PORÓWNANIE MODELI GRNN UTWORZONYCH Z WYKORZYSTANIEM MODUŁÓW SIECI NEURONOWYCH PAKIETÓW MATLAB I STATISTICA

Podobne dokumenty
WYKORZYSTANIE SIECI NEURONOWEJ DO ESTYMACJI WARTOŚCI WILGOTNOŚCI WZGLĘDNEJ POWIETRZA NA PODSTAWIE WARTOŚCI JEGO TEMPERATURY

Streszczenie. Słowa kluczowe: predykcja temperatury, sieci neuronowe, algorytmy uczenia sieci, MATLAB

PROGNOZOWANIE CENY OGÓRKA SZKLARNIOWEGO ZA POMOCĄ SIECI NEURONOWYCH

Streszczenie. Słowa kluczowe: modele neuronowe, parametry ciągników rolniczych

MATLAB A SCILAB JAKO NARZĘDZIA DO MODELOWANIA WŁAŚCIWOŚCI REOLOGICZNYCH

ZASTOSOWANIE AUTORSKIEJ METODY WYZNACZANIA WARTOŚCI PARAMETRÓW NOWOCZESNYCH SYSTEMÓW TECHNICZNYCH DO PŁUGÓW I OPRYSKIWACZY POLOWYCH

Sztuczne Sieci Neuronowe. Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW

WYZNACZANIE WARTOŚCI PODSTAWOWYCH PARAMETRÓW TECHNICZNYCH NOWOCZESNYCH KOMBAJNÓW ZBOŻOWYCH PRZY UŻYCIU SSN

Zastosowania sieci neuronowych

PROGNOZOWANIE OSIADAŃ POWIERZCHNI TERENU PRZY UŻYCIU SIECI NEURONOWYCH**

Sieci neuronowe w Statistica

Temat: Sztuczne Sieci Neuronowe. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

PROGNOZOWANIE ZMIAN MIKROKLIMATU SZKLARNI W OKRESIE LETNIM

SIECI RBF (RADIAL BASIS FUNCTIONS)

Projekt Sieci neuronowe

SZTUCZNE SIECI NEURONOWE W MODELOWANIU PROCESÓW Z OGRANICZONYM ZBIOREM DANYCH W INŻYNIERII ROLNICZEJ

ZASTOSOWANIE SIECI NEURONOWYCH DO OPTYMALIZACJI WARUNKÓW OBRÓBKI CIEPLNEJ STOPÓW Mg-Al

ALGORYTM UZUPEŁNIANIA BRAKUJĄCYCH DANYCH W ZBIORACH REJESTROWANYCH NA STACJACH MONITORINGU POWIETRZA

WPŁYW DAWKI NASION I PRĘDKOŚCI SIEWNIKA NA RÓWNOMIERNOŚĆ RZĘDOWEGO SIEWU NASION PSZENICY

MODEL NEURONOWY ZMIAN TEMPERATURY PODCZAS KONWEKCYJNEGO SUSZENIA ZRĘBKÓW WIERZBY ENERGETYCZNEJ

Sieci neuronowe w Statistica. Agnieszka Nowak - Brzezioska

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

ALGORYTMY SZTUCZNEJ INTELIGENCJI

ANALIZA WYDAJNOŚCI PRODUKCYJNEJ RODZINNEGO GOSPODARSTWA ROLNEGO PRZY POMOCY SIECI NEURONOWEJ

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

PREDYKCJA WŁASNOŚCI ODLEWNICZYCH STOPÓW Mg NA PODSTAWIE WYNIKÓW ANALIZY TERMICZNO-DERYWACYJNEJ

WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO. Stanisław Kowalik (Poland, Gliwice)

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH W PROGNOZOWANIU

METODA PROGNOZOWANIA SZEREGÓW CZASOWYCH PRZY UŻYCIU SZTUCZNYCH SIECI NEURONOWYCH

Testowanie modeli predykcyjnych

Aproksymacja stężeń zanieczyszczeń powietrza za pomocą neuronowych modeli szeregów czasowych

