OZNACZANIE LEPKOŚCI KINEMATYCZNEJ WYBRANYCH PALIW ZASTĘPCZYCH STOSOWANYCH W TRANSPORCIE SAMOCHODOWYM



Podobne dokumenty
BADANIA SMARNOŚCI WYBRANYCH PALIW ZASTĘPCZYCH STOSOWANYCH W TRANSPORCIE SAMOCHODOWYM

WPŁYW ZASTOSOWANIA WYBRANYCH PALIW ZASTĘPCZYCH NA DAWKOWANIE PALIWA W ZASOBNIKOWYM UKŁADZIE WTRYSKOWYM SILNIKA O ZAPŁONIE SAMOCZYNNYM

Analysis of the influence of injection pressure in common rail system on spray tip penetration of the selected alternative fuels

2. Klasyfikacja i podstawowe wskaźniki charakteryzujące pracę silników spalinowych

1. Wprowadzenie. 2. Klasyfikacja i podstawowe wskaźniki charakteryzujące pracę silników spalinowych. 3. Paliwa stosowane do zasilania silników

The effect of adding gasoline to diesel fuel on its self-ignition properties

1. Wprowadzenie 1.1. Krótka historia rozwoju silników spalinowych

The influence of physicochemical fuel properties on operating parameters in diesel engine

Wysoka wartość lepkości oznacza utrudnienia płynięcia - prosimy sobie wyobrazić np. gęsty syrop.

ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA

BADANIE WŁAŚCIWOŚCI SAMOZAPŁONOWYCH PALIW ZASTĘPCZYCH NA PODSTAWIE SPALANIA W KOMORZE O STAŁEJ OBJĘTOŚCI

Wpływ składu mieszanki gazu syntetycznego zasilającego silnik o zapłonie iskrowym na toksyczność spalin

Mechanika i Budowa Maszyn Studia pierwszego stopnia

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 170

ROZPORZĄDZENIE MINISTRA GOSPODARKI. z dnia 9 grudnia 2008 r. w sprawie wymagań jakościowych dla paliw ciekłych. (tekst jednolity)

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1275 wydany przez POLSKIE CENTRUM AKREDYTACJI Warszawa, ul.

Wymagania edukacyjne Technologia napraw zespołów i podzespołów mechanicznych pojazdów samochodowych

OCENA PORÓWNAWCZA ZUśYCIA PALIWA SILNIKA CIĄGNIKOWEGO ZASILANEGO BIOPALIWEM RZEPAKOWYM I OLEJEM NAPĘDOWYM

STANOWISKO BADAWCZE WTRYSKOWYCH UKŁADÓW COMMON RAIL ZASILANYCH PALIWAMI RÓŻNEGO TYPU

WZÓR RAPORTU DLA KOMISJI EUROPEJSKIEJ. 1. Informacje dotyczące instytucji sporządzającej raport.

ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dnia 22 stycznia 2009 r. w sprawie wymagań jakościowych dla biopaliw ciekłych 2)

Jednostkowe stawki opłaty za gazy lub pyły wprowadzane do powietrza z procesów spalania paliw w silnikach spalinowych 1)

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 297

WZÓR RAPORTU DLA RADY MINISTRÓW

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 297

INFLUENCE OF POWERING 1104C PERKINS WITH MIXTURE OF DIESEL WITH THE ADDITION OF THE ETHANOL TO HIS SIGNS OF THE WORK

Ocena parametryczna biopaliw płynnych

WPŁYW ZASILANIA PALIWEM MIKROEMULSYJNYM NA PROCES JEGO WTRYSKU W SILNIKU O ZAPŁONIE SAMOCZYNNYM

OKREŚLENIE SKŁADU FRAKCYJNEGO BIOPALIW ROLNICZYCH ZAWIERAJĄCYCH BIOKOMPONENT CSME

Streszczenie. Abstract

Nowe narzędzia badawcze do oceny właściwości użytkowych paliw do silników o zapłonie samoczynnym

FUNCTIONAL AGRIMOTOR TESTING SUPPLIED BY THE VEGETABLE ORIGIN FUELS BADANIE FUNKCJONALNE SILNIKA ROLNICZEGO ZASILANEGO PALIWAMI POCHODZENIA ROŚLINNEGO

Instrukcja do ćwiczeń laboratoryjnych - ćwiczenie nr 2. przedmiot: Metody Analizy Technicznej kierunek studiów: Technologia Chemiczna, 3-ci rok

WPŁYW WŁAŚCIWOŚCI PALIW MINERALNYCH I ROŚLINNYCH NA PRĘDKOŚĆ NARASTANIA CIŚNIENIA W PRZEWODZIE WTRYSKOWYM I EMISJĘ AKUSTYCZNĄ WTRYSKIWACZA

Ocena właściwości tribologicznych paliw roślinnych w aspekcie wpływu na proces zużycia aparatury wtryskowej silników o zapłonie samoczynnym

ZNACZENIE I MONITOROWANIE JAKOŚCI PALIW

Warszawa, dnia 29 grudnia 2017 r. Poz ROZPORZĄDZENIE MINISTRA ENERGII 1) z dnia 20 grudnia 2017 r.

