Analiza kosztów wytwarzania energii elektrycznej w elektrowniach j¹drowych



Podobne dokumenty
WSPÓŁCZESNE TECHNOLOGIE JĄDROWE W ENERGETYCE 1

Energetyka Jądrowa. Wykład 10 5 maja Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl

Elektrownia Jądrowa Loviisa (SF) I. Podział Reaktorów - kryteria

Elektrownie jądrowe (J. Paska)

ANALIZA PORÓWNAWCZA KOSZTÓW WYTWARZANIA ENERGII ELEKTRYCZNEJ. Janusz Sowiński Instytut Elektroenergetyki Politechnika Częstochowska

Ekonomiczno-techniczne aspekty wykorzystania gazu w energetyce

Energetyka Jądrowa. Wykład 9 9 maja Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Energetyka jądrowa - reaktor

Energetyka Jądrowa. źródło: Wszystko o energetyce jądrowej, AREVA

ELEKTROWNIE. Czyste energie Energetyka jądrowa. Damazy Laudyn Maciej Pawlik Franciszek Strzelczyk

Czyste energie. Energetyka jądrowa. wykład 13. dr inż. Janusz Teneta. Wydział EAIiIB Katedra Automatyki i Inżynierii Biomedycznej

Energetyka Jądrowa. Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Wykład 9 28 kwietnia 2015

Tabela 1. Dotychczasowy rozwój energetyki jądrowej na świecie w latach wg [2] Produkcja energii TW h/a 1970=1,00 78,8 1,0

Gospodarka wypalonym paliwem jądrowym analiza opcji dla energetyki jądrowej w Polsce

HTR - wysokotemperaturowy reaktor jądrowy przyjazny środowisku. Jerzy Cetnar AGH

Bezpieczeństwo i ekonomika kształtują energetykę jądrową jutra

Ceny uprawnieñ do emisji ditlenku wêgla a koszty systemów CCS w elektrowniach

PRZYGOTOWANIE INFRASTRUKTURY DLA BUDOWY PIERWSZEJ ELEKTROWNI JĄDROWEJ W POLSCE

Energetyka Jądrowa. Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Wykład 8 25 kwietnia 2017

Rozszczepienie (fission)

8. TYPY REAKTORÓW JĄDROWYCH

Nie ma paliwa tak kosztownego, jak brak paliwa. Atomowe Indie

Rozszczepienie jądra atomowego

Reaktor jądrowy. Schemat. Podstawy fizyki jądrowej - B.Kamys

opracował: mgr inż. Piotr Marchel Symulacyjne badanie elektrowni jądrowej

Przewidywany rozwój energetyki jądrowej 1) Generacje reaktorów energetycznych. Część II

Piotr Kosowski*, Stanis³aw Rychlicki*, Jerzy Stopa* ANALIZA KOSZTÓW SEPARACJI CO 2 ZE SPALIN W ZWI ZKU Z MO LIWOŒCI JEGO PODZIEMNEGO SK ADOWANIA**

NOWOCZESNE TECHNOLOGIE WYTWARZANIA I PRZESYŁANIA ENERGII

Typy konstrukcyjne reaktorów jądrowych

Koszty energetyki jądrowej

Polska energetyka scenariusze

Technologie wytwarzania energii elektrycznej dla polskiej elektroenergetyki

Technologia i doświadczenie firmy. dla polskiego programu energii jądrowej. Spotkanie z przedsiębiorstwami Pomorza Gdańsk, 20 kwietnia 2012 roku

Mo liwoœci rozwoju podziemnych magazynów gazu w Polsce

Do dyskusji. Czy potrafimy unieszkodliwiać odpady radioaktywne? Prof. dr inż. A. Strupczewski Narodowe Centrum Badań Jądrowych

Sesja tematyczna pt.: Rola spawalnictwa w budowie elektrowni jądrowej perspektywy dla polskiego przemysłu, Sosnowiec, 19 października 2016 r.

Polska energetyka scenariusze

KLASTER CZYSTEJ ENERGII

PERSPEKTYWY WYKORZYSTANIA GAZU ZIEMNEGO DO PRODUKCJI ENERGII ELEKTRYCZNEJ W POLSCE

Perspektywy rozwoju OZE w świetle ustawy z 20 lutego 2015 roku

Perspektywy energetyki jądrowej j Polsce Procesy inwestycyjne Tomasz Jackowski Departament Energetyki Ministerstwo Gospodarki

MIÊDZYNARODOWY STANDARD REWIZJI FINANSOWEJ 520 PROCEDURY ANALITYCZNE SPIS TREŒCI

Efektywność ekonomiczna elektrociepłowni opalanych gazem ziemnym

Analiza techniczno-ekonomiczna op³acalnoœci nadbudowy wêglowej elektrociep³owni parowej turbin¹ gazow¹ i kot³em odzyskowym

Zapotrzebowanie krajowego sektora energetycznego na surowce energetyczne stan obecny i perspektywy do 2050 r.