Porównanie dokładności różnych metod predykcji stężeń zanieczyszczeń powietrza

Analiza możliwości szacowania parametrów mieszanin rozkładów prawdopodobieństwa za pomocą sztucznych sieci neuronowych 4

ZASTOSOWANIE SZTUCZNYCH SIECI NEURONOWYCH DO OCENY ZDOLNOŚCI KREDYTOWYCH ROLNIKÓW KLIENTÓW FIRMY LEASINGOWEJ

ZESZYTY NAUKOWE NR 2 (74) AKADEMII MORSKIEJ W SZCZECINIE. Prognozowanie kołysań bocznych statku za pomocą sztucznych sieci neuronowych

ZESZYTY NAUKOWE WSOWL. Nr 4 (162) 2011 ISSN NAUKI EKONOMICZNE

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta

ALGORYTM ROZPOZNAWANIA OBRAZÓW MATERIAŁÓW BIOLOGICZNYCH

MATLAB Neural Network Toolbox przegląd

NEURAL NETWORK ) FANN jest biblioteką implementującą SSN, którą moŝna wykorzystać. w C, C++, PHP, Pythonie, Delphi a nawet w środowisku. Mathematica.

ZASTOSOWANIE SZTUCZNYCH SIECI NEURONOWYCH DO LOKALIZACJI ZWARĆ W LINIACH ELEKTROENERGETYCZNYCH

IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ

WYKORZYSTANIE SIECI NEURONOWYCH DO ODWZOROWANIA DEFORMACJI POWIERZCHNI NA TERENACH GÓRNICZYCH

Temat: BADANIE NIEZALEśNOŚCI DWÓCH CECH JAKOŚCIOWYCH TEST CHI KWADRAT. Anna Rajfura 1

Inżynieria Rolnicza 3(121)/2010

KRÓTKOTERMINOWE PROGNOZOWANIE ZAPOTRZEBOWANIA NA ENERGIĘ ELEKTRYCZNĄ ODBIORCÓW WIEJSKICH PRZY WYKORZYSTANIU MODELI MAMDANIEGO

1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN. Agenda

Prognozowanie zanieczyszczeń atmosferycznych przy użyciu sieci neuronowych

Opracowanie narzędzi informatycznych dla przetwarzania danych stanowiących bazę wyjściową dla tworzenia map akustycznych

WYKORZYSTANIE MODELI TAKAGI SUGENO DO KRÓTKOTERMINOWEGO PROGNOZOWANIA ZAPOTRZEBOWANIA NA ENERGIĘ ELEKTRYCZNĄ ODBIORCÓW WIEJSKICH

Uczenie sieci typu MLP

SZTUCZNA INTELIGENCJA WE WSPOMAGANIU PROCESU PROGNOZOWANIA W PRZEDSIĘBIORSTWIE

PRÓBA ZASTOSOWANIA SIECI NEURONOWYCH DO PROGNOZOWANIA OSIADAŃ POWIERZCHNI TERENU POWSTAŁYCH NA SKUTEK EKSPLOATACJI GÓRNICZEJ**

CALCULATION OF SELECTED ENGINE PARAMETERS OF S.I. ENGINE WITH THE USE OF NEURAL NETWORK WITH RADIAL BASIS FUNCTION

KOMPUTEROWY MODEL UKŁADU STEROWANIA MIKROKLIMATEM W PRZECHOWALNI JABŁEK

MECHANIZACJA PRAC ŁADUNKOWYCH A NAKŁADY W TRANSPORCIE ROLNICZYM CZ. II - ANALIZA STATYSTYCZNA

Algorytmy sztucznej inteligencji

Aproksymacja danych doświadczalnych z badań trójosiowego ściskania gruntu przy użyciu perceptronu wielowarstwowego

