SIGNAL PROCESSING Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt.

Podobne dokumenty
Helena Boguta, klasa 8W, rok szkolny 2018/2019

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Hard-Margin Support Vector Machines

SIGNAL PROCESSING Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt.

Teoria sygnałów. Signal Theory. Electrical Engineering 1 st degree (1st degree / 2nd degree) General (general / practical)

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

5.3 Frequency contents

tum.de/fall2018/ in2357

Medical electronics part 9a Electroencephalography (EEG)

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

2017 R. Robert Gajewski: Mathcad Prime 4. Solution of examples Rozwiązania przykładów

OPBOX ver USB 2.0 Mini Ultrasonic Box with Integrated Pulser and Receiver

Gradient Coding using the Stochastic Block Model

Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout

Discretization of continuous signals (M 19) Dyskretyzacja sygnałów ciągłych

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

Convolution semigroups with linear Jacobi parameters

Tychy, plan miasta: Skala 1: (Polish Edition)

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Previously on CSCI 4622

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

RESONANCE OF TORSIONAL VIBRATION OF SHAFTS COUPLED BY MECHANISMS

Few-fermion thermometry

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

WAVELET TRANSFORM OF SELECTED SIMULATION SIGNALS USING DETAILS AS INFORMATION SOURCE

New Roads to Cryptopia. Amit Sahai. An NSF Frontier Center

Zarządzanie sieciami telekomunikacyjnymi

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

CYFROWE PRZETWARZANIE SYGNAŁÓW

Patients price acceptance SELECTED FINDINGS

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo

Chapter 1: Review Exercises

deep learning for NLP (5 lectures)

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

Standardized Test Practice

Lecture 20. Fraunhofer Diffraction - Transforms

Medical electronics part 10 Physiological transducers

USAGE OF SHORT TIME FOURIER TRANSFORM IN IDENTIFICATION OF VEHICLE SHOCK ABSORBER TECHNICAL CONDITIONS RESEARCHED BY FORCE VIBRATION METHOD

Compressing the information contained in the different indexes is crucial for performance when implementing an IR system

Some Linear Algebra. Vectors operations = =(,, ) =( 1 + 2, 1 + 2, ) λ =(λ,λ,λ ) Addition. Scalar multiplication.

Revenue Maximization. Sept. 25, 2018

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

Układy reprogramowalne i SoC Język VHDL (część 4)

REDUCTION OF PASS BAND AMPLITUDE DISTORTIONS IN THE EEG FILTERING SYSTEM BASED ON SELECTED IIR FILTERS

ANALIZA WIDMOWA SYGNAŁÓW (1) Podstawowe charakterystyki widmowe, aliasing

Installation of EuroCert software for qualified electronic signature

A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations

No matter how much you have, it matters how much you need

OpenPoland.net API Documentation

POLITYKA PRYWATNOŚCI / PRIVACY POLICY

Inverse problems - Introduction - Probabilistic approach

Prices and Volumes on the Stock Market

Walyeldeen Godah Małgorzata Szelachowska Jan Kryński. Instytut Geodezji i Kartografii (IGiK), Warszawa Centrum Geodezji i Geodynamiki

Stability of Tikhonov Regularization Class 07, March 2003 Alex Rakhlin

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Stargard Szczecinski i okolice (Polish Edition)

Selection of controller parameters Strojenie regulatorów

Outline of a method for fatigue life determination for selected aircraft s elements

Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej

DODATKOWE ĆWICZENIA EGZAMINACYJNE

How to share data from SQL database table to the OPC Server? Jak udostępnić dane z tabeli bazy SQL do serwera OPC? samouczek ANT.

Mixed-integer Convex Representability

Nonlinear data assimilation for ocean applications

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)


Pomoc do programu konfiguracyjnego RFID-CS27-Reader User Guide of setup software RFID-CS27-Reader

Wyk lad z Algebry Liniowej dla studentów WNE UW. Rok akademicki 2017/2018. Przyk lady zadań na ćwiczenia. 1. Które z cia

Cyfrowe przetwarzanie sygnałów. Wykład 7. Projektowanie filtrów cyfrowych. dr inż. Robert Kazała

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Counting quadrant walks via Tutte s invariant method

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

The Overview of Civilian Applications of Airborne SAR Systems

Nauczycielem wszystkiego jest praktyka Juliusz Cezar. Nauka to wiara w ignorancję ekspertów Richard Feynman

Podstawy automatyki. Energetics 1 st degree (1st degree / 2nd degree) General (general / practical) Full-time (full-time / part-time)

Sin[Pi / 4] Log[2, 1024] Prime[10]

Dolny Slask 1: , mapa turystycznosamochodowa: Plan Wroclawia (Polish Edition)

Appendix. Studia i Materiały Centrum Edukacji Przyrodniczo-Leśnej R. 10. Zeszyt 2 (17) /

Medical electronics part 9b Electroencephalography (EEG)