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 297

Wymagania gazu ziemnego stosowanego jako paliwo. do pojazdów

DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ

BADANIE SMARNOŚCI OLEJU NAPĘDOWEGO Z DODATKIEM ESTRÓW OLEJU RZEPAKOWEGO PRZY UŻYCIU APARATU HFRR

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 297

Logistyka - nauka. Wpływ zastosowania paliwa z dodatkiem etanolu do zasilania silników spalinowych na skład spalin

WPŁYW ZASILANIA SILNIKA PERKINS 1104C BIOETANOLEM NA EKONOMICZNE I ENERGETYCZNE WSKAŹNIKI JEGO PRACY

Problemy z silnikami spowodowane zaklejonymi wtryskiwaczami Wprowadzenie dodatku do paliwa DEUTZ Clean-Diesel InSyPro.

OCENA ZUŻYCIA PALIWA PRZEZ SILNIK O ZAPŁONIE SAMOCZYNNYM PRZY ZASILANIU WYBRANYMI PALIWAMI

PL B1. Sposób zasilania silników wysokoprężnych mieszanką paliwa gazowego z olejem napędowym. KARŁYK ROMUALD, Tarnowo Podgórne, PL

BADANIA ZUŻYCIA ELEMENTÓW UKŁADU WTRYSKOWEGO SILNIKA O ZAPŁONIE SAMOCZYNNYM ZASILANEGO PALIWAMI ROŚLINNYMI

Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia drugiego stopnia specjalność Samochody i Ciągniki

BADANIA WIZUALIZACYJNE JAKO METODA OCENY PARAMETRÓW WTRYSKU PALIWA DO SILNIKÓW O ZS

Lepkościomierz Stabingera SVM 3001

OCENA WŁAŚCIWOŚCI SMARNYCH WYBRANYCH PALIW POCHODZENIA ROŚLINNEGO I NAFTOWEGO

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 1(97)/2014

WYBRANE PARAMETRY PROCESU SPALANIA MIESZANIN OLEJU NAPĘDOWEGO Z ETEREM ETYLO-TERT-BUTYLOWYM W SILNIKU O ZAPŁONIE SAMOCZYNNYM

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 1(87)/2012

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012

Rok akademicki: 2014/2015 Kod: STC TP-s Punkty ECTS: 3. Kierunek: Technologia Chemiczna Specjalność: Technologia paliw

Transport I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) studia niestacjonarne (stacjonarne / niestacjonarne)

RHEOTEST Medingen Reometr RHEOTEST RN: Zakres zastosowań Smary

TRANSCOMP XIV INTERNATIONAL CONFERENCE COMPUTER SYSTEMS AIDED SCIENCE, INDUSTRY AND TRANSPORT

Wpływ dodatku oleju rzepakowego do paliwa na charakterystykę pracy wtryskiwaczy elektromagnetycznych

WPŁYW PALIWA RME W OLEJU NAPĘDOWYM NA WŁAŚCIWOŚCI SMARNE W SKOJARZENIU STAL ALUMINIUM

TRANSCOMP XIV INTERNATIONAL CONFERENCE COMPUTER SYSTEMS AIDED SCIENCE, INDUSTRY AND TRANSPORT

IMPACT OF FUEL APPLICATIONS MICROEMULSION THE HYDROCARBON -ESTER - ETHANOL INDICATORS FOR EFFECTIVE WORK ENGINE PERKINS C -44

PRZECIWZUŻYCIOWE POWŁOKI CERAMICZNO-METALOWE NANOSZONE NA ELEMENT SILNIKÓW SPALINOWYCH

Załącznik nr 4. Stawki akcyzy na Ukrainie

Pytania na egzamin dyplomowy specjalność SiC

Stawki akcyzy na Ukrainie (według stanu na dzień 1 czerwca 2016 roku)

Rok akademicki: 2014/2015 Kod: SEN EW-s Punkty ECTS: 5. Kierunek: Energetyka Specjalność: Energetyka wodorowa

ESTRY METYLOWE POCHODZENIA ZWIERZĘCEGO JAKO PALIWO ROLNICZE. mgr inż. Renata Golimowska ITP Oddział Poznań

PARAMETRY ENERGETYCZNE I ASPEKT EKOLOGICZNY ZASIALNIA SILNIKA ZS PALIWEM MINERALNYM POCHODZENIA ROŚLINNEGO

PRZYPOMINAMY: Od 12 października 2018 r. nowe oznaczenia odmierzaczy paliwowych na wszystkich stacjach

Polskie Normy opracowane przez Komitet Techniczny nr 277 ds. Gazownictwa

Perspektywy wykorzystania CNG w polskim transporcie

Wydział Mechaniczny. INSTYTUT EKSPLOATACJI POJAZDÓW I MASZYN tel.