MODELOWANIE PROCESU OMŁOTU PRZY WYKORZYSTANIU SZTUCZNYCH SIECI NEURONOWYCH

Metody klasyfikacji i rozpoznawania wzorców. Najważniejsze rodzaje klasyfikatorów

Sieci neuronowe do przetwarzania informacji / Stanisław Osowski. wyd. 3. Warszawa, Spis treści

Marek Tukiendorf, Katarzyna Szwedziak, Joanna Sobkowicz Zakład Techniki Rolniczej i Leśnej Politechnika Opolska. Streszczenie

STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE

PORÓWNANIE ALGORYTMÓW OPTYMALIZACJI GLOBALNEJ W MODELOWANIU ODWROTNYM PROCESÓW SUSZENIA PRODUKTÓW ROLNICZYCH

Wykorzystanie testu Levene a i testu Browna-Forsythe a w badaniach jednorodności wariancji

ODWZOROWANIE PRZEBIEGU PULSACJI METODAMI SZTUCZNEJ INTELIGENCJI

ZASTOSOWANIE SZTUCZNYCH SIECI NEURONOWYCH DO OPISU PRZENIKALNOŚCI ELEKTRYCZNEJ MĄKI

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe

Analiza metod prognozowania kursów akcji

NEURONOWA ANALIZA SPEKTRUM SYGNAŁU AKUSTYCZNEGO W OKREŚLANIU CECH FIZYCZNYCH ZIARNIAKÓW

BADANIA WSPÓŁCZYNNIKA TARCIA ZEWNĘTRZNEGO ZIARNA ZBÓś W FUNKCJI WILGOTNOŚCI

IDENTYFIKACJA PÓL TEMPERATUR WYKORZYSTYWANYCH DO OCENY NIEJEDNORODNOŚCI PRZEPŁYWU POWIETRZA PRZEZ KAMIENNE ZŁOŻE Z UŻYCIEM TECHNIK NEURONOWYCH

OPTYMALIZACJA PARAMETRÓW PRACY PNEUMATYCZNEGO SEPARATORA KASKADOWEGO

Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)

PRZETWARZANIE GRAFICZNYCH DANYCH EMPIRYCZNYCH DLA POTRZEB EDUKACJI SZTUCZNYCH SIECI NEURONOWYCH, MODELUJĄCYCH WYBRANE ZAGADNIENIA INŻYNIERII ROLNICZEJ

PORÓWNANIE PRZYDATNOŚCI WYBRANYCH MODELI ROZMYTYCH DO PREDYKCJI ZAPOTRZEBOWANIA ENERGII ELEKTRYCZNEJ NA TERENACH WIEJSKICH

WPŁYW WYBRANYCH CZYNNIKÓW NA RÓWNOMIERNOŚĆ DOZOWANIA I WYSIEWU NASION PSZENICY KOŁECZKOWYM ZESPOŁEM WYSIEWAJĄCYM

WPŁYW OBRÓBKI TERMICZNEJ ZIEMNIAKÓW NA PRĘDKOŚĆ PROPAGACJI FAL ULTRADŹWIĘKOWYCH

PROGRAM WSPOMAGAJĄCY OCENĘ INWESTYCJI MECHANIZACYJNYCH DOZEM 2

APROKSYMACJA POZIOMU IMISJI NA STACJACH MONITORINGU POWIETRZA ZA POMOCĄ AUTONOMICZNYCH MODELI NEURONOWYCH

OCENA EFEKTYWNOŚCI NEURONOWEGO PROGNOZOWANIA W OPARCIU O WYBRANE METODY NA PRZYKŁADZIE DYSTRYBUCJI PRODUKTÓW ROLNICZYCH

ZASTOSOWANIE PROGRAMU MATLAB W MODELOWANIU PODCIŚNIENIA W APARACIE UDOJOWYM

Statystyka i Analiza Danych

WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno

Ćwiczenie 12. Metody eksploracji danych

Streszczenie. Słowa kluczowe: towary paczkowane, statystyczna analiza procesu SPC

PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE

Dobór funkcji aktywacji sieci neuronowej realizującej odtwarzanie wielkości wejściowej przetwornika pomiarowego

Wprowadzenie do analizy korelacji i regresji

Sztuczne sieci neuronowe w zastosowaniu do modelowania fazy wznoszenia samolotu

BŁĘDY OKREŚLANIA MASY KOŃCOWEJ W ZAKŁADACH SUSZARNICZYCH WYKORZYSTUJĄC METODY LABORATORYJNE

WPŁYW OBRÓBKI TERMICZNEJ NA SIŁĘ CIĘCIA I SIŁĘ ŚCISKANIA ZIEMNIAKÓW

METODY STATYSTYCZNE W BIOLOGII

Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych.

DEKOMPOZYCJA HIERARCHICZNEJ STRUKTURY SZTUCZNEJ SIECI NEURONOWEJ I ALGORYTM KOORDYNACJI

KLASYFIKACJA TEKSTUR ZA POMOCĄ SVM MASZYNY WEKTORÓW WSPIERAJĄCYCH

MODEL NEURONOWY LOKALIZACJI USZKODZEŃ POMP WTRYSKOWYCH

RAPORT Z PRAKTYKI. Zastosowanie Sztucznych Sieci Neuronowych do wspomagania podejmowania decyzji kupna/sprzedaży na rynku Forex.

Transkrypt:

Ireneusz Białobrzewski Katedra InŜynierii Procesów Rolniczych Uniwersytet Warmińsko-Mazurski w Olsztynie PORÓWNANIE MODELI GRNN UTWORZONYH Z WYKORZYSTANIEM MODUŁÓW SIEI NEURONOWYH PAKIETÓW MATLAB I STATISTIA Streszczenie Przedstawiono wyniki badań wpływu modeli GRNN, utworzonych z wykorzystaniem modułów Sieci Neuronowych pakietów MATLAB i STATISTIA, na dokładność estymacji wartości temperatury powietrza atmosferycznego. Stwierdzono, Ŝe model neuronowy GRNN, powstały na bazie Toolbox Neural Networks v.4 pakietu MATLAB, lepiej aproksymuje temperaturę powietrza atmosferycznego niŝ modele powstałe na bazie modułu Neural Networks pakietu STATISTIA 6.1. Wśród modeli GRNN powstałych na bazie modułu Neural Networks pakietu STATISTIA 6.1 uzyskano lepszą aproksymuję temperatury powietrza atmosferycznego, wykorzystując dostępne opcje funkcji związanych z modułem Projektant sieci uŝytkownika. Słowa kluczowe: model regresyjny, sieci neuronowe GRNN, MATLAB, STATISTIA Wykaz oznaczeń err t T - lokalny bezwzględny błąd estymacji temperatury, o - czas, h - temperatura powietrza atmosferycznego, o Wprowadzenie Modele regresyjne są bardzo często wykorzystywane w symulacjach komputerowych systemów rolniczych. Jednym z częściej stosowanych wielkości w symulacjach komputerowych procesów suszenia i przechowywania jest temperatura powietrza atmosferycznego [Ryniecki, Jayas 1992]. Utworzenie dokładnego modelu regresyjnego tej wielkości jest trudne, poniewaŝ jest to zmienna stochastyczna, o silnie nieliniowym charakterze. Tworzenie takiego modelu na podstawie funkcji ciągłej często prowadzi do mało 15