Energetyka jądrowa w polityce energetycznej Polski

Reakcje rozszczepienia i energetyka jądrowa

Dlaczego DNP? Prof. Krzysztof Żmijewski Sekretarz Generalny. *Distributed Nuclear Power. Społeczna Rada do spraw Rozwoju Gospodarki Niskoemisyjnej

Perspektywy wykorzystania toru w energetyce jądrowej

Rozwój kogeneracji wyzwania dla inwestora

Rozwój energetyki wiatrowej w Unii Europejskiej

Atrakcyjność energetyki jądrowej

Reaktory Wodne Wrzące (BWR)

Przyszłościowe technologie wytwarzania energii elektrycznej w Polsce

Charakterystyka ma³ych przedsiêbiorstw w województwach lubelskim i podkarpackim w 2004 roku

PRZYSZŁOŚĆ ODNAWIALNYCH ŹRÓDEŁ ENERGII NA TLE WYZWAŃ ENERGETYCZNYCH POLSKI. Prof. dr hab. inż. Maciej Nowicki

ENERGETYKA JĄDROWA PERSPEKTYWY I ZAGROŻENIA

Postęp w dziedzinie bezpieczeństwa reaktorów jądrowych

Wnioski z organizowanych przez SEP i PTN konferencji n/t energetyki jądrowej

Wyniki finansowe i operacyjne GK PGE po I kwartale maja 2014 r.

WPŁYW PRODUKCJI ENERGII ELEKTRYCZNEJ W ŹRÓDŁACH OPALANYCH WĘGLEM BRUNATNYM NA STABILIZACJĘ CENY ENERGII DLA ODBIORCÓW KOŃCOWYCH

Czym jest elektrownia jądrowa? Fabryka prądu, gdzie źródłem ciepła jest reaktor jądrowy (zamiast kotła parowego). Ciepło to jest wynikiem

Polska energetyka scenariusze

Energetyka konwencjonalna odnawialna i jądrowa

Wp³yw sekurytyzacji aktywów na kszta³towanie siê wybranych wskaÿników finansowych

REAKTORY JĄDROWE NOWEJ GENERACJI

Za 12 lat w Polsce zabraknie prądu. Arkadiusz Droździel

Dynamika wzrostu cen nośników energetycznych

WYBRANE ZAGADNIENIA ENERGETYKI JĄDROWEJ

Energia chińskiego smoka. Próba zdefiniowania chińskiej polityki energetycznej. mgr Maciej M. Sokołowski WPiA UW

ANALIZA EFEKTYWNOŚCI EKONOMICZNEJ ELEKTROCIEPŁOWNI OPALANYCH GAZEM ZIEMNYM PO WPROWADZENIU ŚWIADECTW POCHODZENIA Z WYSOKOSPRAWNEJ KOGENERACJI

XLII OLIMPIADA GEOGRAFICZNA

STOWARZYSZENIE ELEKTRYKÓW POLSKICH ASSOCIATION OF POLISH ELECTRICAL ENGINEERS POLSKIE TOWARZYSTWO NUKLEONICZNE POLISH NUCLEAR SOCIETY

Konwersatorium Inteligentna Energetyka. Temat przewodni. Rozproszone cenotwórstwo na rynku energii elektrycznej. dr inż.

*Z wykorzystaniem energii jądrowej, zarówno w sensie użycia materiałów rozszczepialnych (uran), jak reakcji syntezy termojądrowej, wiążą się problemy

Program polskiej energetyki jądrowej

TOR CZY SKIERUJE ENERGETYKĘ NA NOWE TORY?

Promieniowanie jonizujące

Prognoza kosztów energii elektrycznej w perspektywie 2030 i opłacalność inwestycji w paliwa kopalne i w OZE

ENERGETYKA ROZPROSZONA Biopaliwa w energetyce

PROF. DR HAB. INŻ. ANTONI TAJDUŚ

Reaktory małej mocy: szanse i wyzwania

Co należy wiedzieć o energetyce jądrowej

INSTYTUT FIZYKI JĄDROWEJ im. Henryka Niewodniczańskiego Polskiej Akademii Nauk

Rozwój energetyki jądrowej w Polsce perspektywa inwestora

Laboratoria.net Innowacje Nauka Technologie

Energetyka dział gospodarki obejmujący przetwarzanie, gromadzenie, przenoszenie i wykorzystanie energii

Modułowe Reaktory Jądrowe

Mgr inż. Marta DROSIŃSKA Politechnika Gdańska, Wydział Oceanotechniki i Okrętownictwa

Jednostki Wytwórcze opalane gazem Alternatywa dla węgla

Technologia reaktorów WWER

Trendy i uwarunkowania rynku energii. tauron.pl

KONKURENCYJNOŚĆ POLSKIEGO WĘGLA NA RYNKU SUROWCÓW ENERGETYCZNYCH

Energetyka Jądrowa. źródło: Wszystko o energetyce jądrowej, AREVA

POLITECHNIKA WARSZAWSKA

WĘGIEL PALIWEM BEZ PRZYSZŁOŚCI. Dr Michał Wilczyński

PRODUKCJA I ZUŻYCIE ENERGII ELEKTRYCZNEJ W KRAJACH AMERYKI. Kasia Potrykus Klasa II Gdynia 2014r.

KONWERGENCJA ELEKTROENERGETYKI I GAZOWNICTWA vs INTELIGENTNE SIECI ENERGETYCZNE WALDEMAR KAMRAT POLITECHNIKA GDAŃSKA

Budowa EJ dźwignią rozwoju polskiego przemysłu

Rynek surowców strategicznych w Unii Europejskiej na przykładzie węgla kamiennego.