Praktyczne wdrożenie nowych wymagań polityki PCA dotyczącej uczestnictwa w badaniach biegłości, na przykładzie badań przetworów naftowych

Warszawa, dnia 30 czerwca 2017 r. Poz ROZPORZĄDZENIE MINISTRA ENERGII 1) z dnia 12 czerwca 2017 r.

Planowanie Projektów Odnawialnych Źródeł Energii Oleje resztkowe

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia III. Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia

Konwersja biomasy do paliw płynnych. Andrzej Myczko. Instytut Technologiczno Przyrodniczy

Silniki zasilane alternatywnymi źródłami energii

PL B1. GULAK JAN, Kielce, PL BUP 13/07. JAN GULAK, Kielce, PL WUP 12/10. rzecz. pat. Fietko-Basa Sylwia

Mgr inŝ. Wojciech Kamela Mgr inŝ. Marcin Wojs

Ocena stabilności oksydacyjnej paliw do silników o zapłonie samoczynnym według projektowanych wymagań CEN

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej

PROGRAM BADAŃ BIEGŁOŚCI ORGANIZOWANY PRZEZ SEKCJĘ PETROL-GAZ w oparciu o PN-EN ISO/IEC 17043:2010 oraz Procedurę KPLB nr 1 wyd. 4 z

CHROMATOGRAFIA II 18. ANALIZA ILOŚCIOWA METODĄ KALIBRACJI

Opis modułu kształcenia Materiałoznawstwo paliw ciekłych

Sprawozdanie. z ćwiczeń laboratoryjnych z przedmiotu: Współczesne Materiały Inżynierskie. Temat ćwiczenia

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 1(92)/2013

gospodarki energetycznej Cele polityki energetycznej Polski Działania wspierające rozwój energetyki odnawialnej w Polsce...

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 1(97)/2014

Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA

WPŁYW ZASILANIA SILNIKA PERKINS 1104C BIOETANOLEM NA PRZEBIEG PROCESU WTRYSKU I PODSTAWOWE PARAMETRY ROZPYLANIA

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 297

Mechanika i Budowa Maszyn II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

NAPRAWA. 1) lokalizuje uszkodzenia zespołów i podzespołów pojazdów samochodowych na podstawie pomiarów i wyników badań diagnostycznych;

PROCEDURA DOBORU POMP DLA PRZEMYSŁU CUKROWNICZEGO

The study of derived cetane number for ethanol-diesel blends

Transkrypt:

OZNACZANIE LEPKOŚCI KINEMATYCZNEJ WYBRANYCH PALIW ZASTĘPCZYCH STOSOWANYCH W TRANSPORCIE SAMOCHODOWYM Dr inż. Hubert KUSZEWSKI, Dr inż. Artur JAWORSKI, Dr inż. Adam USTRZYCKI W artykule przedstawiono wyniki badań lepkości kinematycznej wybranych paliw zastępczych. Oznaczanie lepkości przeprowadzono na automatycznym aparacie HVU 482 wyposażonym w kapilary Ubbelohde a. Pomiary realizowano dla różnych paliw przeznaczonych do silników o zapłonie samoczynnym, w tym konwencjonalnych, a także stanowiących mieszaniny tych paliw z paliwami pochodzenia roślinnego. Oznaczanie realizowano w temperaturze 40 C, adekwatnie do wymagań normy PN-EN 590+A1:2011. 1. WSTĘP Wzrost zapotrzebowania na paliwa będące wynikiem przeróbki ropy naftowej, przy jednoczesnym obserwowanym kurczeniu się takich zasobów energii, decyduje o poszukiwaniu coraz to nowych ich źródeł. Możliwość zastosowania paliw zastępczych, tj. pochodzących ze źródeł innych niż przeróbka ropy naftowej, determinowana jest ich parametrami fizykochemicznymi. Rozwój silników o zapłonie samoczynnym, które dominują w pojazdach samochodowych wykorzystywanych w transporcie samochodowym, uzasadnia z kolei poszukiwania substytutów olejów napędowych (ON). Wśród paliw zastępczych do silników o ZS można wyodrębnić paliwa gazowe i ciekłe. W pierwszej grupie znajduje się głównie gaz ziemny, biogaz, gaz świetlny, wodór oraz mieszanina propanu i butanu. W grupie paliw niekonwencjonalnych ciekłych znajdują się zasadniczo estry wyższych kwasów tłuszczowych (FAME), oleje roślinne, a także metanol, etanol i eter dimetylowy [1]. Wymienione paliwa ciekłe mogą być wprawdzie stosowane jako paliwa samoistne, lecz z uwagi na konieczność dość złożonych modyfikacji konstrukcji silników, które pierwotnie zaprojektowano do zasilania ON, zwykle bierze się pod uwagę mieszaniny paliwa konwencjonalnego z paliwami pochodzenia roślinnego, np. olejem roślinnym, estrami czy alkoholem, co w założeniu wymaga znacznie mniejszej ingerencji w konstrukcję silnika, w szczególności w jego układ zasilania [1,2,6,7,8]. Jednym z kluczowych zagadnień przy analizie możliwości wykorzystania paliw zastępczych, jest trwałość elementów silnika, która uzależniona jest od występowania warunków do smarowania hydrodynamicznego. Ten rodzaj smarowania, zapewniający efektywną ochronę przed zużyciem węzłów tribologicznych uzależniony jest, jak wiadomo, od lepkości substancji smarowej, a zatem także paliwa. Należy podkreślić, że również z uwagi na większą zawartość wody oraz brak związków siarki w niektórych paliwach zastępczych, paliwa stanowiące różne kombinacje mieszanin z uwzględnieniem benzyny silnikowej, oleju napędowego, oleju roślinnego, estrów oraz alkoholu, odznaczają się odmiennymi właściwościami smarującymi w stosunku do paliw konwencjonalnych. Lepkość paliwa decyduje także o wartości oporów przepływu paliwa przez przewody, filtry, otworki rozpylacza, kanały wtryskiwacza, a także o przebiegu tłoczenia i dawkowania paliwa. Mając zatem na uwadze procesy zachodzące w układach wtryskowych, dobór paliwa o optymalnej lepkości musi stanowić kompromis pomiędzy sprzecznymi wymaganiami. Przykładem może być zwiększanie lepkości. Większa wartość lepkości jest korzystna z uwagi na sprawność i ciśnienie tłoczenia w pompach wysokociśnieniowych oraz warunki smarowania ruchomych, współpracujących elementów układu wtryskowego, ale jej wzrost zawsze prowadzi do zwiększenia strat energii na przetłaczanie paliwa w układzie zasilania. Przedstawiona problematyka uzasadnia konieczność pomiaru lepkości kinematycznej w odniesieniu do różnych paliw zastępczych. Wyniki lepkości mogą być wykorzystane przy wnioskowaniu dotyczącym parametrów procesu wtrysku i makrostruktury strugi rozpylanego paliwa. W artykule zaprezentowano wyniki pomiaru lepkości kinematycznej różnych paliw, które przy pewnych uwarunkowaniach, mogą stanowić alternatywę dla oleju napędowego i służyć do zasilania silników o zapłonie samoczynnym. Przeprowadzenie pomiarów w temperaturze 40 C pozwala dodatkowo odnieść uzyskane wyniki do wymagań odpowiednich norm. 186