zadowalających wyników, szczególnie jeśli czasowy przedział symulacji wynosi wiele miesięcy. Siejkowski i Markowski [2000] zaproponowali ciągły model dobowych zmian temperatury powietrza, ale przy przyjęciu załoŝeń upraszczających, pomijając nieokresowe i przypadkowe zmiany parametrów powietrza w ich przebiegu dobowym. Nowoczesnymi metodami, stosowanymi zarówno w zagadnieniach estymacji, jak i predykcji temperatury w róŝnych systemach, są sieci neuronowe. Szczególnie wykazały swoją przydatność w analizie wielkości stochastycznych. Raju [2001] z powodzeniem zastosował algorytmy sieci neuronowych do opisu parametrów pogodowych, m.in. temperatury. Ferreira i in. [2002] wykorzystali sieci neuronowe do przewidywania zmian temperatury w cieplarni. Bodri i Jermak [2003] wykorzystali sieci neuronowe do przewidywania zmian temperatury gruntu. Jednym z rodzajów sieci neuronowych są sieci realizujące regresję uogólnioną (Generalized Regression Neural Network - GRNN). zęsto są to sieci o dwóch warstwach ukrytych. Pierwszą stanowi sieć o radialnych funkcjach bazowych (Radial Basis Functions RBF), natomiast druga jest warstwą liniową. Sieci GRNN zazwyczaj mają więcej neuronów niŝ standardowe sieci jednokierunkowe, wykorzystujące algorytmy wstecznej propagacji błędu [Demuth, Beale 2001; StatSoft, Inc. 2004]. htioui i in. [1999], porównując model GRNN i standardowy model regresji wielokrotnej opisujący zmiany wilgotności liścia pszenicy odmiany Spring wheat, stwierdzili większą dokładność modelu GRNN. W pracy porównano algorytmy uczenia sieci neuronowych GRNN wykorzystanych do zagadnienia estymacji wartości temperatury powietrza atmosferycznego. Metodyka badań W badaniach wykorzystano pomiary temperatury powietrza atmosferycznego wykonane w ciągu 100 dni 1988 r. w Stacji Meteorologicznej w Olsztynie. Rejestracja pomiarów dokonywana była co 3 godziny. Ocenie porównawczej poddano trzy modele neuronowe. Pierwszy utworzony na bazie Toolbox Neural Networks v.4 pakietów MATLAB (MathWorks Inc., MA, USA) oraz dwa modele utworzone na bazie 16

modułu Neural Networks pakietu STATISTIA 6.1 [StatSoft, Inc., Ok., USA]. Wykorzystując Toolbox Neural Networks v.4 pakietów MATLAB, sieć została zaprojektowana i nauczona przy uŝyciu funkcji newgrnn, 100% danych doświadczalnych zostało wykorzystanych w uczeniu sieci [Demuth, Beale 2001]. Wykorzystując program STATISTIA jeden model utworzono w Automatycznym projektancie sieci z wszystkimi domyślnymi ustawieniami tego modułu. W tym module testowano 100 sieci, zachowywano 5 najlepszych przy czterech moŝliwościach wykorzystania opcji: Twórz zespół z zachowywanych sieci i Wybierz podzbiór spośród zmiennych niezaleŝnych. Natomiast drugi model powstał na bazie modułu Projektanta sieci uŝytkownika, gdzie uŝytkownik moŝe decydować o pewnych parametrach tworzonej sieci. W tym ostatnim przypadku przetestowano sieci [StatSoft, Inc. 2004; KrzyŜak, Rafajłowicz 2000]: z uwzględnieniem wyboru i bez uwzględnienia wybory opcji Normalizuj zmienne wejściowe i wektory kodowe, centra funkcji bazowych były przepisywane losowo ze zbioru uczącego oraz metodą K-średnich, przy róŝnych wartościach współczynnika wygładzania przyjętych z przedziału [10, 0.0001], z uwzględnieniem wyboru i bez uwzględnienia wybory opcji Odrzuć wejścia o małej wraŝliwości, przy czym progowa wartość ilorazu wraŝliwości wynosiła 1,0. We wszystkich zastosowanych algorytmach pakietu STATISTIA wykorzystano, domyślnie zaimplementowany w tym pakiecie, automatyczny mechanizm podziału danych na trzy podzbiory: uczący (ok. 50% punktów pomiarowych), walidacyjny (ok. 25% punktów pomiarowych) oraz testowy (ok. 25% punktów pomiarowych) i domyślną liczbę dwóch neuronów w liniowej warstwie sieci. Z przetestowanych sieci (na podstawie modułu Automatyczny projektant i Projektanta sieci uŝytkownika) wybrano odpowiednio po jednej najlepszej sieci, gdzie ocena dla pierwszego modułu dokonana została przy wybranej opcji Zachowaj równowagę między błędem a róŝnorodnością sieci, natomiast dla drugiego kryterium oceny był współczynnik korekcji r Pearsona. 17