Transkrypt:

POLITYKA ENERGETYCZNA Tom 11 Zeszyt 1 2008 PL ISSN 1429-6675 Janusz SOWIÑSKI* Analiza kosztów wytwarzania energii elektrycznej w elektrowniach j¹drowych STRESZCZENIE. W artykule zaprezentowano przegl¹d technologii stosowanych w nowoczesnych elektrowniach j¹drowych. Przeanalizowano koszty wytwarzania energii elektrycznej z wykorzystaniem ró nych typów reaktorów. Przedstawiono model decyzyjny inwestycji w warunkach ryzyka i wykorzystano go do wyznaczenia krytycznej (progowej) wartoœci ceny energii elektrycznej, powy ej której op³aca siê inwestowaæ w budowê elektrowni j¹drowej. Przedstawiono rezultaty w³asnych oszacowañ. S OWA KLUCZOWE: elektrownia j¹drowa, koszty wytwarzania, inwestycja Wprowadzenie Obecnie energetyka j¹drowa jest jednym z najwa niejszych Ÿróde³ energii elektrycznej. Zaspokaja ona oko³o 16% œwiatowego zu ycia energii elektrycznej, a w Unii Europejskiej udzia³ ten wynosi a 30% (pracuj¹ 153 bloki) [1]. Najwiêksza liczba reaktorów znajduje siê w Stanach Zjednoczonych, gdzie pracuj¹ 103 reaktory produkuj¹c rocznie oko³o 527 TW h energii. W Europie najwiêcej reaktorów posiada Francja, bo a 59 (produkuj¹ rocznie 260 TW h). W Polsce do tej pory nie zbudowano elektrowni j¹drowej, choæ takie plany s¹ od wielu lat. * Dr in. Instytut Elektroenergetyki, Politechnika Czêstochowska, Czêstochowa. 465

Elektrownie j¹drowe charakteryzuj¹ siê wysokimi nak³adami inwestycyjnymi i niskimi kosztami eksploatacyjnymi. Szacowanie kosztów elektrowni j¹drowej wymaga uwzglêdnienia równie kosztów demonta u elektrowni i kosztów sk³adowania odpadów radioaktywnych. Jednoczeœnie brak w elektrowniach atomowych emisji zanieczyszczeñ, g³ównie dwutlenku wêgla, jest ich du ¹ zalet¹. Nie przyczyniaj¹ siê one do globalnego ocieplenia klimatu. Elektrownie j¹drowe unikaj¹ kosztów podatków wêglowych i kosztów handlu pozwoleniami na emisjê dwutlenku wêgla, bêd¹cych wa nym sk³adnikiem tzw. kosztów zewnêtrznych. 1. Technologie j¹drowe Najczêœciej budowanymi typami reaktorów energetycznych w elektrowniach j¹drowych s¹: reaktory lekkowodne (LWR Light Water Reactor) paliwem uran wzbogacony, moderatorem i ch³odziwem lekka woda (H 2 O). Do tej grupy nale ¹: reaktory wodne ciœnieniowe (PWR Pressurized Water Reactor lub WWER) wysokie ciœnienie nie dopuszcza do wrzenia wody, oraz reaktory wodne wrz¹ce (BWR Boiling Water Reactor) woda w postaci pary w wyniku wrzenia w reaktorze; reaktory ciê kowodne (HWR Heavy Water Reactor) w nowych konstrukcjach ch³odziwem jest woda (H 2 O), a moderatorem jest ciê ka woda (D 2 O), odmian¹ tych reaktorów jest CANDU (Canadian Deuterium Uranium Reactor); reaktory gazowe (GCR Gas-Cooled Reactor i AGR Advanced Gas-Colled Reactor) moderatorem grafit, ch³odziwem gaz np. dwutlenek wêgla; reaktory wysokotemperaturowe (HTR High Temperature Reactor) ch³odziwem gaz np. hel; reaktory powielaj¹ce na neutronach prêdkich (FBR Fast Breeder Reactor) rozszczepienie realizuj¹ neutrony prêdkie, ch³odziwem ciek³y metal np. sód (Na), prowadzone s¹ prace nad reaktorem ch³odzonym ciek³ym o³owiem (Pb). 2. Parametry techniczne reaktorów j¹drowych Wczesne konstrukcje reaktorów, czyli tzw. reaktory Generacji I, by³y pojedynczymi egzemplarzami, np. Fermi I, Magnox. Reaktory Generacji II, do której nale ¹ PWR, BWR, WWER, CANDU i AGR, by³y projektowane z myœl¹ o komercyjnym wykorzystaniu. Wybrane parametry reaktorów wodnych, pracuj¹cych z powodzeniem od wielu lat w elektrowniach, zaprezentowano w tabeli 1 na podstawie [2, 10]. W reaktorach paliwem jest dwutlenek uranu. W reaktorach lekkowodnych œrednia sprawnoœæ zazwyczaj zawiera siê w przedziale 30 35%, a dla reaktorów ciê kowodnych mo e byæ poni ej 30%. 466