2. STANOWISKO BADAWCZE I METODYKA BADAŃ Procedura oznaczania lepkości kinematycznej została określona w normie PN-EN ISO 3104:2004, pt. Przetwory naftowe. Ciecze przezroczyste i nieprzezroczyste. Oznaczanie lepkości kinematycznej i obliczanie lepkości dynamicznej. Jednocześnie w normie PN-EN 590+A1:2011 pt. Paliwa do pojazdów samochodowych. Oleje napędowe. Wymagania i metody badań oraz w normie PN-EN 14214+A1:2011 pt. Paliwa do pojazdów samochodowych. Estry metylowe kwasów tłuszczowych (FAME) do silników o zapłonie samoczynnym (Diesla). Wymagania i metody badań wskazuje się na normę PN-EN ISO 3104:2004 jako obowiązującą dla określenia lepkości kinematycznej olejów napędowych i estrów metylowych kwasów tłuszczowych. Zgodnie z przytoczoną normą lepkość kinematyczną ciekłych produktów naftowych, zarówno przezroczystych, jak i nieprzezroczystych, oznacza się na podstawie pomiaru czasu przepływu określonej objętości cieczy pod wpływem sił grawitacyjnych, przez wzorcowany, szklany przyrząd kapilarny. Do pomiarów lepkości kinematycznej wybranych paliw zastępczych wykorzystano automatyczny aparat HVU 482 firmy Herzog skonstruowany w oparciu o lepkościomierz Ubbelohde a. Specyfikacja techniczna aparatu spełnia wymagania norm PN-ISO 3105:2006, ASTM D446 07 i IP71 (sec. 2) oraz umożliwia realizację pomiarów w oparciu o normy PN-EN ISO 3104, ASTM D 445, ASTM D 2270, IP 71 sec.1 oraz DIN 51 562. Kapilary Ubbelohde a w aparcie HVU 482 mają dodatkową czwartą szklaną rurkę umożliwiającą automatyzację procesu mycia kapilar po zrealizowaniu testu. W czasie badań wykorzystywano dwie wbudowane w aparat kapilary. Charakterystyka kapilar wraz z zakresem pomiarowym lepkości zawarto w tabeli 1. Tabela 1. Charakterystyka kapilar Ubbelohde a wykorzystanych w pomiarach [11] Numer kapilary Ulokowanie w łaźni System detekcji Zakres pomiaru [mm 2 /s] Stała korekcji Hagenbacha [mm 2 s] Stała kapilary [mm 2 /s 2 ] Przyspieszenie ziemskie w miejscu wzorcowania [m/s 2 ] Rekomendowany zakres czasu przepływu [s] 1 lewa strona NIR 5,8 29,0 51,328 0,0288410 9,80989 200 1000 2 prawa strona NIR 1,9 9,5 102,820 0,0094893 9,80989 200 1000 Ponieważ wartość lepkości kinematycznej uzależniona jest temperatury, dlatego w czasie jej oznaczania niezwykle istotne jest precyzyjne utrzymywanie temperatury w łaźni, gdzie umieszczone są kapilary. Adekwatnie do norm PN-EN 590+A1:2011 oraz PN-EN 14214+A1:2011, temperatura w łaźni w czasie oznaczania lepkości ustalona została na wartość 40 C [13,14]. W tabeli 2 przedstawiono podstawowe parametry aparatu HVU 482, a na rys. 1 jego zdjęcie wraz ze schematem kapilary Ubbelohde a. Tabela 2. Podstawowe dane aparatu HVU 482 [11] Cecha Opis Zakres temperatury dla oznaczeń -40 C +100 C Zakres pomiarowy w zależności od zastosowanej kapilary 1 50 000 mm 2 /s System detekcji Objętość próbki Aplikacja próbki Układ termostatujący Kalibracja i diagnostyka System czyszczenia kapilar NIR; dwupunktowy system detekcji menisku niewrażliwy na efekty napięcia powierzchniowego, przewodność próbki oraz zawartość wody 20 ml ręczna, za pomocą strzykawki zewnętrzny; zakres regulacji temperatury -80 C +20 C wbudowane procedury kalibracyjne, programy diagnostyczne i sprawdzające automatyczny z możliwością stosowania dwóch rozpuszczalników 187

Rys. 1. Widok aparatu HVU 482 oraz schemat lepkościomierza Ubbelohde a [6], 1 górny poziom badanej cieczy na początku pomiaru, 2 zbiornik górny, 3 dolny poziom badanej cieczy na końcu pomiaru, 4 kalibrowana kapilara, 5 zbiornik dolny Rys. 2. Widok okna programu HLIS 32 z identyfikacją kapilar oraz statusem urządzenia W czasie pomiarów lepkości aparat był sterowany za pomocą dedykowanego oprogramowania komputerowego HLIS 32. Dzięki oprogramowaniu możliwe jest sterowanie większością funkcji aparatu. Główną jego zaletą jest wspomaganie procedury uruchamiania testu oraz archiwizacja i obróbka wyników pomiarów. Na rys. 2 i 3 pokazane zostały przykładowe okna interfejsu oprogramowania HLIS 32. Rys. 3. Widok okna programu HLIS 32 z prezentacją wyniku pomiaru oraz charakterystyką użytej kapilary 188