Jako kryteria oceny trzech wybranych modeli neuronowych przyjęto wartości: minimalną, maksymalną, średnią, odchylenie standardowe z próby (oceniając, na ile te wartości odbiegają od danych eksperymentalnych) oraz współczynnik korelacji r Pearsona. Dodatkowo ocenie poddano wartości lokalnego bezwzględnego błędu estymacji temperatury: minimalną, maksymalną, średnią bezwzględnej wartości, odchylenie standardowe z próby, gdzie błąd zdefiniowany był według formuły (1): err t = T t T t (1) ( ) ( ) empiryczne ( ) mod elowe Wybrane kryteria oceny zostały obliczone z wykorzystaniem procedur środowiska MATLAB. W tym celu rozwiązania modeli neuronowych uzyskanych przy wykorzystaniu pakietu STATISTIA zostały wygenerowane w kodzie źródłowym języka (z wykorzystaniem modułu generatora kodu pakietu STATISTIA). Następnie uzyskany kod źródłowy został zaimplementowany w środowiska MATLAB. Metoda weryfikacji, czy sieci neuronowe nie wykazują cech przeuczenia poległa na ocenie modelowych wartości estymowanych temperatury uzyskanych przy kroku czasowym 1 h (krok pomiarowy 3 h). Oceniano wartości temperatury: minimalną, maksymalną, średnią oraz odchylenie standardowe z próby. Wyniki badań i ich analiza Dla sieci uczonych na bazie modułu Projektanta sieci uŝytkownika najlepiej estymującą sieć uzyskano przy ustawieniach: z uwzględnieniem wyboru opcji Normalizuj zmienne wejściowe i wektory kodowe; centra funkcji bazowych były przepisywane losowo ze zbioru uczącego, przy wartości współczynnika wygładzania 0,002, bez uwzględnienia wyboru opcji Odrzuć wejścia o małej wraŝliwości. Sieci uczone w Automatycznym projektancie nie wykazywały wraŝliwości na róŝny wybór dostępnych opcji. W tabeli 1 przedstawiono wyniki statystyk opisowych dla danych empirycznych oraz danych estymowanych pochodzących z badanych modeli GRNN. Jednoznacznie najlepszym modelem jest model utworzony w środowisku MATLAB (r Pearsona = 1,000). Z modeli środowiska STATISTIA lepszą dokładność moŝna uzyskać wykorzystując moŝliwości modułu Projektant sieci uŝytkownika, wskazują na to wszystkie wartości zamieszczonych kryteriów oceny. 18

Analiza wielkości zamieszczonych w tabeli 2, opisujących statystyki opisowe lokalnego bezwzględnego błędu estymacji temperatury, takŝe wskazuje na następującą kolejność modeli GRNN estymujących temperaturę powietrza atmosferycznego: MATLAB, STATISTIA Projektant sieci uŝytkownika, STATISTIA Automatyczny projektant. Interpretacja graficzna tych spostrzeŝeń przedstawiona jest na rysunkach 1 i 2, na których oś czasową ograniczono do 200 h, ale przedstawione przebiegi są reprezentatywne dla całego zakresu pomiarowego. Przedstawienie analizowanych wielkości dla całego zakresu pomiarowego powoduje, Ŝe rysunki są mało czytelne. Na rysunku 1 dwa analizowane przebiegi (empiryczny i uzyskany z wykorzystaniem modelu programu MATLAB) praktycznie pokrywają się, natomiast przebieg dla modułu Automatyczny projektant przedstawia bardzo wygładzoną linię sigmoidalną w bardzo nieznacznym stopniu odwzorowującą stochastyczne wartości temperatury. Na rysunku 2 moŝna zaobserwować interpretację graficzną analizowanego błędu predykcji temperatury. W skali wartości [-12 o, 8 o ] osi rzędnych lokalny bezwzględny błędu estymacji temperatury jest linią prostą o rzędnej 0 o. 19