DOI: / /32/37

PROCESORY ARM TRUDNO ZNALEŹĆ PROCESORY O TAK LICZNYCH, ORYGINALNYCH, NOWYCH, POMYSŁOWYCH ROZWIĄZANIACH!

harmonic functions and the chromatic polynomial

Urbanek J., Jabłoński A., Barszcz T ssswedfsdfurbanek J., Jabłoński A., Barszcz T., Wykonanie pomiarów

R E P R E S E N T A T I O N S

Zmiany techniczne wprowadzone w wersji Comarch ERP Altum

English Challenge: 13 Days With Real-Life English. Agnieszka Biały Kamil Kondziołka

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12

ELF. system: pokój młodzieżowy / teenagers room MEBLE MŁODZIEŻOWE / YOUTH ROOM FURNITURE ELF

BIOPHYSICS. Politechnika Łódzka, ul. Żeromskiego 116, Łódź, tel. (042)

Wybrzeze Baltyku, mapa turystyczna 1: (Polish Edition)

TYLKO DO UŻYTKU WŁASNEGO! PERSONAL USE ONLY!

Estimation and planing. Marek Majchrzak, Andrzej Bednarz Wroclaw,

7.2.1 Przeglądarka elementów i dostęp do pomocy

Transkrypt:

SIGAL PROCESSIG Prezentacja multimedialna współfinansowana przez Unię Europejsą w ramach Europejsiego Funduszu Społecznego w projecie pt. Innowacyjna dydatya bez ograniczeń - zintegrowany rozwój Politechnii Łódziej - zarządzanie Uczelnią, nowoczesna oferta eduacyjna i wzmacniania zdolności do zatrudniania osób niepełnosprawnych Politechnia Łódza, ul. Żeromsiego 6, 9-94 Łódź, tel. (4) 63 8 83 www.apitalludzi.p.lodz.pl

Spectral analysis

Signal processing 3 analog (anty-aliasing) filtering sampling A/D Digital processing D/A sensor transducer Amplifier fm f f s M Spectral methods Correlation methods Filtering Compressing Analog processing

Spectral analysis 4 Analysis of signals in spectral domain enables observation of signal features that are not visible in time domain but have significant diagnostic meaning. (t) ransformation X() Analysis t

Fourier series 5 Joseph Fourier (768-83) Wide range of signals may be represented by linear combination of harmonic functions of different frequencies so called Fourier series

DMF - Dual one Multi Frequency 6

Fourier ransform 7 How to combine amplitutes of individual harmonics (of varying frequencies) in order to obtain a representation of a signal of an arbitrary shape? F?

rigonometric Fourier series 8 a t a cos t b sin t where: and: a a b t t t fundamental frequency [rad/s] t dt t t costdt, sintdt,,,,,

Inner product of vectors A 9 B AB A B cos Inner product of vectors is a scalar A B A B dla 9 min for 8 A B ma for i.e. for orthogonal vectors

Inner product of vectors in a Cartesian coordinate system y A A y AB A B A y B y B y A A B B B AB A B cos A Bcos cos sin sin A A A cos B cos B B A A B A sin B sin B A A B B A y B y

For an -dimensional vectors: i i i y y y,,, y Y X Y X y,, y, y Y y y B A B A AB i i i y y y y Y X,,, X On the Euclidean plane Inner product of vectors hese can be interpreted as samples of functions

Basis vectors Problem: We want to represent a given vector C by orthogonal (basis) vectors a i b of unit length a b a b b a C Orthogonal vectors

Basis vectors Hyphotesis: C Proof: a Ca b Cb a C a a C cos a Aa b C b b C cos b Bb C Aa Bb A B B b B a a b C A 3 A Linear combintion of basis vectors

Bac to Fourier series 4. i Fourier coefficients Basis functions Joseph Fourier (768-83) Wide range of signals may be represented by linear combination of harmonic functions of different frequencies so called Fourier series

he problem of function approimation 5 Consider a tas: we wish to approimate a given function g by a weighted sum of n simpler functions f i : g f f n fn i f n i i Linear combination of functions he set of functions f i is usually given, our goal is to find out coefficients i, such that we get best possible approimation of function g by a set of n simpler functions f i

rigonometric Fourier series 6 a t a cos t b sin t where: and: a a b t t t fundamental frequency [rad/s] t dt t t costdt, sintdt,,,,, Inner product of functions

rigonometric Fourier series 7 a t a cos t b sin t +

Fourier serises of a cosinusoid 8 A (t) (f) A= f t f time f frequency

Fourier series - eample 9 t b sin t t 3 sin t. 5 sin t sin t 4.5.5.5 = -.5 + - -.5 -.5 -.5-4 5-5 - 5-5 Fundamental frequency f Fundamental period

Fourier series - eample - t b -4 5 sin t t sin t.5 5 sin t sin t 3 4 = -.5 3 Amplitudes of harmonics {, -.5, } Signal compression!