3. WYNIKI BADAŃ Pomiary lepkości kinematycznej wybranych paliw, mogących stanowić alternatywę dla oleju napędowego przeprowadzono w 40 C. Wartość ta, jak wspomniano wynika z uwarunkowań normatywnych. Tabela 3. Paliwa wykorzystane podczas pomiarów lepkości Oznaczenie paliwa Olej napędowy bez biododatków Olej napędowy gatunek F, zawierający do 5% FAME 189 Udział [% obj.] Estry metylowe oleju rzepakowego FAME Rafinowany olej rzepakowy Alkohol etylowy Benzyna silnikowa Klasa lotności D/D1 ON100 ONH100 B100 OR100 ET100 G100 ON100 100 - - - - - ONH100-100 - - - B5 95-5 - - - B7 93-7 - - - B10 90-10 - - - B20 80-20 - - - B50 50-50 - - - B100 - - 100 - - - OR20-80 - 20 - - OR40-60 - 40 - - OR80-20 - 80 - - ORG20 - - - 80-20 ORG30 - - - 70-30 ORET5G5 - - - 90 5 5 Do badań wybrano 13 różnych paliw, wśród których znajdują się paliwa bazowe oraz paliwa będące ich mieszaninami o różnych udziałach objętościowych poszczególnych składników. Paliwami bazowymi był olej napędowy niezawierający biokomponentów, typowy olej napędowy znajdujący się w handlu zawierającym do 5 % V/V estrów metylowych kwasów tłuszczowych oleju rzepakowego, estry metylowe kwasów tłuszczowych oleju rzepakowego, rafinowany olej rzepakowy, alkohol etylowy oraz typowa benzyna silnikowa bezołowiowa. Paliwa wykorzystane z badaniach stanowiące mieszaniny zostały dobrane na podstawie danych literaturowych, dotyczących oceny ich przydatności do zasilania silników o zapłonie samoczynnym [1,2,3,4,5,9]. Paliwa, dla których wykonano pomiary zostały przedstawione w tabeli 3. Wartość lepkości kinematycznej obliczana jest na podstawie zmierzonego czasu przepływu badanej cieczy z równania [12]: v = t C (1) v t - lepkość kinematyczna [mm 2 /s], - średni czas swobodnego płynięcia próbki (czas przejścia menisku od pierwszego do drugiego znacznika komory pomiarowej) [s], C - stała kalibracji kapilary [mm 2 /s 2 ]. Zgodnie z wytycznymi zawartymi w normie, dla każdego paliwa realizowano dwa pomiary czasu i do obliczania lepkości wykorzystywano średnią arytmetyczną z tych dwóch pomiarów. Ponieważ stała wzorcowania (kalibracji) kapilary C zależna jest od przyspieszenia ziemskiego w miejscu wzorcowania, dlatego laboratorium wzorcujące podaje tą wartość wraz ze stałą kalibracji. Jeżeli przyspieszenie ziemskie g w miejscu pomiarów różni się od przyspieszenia ziemskiego w miejscu wzorcowania o więcej niż 0,1 %, wprowadza się poprawkę do stałej wzorcowania według następującej zależności [12]: C g = (2) 2 2 C1 g 1 C 1 - stała kapilary w laboratorium wzorcującym [mm 2 /s 2 ],

C 2 - stała kapilary w laboratorium badawczym [mm 2 /s 2 ], g 1 - przyspieszenie ziemskie w laboratorium wzorcującym (wartość podano w tabeli 1) [m/s 2 ], g 2 - przyspieszenie ziemskie w laboratorium badawczym [m/s 2 ]. Założono, że przyspieszenie ziemskie w miejscu, gdzie realizowano pomiary, nie różni się od przyspieszenia ziemskiego w miejscu wzorcowania o więcej niż 0,1 %, dlatego do obliczeń lepkości wykorzystano odpowiednie stałe kalibracji z tabeli 1. Podczas pomiarów uwzględniana była korekcja wartości lepkości z uwagi na energię kinetyczną z uwzględnieniem stałej korekcji Hagenbacha E. Wartość skorygowaną lepkości oblicza się z zależności [10,11]: E ν k = C t (3) 2 t ν k - skorygowana wartość lepkości kinematycznej [mm 2 /s], t - średni czas swobodnego płynięcia próbki (czas przejścia menisku od pierwszego do drugiego znacznika komory pomiarowej) [s], E - stała korekcji Hagenbacha [mm 2 s], Stała korekcji Hagenbacha E wynika z geometrii kapilary Ubbelhode a i jest obliczana z zależności [10]: 3 2 E = 1,66 V (4) L 1 ( 2 C R)2 V - objętość przepływowa kapilary [cm 3 ], L - długość kapilary [cm], C - stała kalibracji kapilary [mm 2 /s 2 ], R - promień kapilary [cm]. Zależność (3) i (4) stosuje się dla lejkowego zakończenia kapilary [10]. Wartość E zwykle jest zawarta w certyfikacie kapilary, obok stałej kalibracji i warunków jej przeprowadzenia. Dane stałej korekcji E dla wykorzystanych w badaniach kapilar zawarto w tabeli 1. Zgodnie z normą PN-EN ISO 3104:2004 za wynik dokładny uznaje się taki, jeśli różnica pomiędzy kolejnymi oznaczeniami, uzyskanymi przez tego samego wykonawcę, w tym samym laboratorium, z wykorzystaniem tego samego aparatu, dla serii czynności prowadzących do uzyskania pojedynczego wyniku, przy zachowaniu procedury oznaczania, tylko w jednym przypadku na dwadzieścia przekracza wartość określoną zależnością [12]: ( y 1) d = 0,0013 + (5) d - dokładność oznaczania [mm 2 /s]; zależność opracowana na podstawie analizy statystycznej wyników badań międzylaboratoryjnych dla ośmiu olejów napędowych o lepkości w zakresie 1 13 [mm 2 /s] w temperaturze 40 C, y - wartość średnia porównywanych oznaczeń [mm 2 /s]. Wyniki uznaje się za powtarzalne, jeżeli różnica pomiędzy kolejnymi wynikami, uzyskanymi przez tego samego wykonawcę, w stałych warunkach badania i na identycznym materiale badawczym, z wykorzystaniem tego samego aparatu, przy zachowaniu procedury oznaczania, tylko w jednym przypadku na dwadzieścia przekracza wartość określoną zależnością [12]: ( x 1) r = 0,0043 + (6) 190

