stress and strain fields. For such defined material it is only necessary to determine the Young modulus of elasticity E and Poisson ratio ν (Table 1). The numerical calculations enable determination of the crack intensity coefficient K I and Rice integral J (first step of calculations) as well as observation and analysis of crack propagation (second step of calculations). In the first step of calculations, reduced stress distribution according to the Huber-Mises-Hencky (H-M-H) hypothesis was determined in the crack region (Fig. 5). Fig. 5. Reduced stress distribution according to H-M-H hypothesis in rift top region for PA6 with 25% glass fibre content: front view, view from rift interior Rys. 5. Rozkład napręŝenia zredukowanego wg hipotezy H-M-H w okolicy wierzchołka rysy dla kompozytu PA6 z 25% zawartością włókna szklanego: widok od przodu, widok od wnętrza rysy RESULTS OF NUMERICAL CALCULATIONS The crack intensity coefficient and Rice integral values were read out for each of the 8 circles. On the basis of the authors' own experience and the data from literature, the values of the crack intensity coefficient and J integral were omitted for the first three circles in order to avoid the undesired influence of singularity near the rift top. The results for the circles from 4 to 8 were employed for the calculations of the crack intensity coefficient and J integral. The mean values of the crack intensity coefficient K I and Rice integral J counted numerically for the circles from 4 to 8 are presented in Table 2. For comparison, the values of the crack intensity coefficient K I and Rice integral J arising from the experiments are also listed in Table 2.

302 D. Kwiatkowski, H. Dębski TABLE 2. Values of crack intensity coefficient K I and Rice integral J TABELA 2. Wartości współczynnika intensywności napręŝeń K I i całki Rice a J Composite K I, Numerical calculations 2 MPa m Rice a integral J, kj / m Experiment Numerical calculations Experiment PA6 + 25GF 8.89 9.46 6.46 6.88 PP + 25GF 7.28 8.01 6.98 7.76 The results of the numerical calculations confirm the convergence of the obtained values of crack resistance parameters with the results obtained from the experiments. The best compatibility was obtained for the composites of PP with a 25% glass fibre content. For the composite with the PP matrix, a compatibility of 96% was obtained when comparing the numerical and experimental calculations. For the composite with the PA6 matrix, a compatibility lower by 2% was obtained. The numerically calculated values of crack intensity coefficient K I and Rice integral near the rift top, for deflection referring to the cracking initiation moment are also presented in regard to SENB sample deflection f (Fig. 6). was verified as well as the value of deflection in the final phase of sample cracking were verified. The results of this analysis are presented in the form of colour contoured maps on the background of the deflected model with a plotted map of reduced stress H-M-H (Figs 7 and 8). Fig. 7. Cracking process of SENB sample from PA6 with 25% glass fibre content composite: cracking initiation moment, final phase of cracking process Rys. 7. Proces pękania próbki SENB wykonanej z kompozytu PA6 z 25% zawartością włókna szklanego: moment inicjacji pęknięcia, końcowa faza procesu pękania Fig. 6. Values of K I ( and Rice integral ( for value of deflection referring to cracking initiation for PA6 with 25% glass fibre content (values for circle number 8) Rys. 6. Wartości K I ( oraz całki Rice a ( dla wartości ugięcia odpowiadającej inicjacji pęknięcia dla PA6 z 25% zawartością włókna szklanego (wartości dla 8 okręgu) The results of the CZM model analysis enable observation of the cracking process depending on the loading element movement - the pushing rod. The deflection value referring to the cracking initiation moment As a result of the numerical calculations with the CZM modelling technique, the following values of deflection characterizing the cracking process were obtained: - for PA6 with maximum content of glass fibre, the deflection value referring to the cracking initiation moment was f = 2.434 mm and failure of the sample occurred for deflection f = 5.421 mm, - for PP with maximum glass fibre content, the deflection value referring to the cracking initiation moment was f = 1.039 mm and failure of the sample occurred for deflection f = 4.709 mm, The deflection values obtained from the experiments were accordingly: - for PA6 with 25% glass fibre content: cracking initiation of SENB sample occurred for deflection value f = 2.675 mm and the failure of the sample - at deflection f = 5.844 mm, - for PP with 25% glass fibre content: cracking initiation of SENB sample occurred at deflection value f = 1.179 mm and the failure of the sample - at deflection f = 5.335 mm.

Numerical simulation of cracking process of polymer composites on example of SENB sample 303 Fig. 8. Cracking process of SENB sample made of PP with 25% glass fibre content composite: cracking initiation moment, final phase of cracking process Rys. 8. Proces pękania próbki SENB wykonanej z kompozytu PP z 25% zawartością włókna szklanego: moment inicjacji pęknięcia, końcowa faza procesu pękania For the composite of PA6 with glass fibre, a convergence of 91% between the numerical calculations and experimental results was observed. A convergence lower by a few percent (88%) was obtained for the composite of PP with glass fibre. The results of the numerical simulation with the use of the CZM model confirmed the correctness of the failure mechanism used for the analysed composites. CONCLUSIONS The numerical modelling techniques used in the work for analysing the phenomena of the cracking process of SENB samples from PP and PA6 composites assure convergence of the calculation results with the results obtained from the experiments. It confirms the adequacy of the FEM discrete models that were devised and it is the grounds for further research in this field, with the use of numerical methods as an alternative investigation method that could be a completion and extension of crack resistance research. It is forecast that in the next phase of numerical simulations, some theoretical considerations of the cracking process will be made using other body models that can be representative for composites with thermoplastic polymer matrices. Acknowledgements Badania realizowane w ramach Projektu Nr POIG.0101.02-00-015/08 w Programie Operacyjnym Innowacyjna Gospodarka (POIG). Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Rozwoju Regionalnego. The research has been conducted within the Operational Program Innovative Economy Project (project no. POIG.0101. 02-00-015/08). The project has been partially financed by the European Union with funds from the European Regional Development Fund. REFERENCES [1] Rakowski G., Kacprzyk Z., Metoda elementów skończonych w mechanice konstrukcji, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2005. [2] Rusiński E., Czmochowski J., Smolnicki T., Zaawansowana metoda elementów skończonych w konstrukcjach nośnych, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2000. [3] Osiński J., Obliczenia wytrzymałościowe elementów maszyn z zastosowaniem metody elementów skończonych, Oficyna Wydawnicza PW, Warszawa 1997. [4] Abaqus Theory Manual version 5.8, Hibbit, Karlsson & Sorensen, 1998. [5] Abaqus/Standard User s Manual version 6.5, Hibbit, Karlsson & Sorensen, 2005. [6] Borst De R., Numerical aspects of cohesive-zone models, Engineering Fracture Mechanics 2003, 70(14), 1743- -1757. [7] Song Seong Hyeok, Paulino Glaucio H., Buttlar William G., A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material, Engineering Fracture Mechanics 2006, 73, 2829-2848. [8] Zavattieri Pablo D., Modeling of crack propagation in thinwalled structures using a cohesive model for shell elements, Journal of Applied Mechanics 2006, 73, 947-958. [9] Xiaowei Zeng, Shaofan Li, A multiscale cohesive zone model and simulations of fractures, Comput. Methods Appl. Mech. Engrg. 2010, 199, 547-556. [10] Murphy N., Ivankovic A., The prediction of dynamic fracture evolution in PMMA using a cohesive zone model, Engineering Fracture Mechanics 2005, 72, 861-875.