TABELA 1. Podstawowe parametry wybranych reaktorów wodnych typu PWR, BWR i CANDU TABLE 1. Basic parameters of selected water reactors PWR, BWR and CANDU Wyszczególnienie Jednostka Typ reaktora PWR BWR CANDU Moc cieplna reaktora MW 3 411 3 579 2 140 Moc elektryczna bloku MW 1 100 1 220 600 Sprawnoœæ elektrowni % 32 34 28 Materia³ paliwowy UO 2 UO 2 UO 2 Ca³kowita masa paliwa Mg 98 155 95 Gêstoœæ mocy w rdzeniu MW/m 3 98 54 12 Œrednie wypalenie paliwa MW d/kg 32 28,4 7 Moderator/ch³odziwo H 2 O H 2 O D 2 O Strumieñ masy ch³odziwa m 3 /s 17 13 11 Œrednie ciœnienie ch³odziwa MPa 15,5 7 11 Temperatura na wejœciu C 289 216 267 Temperatura na wyjœciu C 325 288 312 Temperatura koszuli C 347 304 362 Temperatura wewn¹trz prêta paliwowego C 2 282 1 832 2 110 ród³o: [2, 10] Reaktory wodne ciœnieniowe charakteryzuj¹ siê wzrostem gêstoœci mocy w rdzeniu i wzrostem wypalenia paliwa wraz ze wzrostem mocy reaktora. Do grupy reaktorów PWR nale ¹ instalowane od lat szeœædziesi¹tych ubieg³ego wieku g³ównie w Rosji reaktory WWER, których parametry zaprezentowano w tabeli 2 [2, 10]. W obecnie projektowanych reaktorach wodnych œrednie wypalanie paliwa jest osi¹gane na poziomie 40 50 MW d/kg U. W reaktorach wysokotemperaturowych typu HTR paliwem s¹ tlenki lub wêgliki uranu i toru, a ch³odziwem hel. Reaktory HTR rozwijane by³y g³ównie w USA i Niemczech. Obecnie prowadzone s¹ prace w Republice Po³udniowej Afryki (reaktor PBMR), w Japoni (doœwiadczalny reaktor wysokotemperaturowy o mocy 30 MWt) i w Chinach (doœwiadczalny reaktor HTR-10 o mocy 10 MWt). Podstawowe parametry ró nych typów reaktora HTR Generacji II zaprezentowano w tabeli 3 (Ÿród³o [2, 10]). Obecnie w zastosowaniach komercyjnych wykorzystywane s¹ zaawansowane reaktory lekkowodne (ALWR), tzw. reaktory Generacji III (poprawiona technologia wykorzystania paliwa, zastosowanie pasywnych systemów bezpieczeñstwa), których przyk³adowymi konstrukcjami s¹ ABWR, System 80+, APWR i AP 600. Wdra ane s¹ ewolucyjne reaktory Generacji III+, o zaawansowanych pasywnych systemach bezpieczeñstwa, m.in. ACR-1000 (Advanced CANDU Reactor), AP 1000, ESBWR i EPR. Po roku 2030 mog¹ znaleÿæ zastosowanie wysoko ekonomiczne, o zwiêkszonym bezpieczeñstwie, zminimalizowanej iloœci 467

TABELA 2. Podstawowe parametry wybranych reaktorów wodnych ciœnieniowych typu WWER TABLE 2. Basic parameters of selected pressurized water reactors WWER Wyszczególnienie Jednostka Typ reaktora WWER-210 WWER-440 WWER-1000 Moc cieplna reaktora MW 760 1 373 3 000 Moc elektryczna bloku MW 210 440 1 000 Liczba pêtli 6 6 4 Ca³kowita masa paliwa Mg 38 42 66 Gêstoœæ mocy w rdzeniu MW/m 3 46 84 111 Œrednie wypalenie paliwa MW d/kg 13 28 40 Strumieñ masy ch³odziwa m 3 /s 10 11 21 Œrednie ciœnienie ch³odziwa MPa 10 12,5 16 Temperatura na wejœciu C 250 270 288 Temperatura na wyjœciu C 269 301 322 Wydajnoœæ wytwornicy pary t/h 230 425 1 450 Ciœnienie pary MPa 3,3 4,5 6,4 Temperatura pary C 238 259 278,5 ród³o: [2, 10] TABELA 3. Podstawowe parametry wybranych reaktorów wysokotemperaturowych HTR TABLE 3. Basic parameters of selected high temperature reactors HTR Wyszczególnienie Jednostka Typ reaktora AVR (Niemcy) THTR (Niemcy) Fort St. Vrain (USA) Moc cieplna reaktora MW 46 750 837 Moc elektryczna bloku MW 15 300 330 Materia³ paliwowy tlenki U-Th tlenki U-Th tlenki U-Th Gêstoœæ mocy w rdzeniu MW/m 3 2,3 6,0 6,3 Rodzaj ch³odziwa He He He Œrednie ciœnienie ch³odziwa MPa 1,1 4,0 4,8 Temperatura na wejœciu C 270 270 400 Temperatura na wyjœciu C 950 750 785 ród³o: [2, 10] 468