r x - powtarzalność wyniku oznaczania [mm 2 /s]; zależność opracowana na podstawie analizy statystycznej wyników badań międzylaboratoryjnych dla ośmiu olejów napędowych o lepkości w zakresie 1 13 [mm 2 /s] w temperaturze 40 C, - wartość średnia porównywanych oznaczeń [mm 2 /s]. Wyniki pomiarów lepkości zestawiono w tabeli 4. W tabeli podano wartość lepkości z pomiaru (obserwowaną) i skorygowaną. Lepkości obliczono dla każdego z dwóch pomiarów czasu dla każdego z paliw, co pozwoliło na określenie wartości niezbędnych do weryfikacji dokładności oraz powtarzalności oznaczania. Podano także wartości czasów przepływu paliwa przez kapilarę. Tabela 4. Wyniki pomiaru lepkości Oznaczenie paliwa Czas przepływu t 1 [s] Czas przepływu t 2 [s] Średni czas przepływu t [s] Lepkość kinematyczna nieskorygowana ν [mm 2 /s] Lepkość kinematyczna skorygowana ν k [mm 2 /s] Dokładność d [mm 2 /s] Powtarzalność r [mm 2 /s] ON100 275,90 275,10 275,50 2,6143 2,6129 0,0047 0,0155 ONH100 309,24 312,55 310,90 2,9502 2,9491 0,0051 0,0170 B5 275,30 276,23 275,77 2,6168 2,6155 0,0047 0,0156 B7 278,20 279,97 279,09 2,6483 2,6470 0,0047 0,0157 B10 282,49 283,67 283,08 2,6862 2,6849 0,0048 0,0159 B20 302,16 299,36 300,76 2,8540 2,8529 0,0050 0,0166 B50 353,73 360,81 357,27 3,3902 3,3894 0,0057 0,0189 B100 456,26 456,20 456,23 4,3293 4,3288 0,0069 0,0229 OR20 489,42 489,61 489,52 4,6452 4,6447 0,0073 0,0243 OR40 825,84 826,76 826,30 7,8410 7,8409 0,0115 0,0380 OR80 656,15 655,94 656,05 18,9210 18,9209 0,0259 0,0857 ORG20 380,34 380,97 380,66 10,9785 10,9781 0,0156 0,0515 ORG30 277,69 277,47 277,58 8,0057 8,0050 0,0117 0,0387 ORET5G5 765,37 765,76 765,57 22,0797 22,0796 0,0300 0,0992 Jak widać z tabeli 4, najmniejszą lepkością charakteryzowało się paliwo ON100, czyli olej napędowy niezawierający biokomponentów, natomiast największą lepkość odnotowano dla paliwa ORET5G5. Zwiększanie udziału objętościowego paliwa B100, w mieszaninie z ON100 skutkowało oczekiwanym przyrostem lepkości. Paliwo ONH100, które w założeniu zawierało maksymalnie 5% udziału estrów metylowych oleju rzepakowego, wykazało wprawdzie lepkość większą niż w przypadku paliwa ON100, ale równocześnie większą niż paliwo B5 sporządzone na potrzeby badań. Wyniki pomiaru skorygowanej lepkości kinematycznej zobrazowano na rys. 4. Rys. 4. Uzyskane w wyniku pomiarów wartości skorygowanej lepkości kinematycznej 191