Rys. 1. Przebiegi zmian temperatury: empiryczne, estymowane modelami GRNN uzyskanymi z wykorzystaniem modułów Neural Network środowis MATLAB i STATISTIA Fig. 1. The courses of temperature changes: empirical, estimated by GRNN models obtained by using the Neural Network moduli of MATLAB and STATISTIA media Rys. 2. Przebiegi lokalnych bezwzględnych błędów estymacji temperatury uzyskanych dla modeli GRNN uzyskanymi z wykorzystaniem modułów Neural Network środowisk MATLAB i STATISTIA Fig. 2. ourses of local absolute errors of temperature estimation obtained for GRNN models by using the neural network moduli of MATLAB and STATISTIA media 20

Tabela 1. Wyniki statystyk opisowych dla danych empirycznych, oraz danych estymowanych pochodzących z modeli GRNN utworzonych z wykorzystaniem modułów Neural Network środowiska MATLAB i STATISTIA Table 1. Results of descriptive statistics for empirical data and for data estimated with the use of GRNN models developed by means of neural network moduli of the MATLAB and STATISTIA medium T min o T maks o T mean o std( T) o Empiryczne 5,2 30,7 15,8 4,26 GRNN MATLAB 5,2 30,7 15,8 4,25 1,000 AUTOMATYZNY UśYTKOWNIKA 8,4 25,6 15,9 2,91 0,673 7,7 26,3 16,4 3,22 0,824 Tabela 2. Wyniki statystyk opisowych dla lokalnego bezwzględnego błędu estymacji temperatury modeli GRNN utworzonych z wykorzystaniem modułów Neural Network środowiska MATLAB i STATISTIA Table 2. Results of descriptive statistics for local absolute error of temperature estimation obtained for GRNN models with the use of Neural Network moduli of the MATLAB and STATISTIA medium err min err maks err mean std( err) GRNN MATLAB -0,01 0,02 <0,00 0,01 AUTOMATYZNY -10,3 8,5 2,6 3,14 UśYTKOWNIKA -16,6 8,5 1,8 2,42 Tabela 3. Wyniki statystyk opisowych dla weryfikacji logicznej modeli GRNN utworzonych z wykorzystaniem modułów Neural Network środowiska MATLAB i STATISTIA Table 3. Results of descriptive statistics for logical verification of GRNN models developed by using Neural Network moduli of the MATLAB and STATISTIA medium T min T maks T mean std(t) GRNN MATLAB 5,2 30,7 15,8 4,20 AUTOMATYZNY 8,4 25,6 15,9 2,90 UśYTKOWNIKA 7,7 26,3 16,4 3,22 r 21