odpadów i zabezpieczone przed proliferacj¹ materia³ów rozszczepialnych reaktory Generacji IV: GFR (Gas-Cooled Fast Reactor, reaktor na neutronach prêdkich ch³odzony helem), LFR (Lead-Cooled Fast Reactor, reaktor na neutronach prêdkich ch³odzony o³owiem), MSR (Molten Salt Reactor, reaktor ch³odzony stopionymi solami), SFR (Sodium-Cooled Fast Reactor, reaktor prêdki ch³odzony sodem), SCWR (Supercritical-Water-Cooled Reactor, nadkrytyczny reaktor wodny) i VHTR (Very-High-Temperature Reactor, reaktor wysokotemperaturowy). Obecne i przysz³e konstrukcje nowoczesnych reaktorów, które uzyska³y certyfikaty US Nuclear Regulatory Commission (NRC) przedstawia tabela 4. Trwaj¹ prace nad TABELA 4. Nowoczesne konstrukcje reaktorów TABLE 4. Modern constructions of reactors Konstrukcja Dostawca Moc i typ Uwagi ABWR General Electric 1 350 MW BWR Pracuje w Japonii, budowany na Taiwanie AP 600 AP 1000 Westinghouse 610 MW PWR 1 090 MW PWR Wymagane dodatkowe prace konstrukcyjne przed wdro eniem SWR 1000 Framatome Advanced Nuclear Power (ANP) 1 013 MW BWR Zaprojektowany z uwzglêdnieniem europejskich wymagañ CANDU ACR-700 Atomic Energy Company Limited (AECL) Technologies Inc., US 753 MW HWR Kanada, Argentyna, Rumunia, Po³udniowa Korea, Chiny i Indie Simplified Boiling Water Reactor (ESBWR) General Electric 1 380 MW BWR Wdro enie po roku 2010 PBMR British Nuclear Fuels (BNFL) 110 MW Modular pebble bed Projekt pilota owy wrpa GT-MHR General Atomic, AtomEnergo, Framatome i Fudzi 288 MW Prismatic graphite Licencja na konstrukcjê wrosji International Reactor Innovative and Secure (IRIS) Project Westinghouse 100 300 MW PWR Do wdro enia ok. 2012 2015 European Pressurized Water Reactor (EPR) Framatome ANP 1 545 1 750 MW PWR Zamówiony przez Finlandiê System 80+ ABB Combustion Engineering (przejête obecnie przez Westinghouse) 1 000 MW PWR Zbudowany w Korei Po³udniowej Advanced Fast Reactor; Power Reactor Innovative Small Module (AFR; PRISM) General Electric, Argonne National Laboratory 300 600 MW sodium-cooled Brak wdro enia ród³o: [13] 469

wdro eniem reaktorów Generacji III+, które maj¹ charakteryzowaæ siê ni szymi kosztami wytwarzania energii elektrycznej (nie wszystkie uzyska³y certyfikaty NRC), a US Department of Energy (DOE) prowadzi badania nad konstrukcj¹ reaktorów Generacji IV. Obecnie dostêpnych jest na rynku kilka wiod¹cych projektów reaktorów atomowych: EPR (European Pressurized Reactor, 1600 MW) firmy AREVA i Siemens AG (SWR-1000), ABWR (Advanced Boilling Water Reactor, 1350 MW) i ESBWR (Economic Simplified Boiling Water Reactor, 1550 MW) firmy General Electric, AP1000 firmy Westinghouse Electric Company, CANDU 6 (CANada Deuterium Uranium, PHWR), Kanada, WWER 1000 (Water-Water Energetic Reactor, PWR),Rosja. Do niedawna zrealizowane inwestycje wymaga³y czasu budowy elektrowni j¹drowej d³u szego ni 10 lat. Obecnie g³ówni dostawcy planuj¹ czas konstrukcji reaktora nawet krótszy ni 4 lata, np. 3,5 roku dla CANDU ACR-1000, 5 lat dla AP1000 i 4 lata dla EPR. Rzeczywistoœæ weryfikuje powy sze zapowiedzi i tak np. realizowana w Olkiluoto 3 w Finlandii budowa reaktora EPR 1600 MW z planowanym terminem oddania do u ytku w roku 2009 jest ju obecnie opóÿniona oko³o 2 lata. Koszt planowany inwestycji wyniesie 3,7 mld euro. Drugim realizowanym reaktorem EPR jest reaktor w elektrowni Flamanville we Francji. Termin ukoñczenia inwestycji przewidziano na 2012 rok, oczekiwany czas budowy 54 miesi¹ce, koszt 3,3 mld euro. Budowa reaktora EPR 1600 MW w Olkiluoto, Finlandia, wspierana jest przez rz¹d w ró nych formach (odpowiednia polityka kredytowa, gwarancje kredytowe i preferencje finansowe). 3. Analiza ekonomiczna technologii j¹drowych Proces inwestycyjny elektrowni j¹drowej jest d³ugotrwa³y, tote wa nym czynnikiem jest zarz¹dzanie nak³adem inwestycyjnym. Uwzglêdnienie zamro enia kapita³u wp³ywa na konkurencyjnoœæ technologii j¹drowych. Z tego powodu wybór stopy dyskonta jest jednym z najbardziej wra liwych parametrów wp³ywaj¹cych na wynik obliczeñ efektywnoœci takiego projektu inwestycyjnego. Zgrubnie mo na oszacowaæ, e nak³ady inwestycyjne stanowi¹ prawie 3 4 kosztu wytwarzania energii elektrycznej w elektrowni j¹drowej. Obecnie amerykañska firma Moody s Investors Service (MIS), specjalizuj¹ca siê w analizach finansowych, szacuje zdyskontowany koszty budowy nowej elektrowni j¹drowej na wiêcej ni 7000 USD/kW. Jeœli porównuje siê koszty z kosztami elektrowni wiatrowej, oko³o 2000 USD/kW, to wydaj¹ siê one wysokie. Ale jeœli weÿmie siê pod uwagê mo liwe do osi¹gniêcia w tych elektrowniach stopnie wyzyskania mocy zainstalowanej, odpowiednio 0,9 dla elektrowni j¹drowej i oko³o 0,25 0,35 dla elektrowni wiatrowej, to ta ró nica zanika. Oceny MIS dotycz¹ce kosztami elektrowni j¹drowej wydaj¹ siê byæ zawy one, bo np. pod- 470