Na rysunku dodatkowo podano normatywne wartości lepkości kinematycznej adekwatnie do normy PN-EN 590+A1:2011 pt. Paliwa do pojazdów samochodowych. Oleje napędowe. Wymagania i metody badań oraz normy PN-EN 14214+A1:2011 pt. Paliwa do pojazdów samochodowych. Estry metylowe kwasów tłuszczowych (FAME) do silników o zapłonie samoczynnym (Diesla). Wymagania i metody badań w obu przypadkach podane wartości dotyczą paliw przeznaczonych do stosowania w warunkach klimatu umiarkowanego. Wartości skorygowanej lepkości kinematycznej ν k zawarte w tabeli 4 i zaprezentowane na rys. 4, zostały obliczone na podstawie zależności (3). 4. PODSUMOWANIE I WNIOSKI Spośród paliw, dla których wykonano oznaczenia lepkości kinematycznej, oba rodzaje olejów napędowych (ON100, ONH100) oraz wszystkie sporządzone mieszaniny z udziałem estrów metylowych kwasów tłuszczowych oleju rzepakowego (B5, B7, B10, B20 i B50), spełniały wymagania określone normą PN-EN 590+A1:2011. Paliwo B100 spełniało zarówno wymagania normy PN-EN 590+A1:2011 oraz normy dedykowanej dla tego typu paliwa, tj. PN-EN 14214+A1:2011. Spośród sporządzonych mieszanin na bazie oleju rzepakowego, jedynie paliwo OR20 cechowało się lepkością kinematyczną zawartą w zakresie określonym normą PN-EN 14214+A1:2011. Pozostałe paliwa cechowały się podwyższoną lepkością kinematyczną i nie spełniały wyżej wymienionych norm. W warunkach eksploatacji, zwiększona lepkość paliwa może skutkować trudnościami w osiągnieciu odpowiednich parametrów makro- i mikrostruktury strugi rozpylanego paliwa, a to z kolei może wpływać na pogorszenie przebiegu procesu spalania. LITERATURA [1] Baczewski K., Kałdoński T.: Paliwa do silników o zapłonie samoczynnym. WKiŁ, Warszawa 2004. [2] Bocheński C.I.: Biodiesel. Paliwo rolnicze. Wydawnictwo SGWW, Warszawa 2003. [3] Bocheński C.I.: Wpływ ciśnienia wtrysku i lepkości oleju napędowego na proces rozpylenia paliwa w silnikach z ZS. MOTROL. Motorization and Energetics in Agriculture. Lublin 2004. [4] Bocheński C.I., Bocheńska A.: Olej rzepakowy paliwem do silników Diesla. Czasopismo Techniczne, z.8-m, Kraków 2008. [5] Jakóbiec J., Bocheńska A., Ambrozik A.: Modyfikacja właściwości fizyko-chemicznych i użytkowych paliwa rzepakowego. Inżynieria Rolnicza 4(129)/2011. [6] Jaworski A., Kuszewski H.: Pomiary i obliczenia lepkości kinematycznej paliwa przy wykorzystaniu aparatu HVU 482. Praca zbiorowa, nt. Systemy i środki transportu samochodowego TRANSPORT 2011, Rzeszów 2011. [7] Jaworski A., Kuszewski H., Ustrzycki A.: Wpływ biododatków na parametry energetyczne paliw stosowanych w spalinowych napędach środków transportu. Науково-технічний збирник No 23 `2011, Вісник / Національного транспортного університету, Київ 2011. [8] Kuszewski H.:, Jaworski A.: Badania porównawcze temperatury zapłonu wybranych paliw alternatywnych stosowanych w spalinowych napędach środków transportu. Щорічний науково-виробничий журнал No 19 Проектування, виробництво, та експлуатація автотранспортних засобів і поїздів, Видавництво Логос, Львів 2011. Lwów 2011. [9] Lotko W.: Zasilanie silników spalinowych paliwami alternatywnymi. Wydawnictwo Wyższej Szkoły Inżynierskiej, Radom 1995. [10] Wilke J., Kryk H., Hartmann J., Wagner D.: Theory and Praxis of Capillary Viscometry. Schott-Geräte GmbH. Materiały firmowe. [11] Dokumentacja techniczna wiskozymetru HVU 482. Inkom Instruments Co., Warszawa 2011. [12] PN-EN ISO 3104:2004 [13] PN-EN 590+A1:2011 [14] PN-EN 14214+A1:2011 DETERMINATION OF KINEMATIC VISCOSITY FOR SELECTED ALTERNATIVE FUELS USED IN MOTOR TRANSPORT The article presents the study of the kinematic viscosity for selected alternative fuels. Determination of viscosity has been carried out with automated viscometer 482 HVU equipped with Ubbelohde capillaries. The measurements have been realized for different fuels designed for diesel engines, including conventional, as well as mixtures of these fuels with vegetable fuels. According to the standard PN-EN 590 + A1: 2011 determination at 40 C have been made. Praca naukowa finansowana jest ze środków na naukę w latach 2009-2012 jako projekt badawczy. 192