Tak duŝą róŝnicę w jakości estymacji temperatury sieciami GRNN środowiska MATLAB i STATISTIA moŝna wyjaśnić analizując sposób tworzenia sieci w tych aplikacjach. W STATISTIE wykorzystano zaimplementowany automatyczny mechanizm podziału danych na trzy podzbiory: uczący (ok. 50% punktów pomiarowych), walidacyjny (ok. 25% punktów pomiarowych) oraz testowy (ok. 25% punktów pomiarowych). W sieci GRNN kaŝdy punkt zbioru uczącego jest odwzorowany w pierwszej, ukrytej warstwie sieci, która w zasadzie decyduje o dokładności estymacji. Jeśli (tak jak w wypadku domyślnych ustawień pakietu STATISTIA) wykorzystywanych jest 50% dostępnych danych do uczenia sieci GRNN, to prawdopodobnie sieć taka będzie gorzej estymowała wartości od sieci, która w swojej strukturze zawiera 100% danych doświadczalnych. Podział zbioru danych na trzy podzbiory nie zawsze jest zasadny, np. nie wtedy, kiedy moŝemy zaproponować inną metodę sprawdzenia, czy sieć nie przejawia cech przeuczenia. Tabela 3 zawiera wyniki logicznej weryfikacji tej niepoŝądanej cechy sieci neuronowej. Jeśli róŝnice pomiędzy odpowiednimi wartościami temperatury: minimalną, maksymalną, średnią, odchylenie standardowe z próby przedstawione w tabelach 1 i 3 są małe, to moŝemy przyjąć, Ŝe sieć nie jest przeuczona. Przy tak przyjętym kryterium Ŝadna z analizowanych sieci nie przejawia tej cechy. Wnioski 1. Model neuronowy GRNN powstały na bazie Toolbox Neural Networks v.4 pakietu MATLAB lepiej aproksymuje temperaturę powietrza atmosferycznego niŝ modele powstałe na bazie modułu Neural Networks pakietu STATISTIA 6.1. 2. Wśród modeli GRNN powstałych na bazie modułu Neural Networks pakietu STATISTIA 6.1 uzyskano lepszą aproksymację temperatury powietrza atmosferycznego, wykorzystując dostępne opcje funkcji związanych z Projektantem sieci uŝytkownika. 22

Bibliografia Bodri L., Čermak V. 2003. Prediction of surface air temperatures by neural network, example based on three-year temperature monitoring at Sporilov Station. Studia Geophysica et Geodaetica, 47(1): 173-184 htioui Y., Panigrahi S., Francl L. 1999. A generalized regression neural network and its application for leaf wetness prediction to forecast plant disease. hemometrics and Intelligent Laboratory Systems: 48, 47 58 Demuth H., Beale M. 2001. Neural Network Toolbox For Use with MATLAB. The MathWorks, Inc. Ferreira P.M.; Faria E.A., Ruano A.E. 2002. Neural network models in greenhouse air temperature prediction. Neurocomputing, 43: 51 75 KrzyŜak A., Rafajłowicz E. 2000. Aproksymacja funkcji przy pomocy jednokierunkowych sieci neuronowych. Biocybernetyka i InŜynieria Biomedyczna, Tom 6 Sieci Neuronowe. Akademicka Oficyna Wydawnicza EXIT, Warszawa Raju K.G. 2001. Prediction of Soil Temperature by Rusing Artificial Neural Networks Algorithms. Nonlinear Analysis, 47: 1737-1748 Ryniecki A. Jayas D.S. 1992. Stochastic modeling of grain temperature in near ambient drying. Drying Technology, 10, 1: 123 137 Siejkowski, S., Markowski, M. 2000. Model dobowych zmian temperatury powietrza atmosferycznego. Problemy InŜynierii Rolniczej, 2 (28): 35-40 StatSoft, Inc. 2004. Electronic Statistics Textbook. Tulsa, OK: StatSoft. WEB: http://www.statsoft.com/textbook/stathome.html OMPARISON OF THE GRNN MODELS DEVELOPED BY USING NEURAL NETWORK MODULI OF THE MATLAB AND STATISTIA PAKETS Summary The effects of GRNN models, developed by using the neural network moduli of the MATLAB and STATISTIA packets on the accuracy of atmospherical air temperature estimation, were studied. It was stated that the GRNN neural 23

model developed on the basis of Toolbox Neural Network v.4 of the MATLAB packet approximated the temperature of atmospherical air better than the models based on Neural Network modulus of STATISTIA 6.1 packet. Among the GRNN models developed on the basis of Neural Network modulus of STATISTIA 6.1 packet, the better approximation of air temperature was obtained by using available options of the functions bound to modulus of the User s network designer Key words: regressive model, GRNN neural networks, MATLAB, STATISTIA 24