pisany kontrakt na budowê dwóch bloków AP1000 w elektrowni Virgil C. Summer w USA opiewa na 4,9 mld/usd na ka dy blok. Koszty wytwarzania energii elektrycznej w elektrowniach j¹drowych charakteryzuj¹ siê ni szym udzia³em kosztów paliwa, a wy szym udzia³em kosztów eksploatacyjnych w stosunku do elektrowni konwencjonalnych. Dodatkowymi kosztami elektrowni j¹drowych s¹ kosztów ochrony obiektów, kontroli pracowników i zapewnienia bezpieczeñstwa pracy elektrowni. Koszty te s¹ wy sze ni w elektrowniach konwencjonalnych. Ró ne Ÿród³a podaj¹ udzia³ kosztu paliwa uranowego w kosztach eksploatacyjnych elektrowni j¹drowych na poziomie od 16 do 28%. Z tego powodu dwukrotny wzrost ceny paliwa uranowego skutkuje oko³o 7% wzrostem kosztu wytwarzania energii elektrycznej w elektrowniach j¹drowych. Cena paliwa uranowego, zale na od ceny uranu naturalnego, znacznie siê waha w ostatnich latach. Na rynku amerykañskim w roku 2005 cena uranu wynosi³a 44 USD/kg (100%), w 2007 r. osi¹gnê³a nawet 250 USD/kg (568%), a w 2008 r. spad³a do 130 USD/kg (295%). Budowa nowych reaktorów bêdzie wymaga³a nak³adów inwestycyjnych w zakresie wydobycia rud uranu i przedsiêbiorstw produkuj¹cych paliwo uranowe. Cykl inwestycyjny w przypadku kopalni rud uranu to okres oko³o 10-letni. Mo e spowodowaæ to dalszy wzrost cen paliwa uranowego. Transport i sk³adowanie odpadów radioaktywnych to dodatkowe koszty w produkcji energii elektrycznej w elektrowniach j¹drowych. Zale ¹ one od sposobu realizacji procesu sk³adowania, np. w USA spó³ki wytwórczo-dystrybucyjne doliczaj¹ do rachunków za energiê elektryczn¹ dodatkow¹ op³atê (oko³o jedna dziesi¹ta centa na kw h) i odpady sk³adowane s¹ na sta³e, we Francji wiêkszoœæ odpadów podlega ponownej obróbce, a czêœæ jest sk³adowana z mo liwoœci¹ dostêpu w celu przetworzenia w przysz³oœci, natomiast w Szwecji stosowany jest tzw. proces KBS-3. Okres eksploatacji elektrowni ustalany jest na oko³o 40 60 lat i w wiêkszoœci przypadków elektrownia ma zabezpieczyæ odpowiednie fundusze na demonta obiektu. W USA koszty demonta u elektrowni szacuje siê na co najmniej 300 mln USD. WMIT(Massachusetts Institute of Technology) [8] oszacowano koszt wytwarzania energii elektrycznej w elektrowniach j¹drowych na poziomie 0,067 USD/kW h. Przytaczane oszacowanie IEA (International Energy Agency) dla 2005 roku w dokumencie [4] wynosz¹ 0,04 0,045 EUR/kW h dla elektrowni z reaktorami LWR. Analizê kosztów wytwarzania energii elektrycznej wykona³a w 2004 roku The Royal Academy of Enginnering, UK [12] wyliczaj¹c dla elektrowni j¹drowych wartoœæ 0,023 /kw h. 4. Analiza efektywnoœci ekonomicznej elektrowni j¹drowych w warunkach ryzyka Analiza ekonomiczna nowych inwestycji musi uwzglêdniaæ ryzyko zwi¹zane z niepewnoœci¹ kszta³towania siê przysz³ych przychodów elektrowni j¹drowych. W realiach 471

zliberalizowanego rynku energii ryzykiem, zwi¹zanym z nak³adem inwestycyjnym, z rezultatami sprzeda y energii elektrycznej, z cen¹ paliwa itp., jest obarczony dostawca energii elektrycznej, czyli elektrownia, a w niewielkim stopniu odbiorcy. W celu analizy efektywnoœci inwestowania wykorzystano model decyzyjny inwestycji, opisany w [5, 11]. W modelu wartoœæ opcji inwestowania oznaczono F(V). Jest to wartoœæ maksymalna z oczekiwanej wartoœci zaktualizowanej inwestycji: FV ( ) max [( V I) e ] (1) gdzie: V wartoœæ projektu, I nak³ad inwestycyjny zdyskontowany na chwilê rozpoczêcia eksploatacji inwestycji, oznaczenie wartoœci oczekiwanej, T czas, w którym inwestycja ma byæ oddana do u ytkowania, stopa dyskonta. Równanie Bellmana mo na zapisaæ w postaci: T T Fdt ( df ) (2) Wartoœæ projektu jest funkcj¹ przychodu V(P), tote wartoœæ opcji inwestowania równie jest funkcj¹ przychodu F(P). Za³o ono, e przychód P mo na zamodelowaæ procesem Wienera zgodnie z równaniem geometrycznych ruchów Browna z trendem (tzw. równaniem dyfuzji): dp Pdt Pdz (3) gdzie: dz inkrement procesu Wienera. Przychód z projektu inwestycyjnego zmienia siê z trendem o wspó³czynniku zmian równym, a sk³adnik losowy zale y od wartoœci wspó³czynnika odchylenia standardowego wzglêdnych zmian przychodów, który jest zarazem miar¹ niepewnoœci. Z równania Bellmana, wykorzystuj¹c w przekszta³ceniach lemat Ito, otrzymuje siê nastêpuj¹ce równanie ró niczkowe: 1 2 2 2 P F ( P) ( r ) PF ( P) rf( P) 0 (4) Aby rozwi¹zanie mia³o sens nale y za³o yæ, e <, czyli 0. Rozwi¹zanie mo na przewidywaæ jako kombinacjê liniow¹ dwu liniowo niezale nych rozwi¹zañ: F( P) A P 1 A P 2 (5) 1 2 A1, A2 wspó³czynniki, których wartoœci nale y wyznaczyæ, 472

1, 2 pierwiastki równania charakterystycznego dla równania (4) przyjmuj¹cego postaæ 1 2 ( 1) ( r ) r 0. 2 Poniewa wy sze wartoœci przychodu P czyni¹ opcjê inwestowania atrakcyjniejsz¹, st¹d nale y wyznaczyæ wartoœæ graniczn¹ P*, powy ej której op³aca siê inwestowaæ natychmiast. Z warunku: F ( 0) 0 (6) wynika wartoœæ wspó³czynnika A 2 =0. Wartoœæ opcji inwestowania musi równaæ siê wartoœci zaktualizowanej inwestycji: F( P*) V( P*) I (7) Wykresy F(P) iv(p) I powinny byæ styczne w punkcie P*, czyli: F ( P*) V ( P*) (8) Z powy szych warunków, bior¹c pod uwagê równanie (5), mo na wyznaczyæ: 1 P* 1 1 I (9) oraz A ( ) 1 1 ( 1 1 I 1 ) 1 1 ( 1 1 ) (10) Jeœli za³o y siê wartoœæ produkcji i oszacuje koszty wytwarzania energii elektrycznej w elektrowni j¹drowej, to na podstawie wartoœci P* mo na wyznaczyæ krytyczn¹ (progow¹) cenê energii elektrycznej c e *, powy ej której op³aca siê inwestowaæ w budowê elektrowni. Dane potrzebne do wyliczenia krytycznej ceny dla przyk³adowych technologii j¹drowych przedstawiono w tabeli 5, natomiast rezultaty obliczeñ w tabeli 6. Analizie poddano nastêpuj¹ce technologie: elektrownia j¹drowa z reaktorem wodnym LWR (Light Water Reactor) ciœnieniowym PWR (Pressurized Water Reactor) lub wrz¹cym BWR (Boiling Water Reactor), elektrownia j¹drowa z reaktorem wodnym nowej generacji ELWR (Evolutionary Light Water Reactor), elektrownia j¹drowa z reaktorem ciê kowodnym ciœnieniowym PHWR (Pressurised Heavy-Water Reactor). Analiza wyników zamieszczonych w tabeli 6 wskazuje na niewielkie ró nice w krytycznych wartoœciach ceny energii elektrycznej dla elektrowni j¹drowych. Najkorzystniejsz¹ technologi¹ okazuje siê reaktor wodny nowej generacji ELWR. Decyduj¹ o tym ni sze jednostkowe nak³ady inwestycyjne i korzystny rozk³ad nak³adu inwestycyjnego 473

w czasie budowy reaktora, zmniejszaj¹cy zamro enie kapita³u. Wraz ze wzrostem niepewnoœci, której miar¹ jest zwiêkszaj¹ca siê wartoœæ odchylenia standardowego, zwiêkszaj¹ siê wartoœci krytyczne ceny energii elektrycznej dla wszystkich technologii. Oszacowania z tabeli 6 mo na porównaæ z kosztami wytwarzania energii elektrycznej podawanymi w [7] i [9]. Kocot H. i Korab R. [7] szacuj¹ koszty wytwarzania w elektrowniach j¹drowych w zakresie od 0,18 z³/kw h do 0,23 z³/kw h, potwierdzaj¹c oszacowania z tabeli 6. Musia³ K. [9] prezentuje mniejsze wartoœci kosztów wytwarzania energii elektrycznej: dla reaktora EPR 0,132 z³/kw h, a dla reaktora AP-1000 wartoœæ 0,123 z³/kw h. Technologie j¹drowe staj¹ siê konkurencyjn¹ opcj¹ wytwarzania energii elektrycznej w porównaniu do innych technologii, szczególnie jeœli w obliczeniach uwzglêdnia siê koszty zewnêtrzne. Podsumowanie Liberalizacja rynku energii elektrycznej sprawia, e elektrownie j¹drowe staj¹ siê ma³o atrakcyjn¹ opcj¹ dla inwestorów. Obecnie elektrownie musz¹ zadowoliæ siê kontraktami krótkotermionowymi na hurtowym rynku energii. Du e nak³ady utopione inwestycji i trudne do przewidzenia przychody odstraszaj¹ inwestorów od kapita³och³onnych elektrowni j¹drowych. Preferowane s¹ elektrownie o niskich kosztach inwestycyjnych, nawet przy wysokich kosztach eksploatacyjnych. TABELA 5. Wybrane parametry techniczno-ekonomiczne elektrowni j¹drowych TABLE 5. Selected technical-economic parameters of nuclear power plants Wyszczególnienie Jednostka Reaktory LWR ELWR PHWR Moc MW 1000 1350 881 Nak³ad inwestycyjny jednostkowy z³/kw 10 880 9 330 10 435 Nak³ad inwestycyjny NI mln z³ 10879,7 12596 9193,6 Czas budowy lata 8 8 8 Udzia³ NI w roku 0-0,2 0,163 0,025 Udzia³ NI w roku -1-0,15 0,155 0,075 Udzia³ NI w roku -2-0,16 0,163 0,1 Udzia³ NI w roku -3-0,18 0,182 0,125 Udzia³ NI w roku -4-0,14 0,177 0,175 Udzia³ NI w roku -5-0,09 0,098 0,175 474

Udzia³ NI w roku -6-0,05 0,032 0,125 Udzia³ NI w roku -7-0,02 0,02 0,1 Udzia³ NI w roku -8-0,01 0,01 0,1 Nak³ad inwestycyjny I (tzw. overnight cost, stopa dyskonta 8%) mln z³ 13 384,3 15 595,9 13 148,2 Koszty razem 0,001 z³/kw h 92 92,4 94,4 W tym: koszty paliwa i eksploatacyjne 0,001 z³/kw h 14,4 18,1 9,8 Stopieñ wyzyskania mocy zainstalowanej 0,75 0,75 0,75 Roczna produkcja energii elektrycznej GW h 6 570 8 870 5 788 Koszty roczne razem mln z³ 604,4 819,5 546,4 W tym: koszty paliwa i eksploatacyjne mln z³ 94,6 160,5 56,7 Okres eksploatacji lata 40 40 40 ród³o: opracowanie w³asne na podstawie [3, 6] i bazy ETDE Natomiast przedstawione obliczenia wykazuj¹, e elektrownie j¹drowe s¹ konkurencyjne w stosunku do innych technologii wytwarzania energii elektrycznej, nawet przy za³o eniu du ej niepewnoœci kszta³towania siê przysz³ych przychodów elektrowni. Polityka energetyczna Polski zak³ada budowê elektrowni j¹drowej po 2010 roku. Decyzja o budowie musi byæ poprzedzona programem informacyjnym i dotarciem do spo³eczeñstwa z rzetelnymi argumentami promuj¹cymi energetykê j¹drow¹. Z uwagi na wysokie nak³ady inwestycyjne projekt budowy elektrowni j¹drowej musi byæ wspomagany przez rz¹dowe rozwi¹zania, stosowane równie przez inne pañstwa, a dotycz¹ce polityki finansowo-podatkowej zwi¹zanej z przedsiêwziêciem i zabezpieczeniami zmniejszaj¹cymi ryzyko inwestora. TABELA 6. Krytyczne wartoœci ceny energii elektrycznej w funkcji miernika niepewnoœci (odchylenie standardowe) [z³/kw h] TABLE 6. Critical values of electricity price as a function of the uncertainty measure (standard deviation) [z³/kw h] Typ reaktora Wielkoœæ Wartoœæ 0 0,05 0,1 0,15 0,2 0,25 0,3 LWR Cena 0,177 0,183 0,200 0,222 0,249 0,280 0,315 ELWR * c e 0,159 0,164 0,178 0,197 0,221 0,248 0,278 PHWR [z³/kw h] 0,192 0,199 0,217 0,242 0,272 0,307 0,346 ród³o: opracowanie w³asne Artyku³ opracowano w ramach projektu MNiSzW Nr N511 024 32/4191. 475

Literatura [1] CELIÑSKI Z., 2004 Energetyka j¹drowa w œwiecie (stan obecny i perspektywy). Raport Energetyki. [2] CELIÑSKI Z., STRUPCZEWSKI A., 1984 Podstawy energetyki j¹drowej. WNT, Warszawa. [3] CIE Centrum Informatyki Energetyki, 1995 Nowoczesne technologie wytwarzania energii elektrycznej, Warszawa. [4] Commission of the European Communities, 2007 An Energy Policy for Europe, Brussels, 10.1.2007, COM. [5] DIXIT A.K., PINDYCK R.S., 1994 Investment under Uncertainty, Princeton University Press. [6] GOLEC T., RAKOWSKI J., ŒWIRSKI J., 2004 Perspektywy postêpu technicznego w wytwarzaniu energii elektrycznej przy wykorzystaniu wêgla kamiennego, wêgla brunatnego i gazu ziemnego z uwzglêdnieniem efektu œrodowiskowego. Elektroenergetyka nr 1 (48), s. 16 26. [7] KOCOT H., KORAB R., 2007 Koszty zewnêtrzne technologii elektroenergetycznych metodyka wyznaczania. XIII Konferencji Naukowo-Technicznej Rynek Energii Elektrycznej REE 07, Kazimierz Dolny, 9 11 maja, s. 167 174. [8] MIT, 2003 The Future of Nuclear Power, Massachusetts Institute of Technology, ISBN 0-615-12420-8. [9] MUSIA K., Porównanie technologii wytwarzania energii elektrycznej w Polsce. Energoprojekt Katowice S.A. [10] Poradnik in yniera elektryka, 1997 WNT, Warszawa. [11] SOWIÑSKI J., 2006 Ocena konkurencyjnoœci inwestycji w sferze wytwarzania energii elektrycznej w warunkach niepewnoœci. Przegl¹d Elektrotechniczny 9, s. 89 91. [12] The Royal Academy of Engineering, 2004 The Costs of Generating Electricity, ISBN 1-903496-11-X [13] TOLLEY G.S., JONES D.W. i in., 2004 The Economic Future of Nuclear Power. The University of Chicago. Janusz SOWIÑSKI Analysis of electricity production costs in the nuclear power plants Abstract The paper presents the survey of technologies applied in modern nuclear power plants. Cost analysis of the nuclear power plants is worked out. The decision-making model of an investment under uncertainty is presented. The model is applied to calculation of the critical price of electricity. If the current price of electricity is greater than the critical value then the construction of the nuclear power plant is a profitable investment. Some results of calculation are presented. KEY WORDS: nuclear power plant, production cost, investment 476