Fourier series - eample Fundamental pulsation t 4 sin t sin 3t sin 5t 3 5

Fourier series - eample See Fourier Series Animation using Circles: www.youtube.com/watch?v=lznjc4lo7le 4/ Fourier spectrum 3 5 7 9 3 5 7 9

rigonometric Fourier series 3 a t a cos t b sin t 3 -.5.5.5 =??? - -.5 -.5 -.5-3 -4 3 4 5-5 - 5-5

Fourier series of ECG 4 6 5 4 3 7-4 6 8 6 9 8 5 4 3 Fourier spectrum of ECG signal 6 Hz 5 5 f[hz]

Fourier series of ECG 5 9 8 7 6 5 4 3 5 5 f[hz]

Eponential Fourier series from trigonometric series 6 Let: a b c j c c c,,,,,...,, 3,... a c then: t c c c cos t jc c sin t and finally: t c e j t use: e jt cost j sin t

Euler s formula: 7 e jt cost j sin t Im j = o t sin t j t jt j t sin e e cos t Re jt jt cos t e e

Fourier coefficients 8 t c e j t X ( ) e j t where: X t j ( ) e t dt, X () t dt

Fourier ransform 9 Replace by continuous pulsation : t X je j t d X j t e jt dt Comple Fourier coefficients Comple numbers!

Fourier ransform - eample 3 Dirac Impulse White spectrum t F for for t t jt t t dt X j t e dt

Fourier ransform - eample Dirac Impulse 3 constant signal F t X jt j e dt for for

Fourier ransform - eample 3 -/ / t -, t, t F t X j e jt sin dt A signal of finite length has infinitely wide spectrum

Spectrum of a harmonic function 33 (t) F () t cos j t j t e e t

Spectrum of a harmonic function 34 (t) F () t sin j j t j t e e t j

Series of unit impulses 35 (t) F () / - - -4/ -/ / 4/ t t t where

Some properties of Fourier ransform 36. Linearity:. Scaling: 3. Convolution: 4. Multiplication: 5. Parseval s equality: 6. Modulation: a t byt a X j by j a a at X, a t yt X jy j t yt X jy j t dt X j j t te X d

Discrete Fourier ransform 37 Periodic signal (t) is sampled times during its period, ie. =t. Discrete signal (n) of period is obtained: n n (t) t (n) - t t

Discrete Fourier ransform 38 he smallest frequency of Fourier series (fundamental frequency): f t fs Frequencies of succesive -ths harmonics: f t f s (t) f o =/=/(t) t t - f o

Discrete Fourier ransform 39 Frequency/time resolution: X() f f o =/ t fs f o f o 3f o 4f o f o (t) t

Discrete Fourier ransform 4 Frequency/time resolution: f t ' fs X() f o =/ f ' f f o f o 3f o f o (t) t

Discrete Fourier ransform 4 Frequency/time resolution: f '' o t f s X() f o =/ f '' f f o f o f o (t) / t

Discrete Fourier ransform 4 Modifying equations for Fourier series and Fourier coeficients for continuous time: X ( ) X n t t e j t n dt gives corresponding equations for discrete time: ( nt) e X ( ) e t j n j X ( ) e n t j n t t j t n n=,,,, - ( n) e =,,,, -

Discrete Fourier ransform 43 X Direct: n ( n) e j n Sample inde in time =,,,, - Inverse: Sample inde in frequency n X ( ) e j n n =,,,, -

DF amplitude and phase spectrum 44 X ( ) n X ( ) X ( ) e ( n) e jarg j n / X Where: Amplitude spectrum X ( ) ImX ( ) X ( ) Re Phase spectrum arg X ( ) arctan Im Re X ( ) X ( )

DF properties 45 For a real valued signal (n) the following property holds for its -point DF: X ( ) X ( ) Im Hence for the amplitude spectrum (even symmetry): X ( ) X ( ) * - Re and for the phase spectrum (odd symmetry): arg X ( ) argx ( )

46 ] 4 [ 3 4 n 3 / ) ( ) ( n n j e n X j X X j X e n X n n j 3 4?... (3) 4?... 3 4?... () 3 4 4 3 4 3 4 ) ( () 3 / DF-eample Amplitude and phase spectrum?

47 3 n n / j e n X j X X j X X 3 4 3 4 3 4 3 =4 X X * X X arg arg Amplitude spectrum: even symmetry X X Phase spectrum: odd symmetry he symmetry property

48 DF properties DF is periodic: ) ( ) ( X X X e n e e n e n X n n j n n j n j n n j / / / ) ( ) ( ) ( ) ( =?

Discrete Fourier ransform amplitude spectrum 49 - even (=6) -7f f 8f -f - f DC Positive frequencies f s / egative frequencies

Discrete Fourier ransform amplitude spectrum 5 - odd (=5) f 7f -7f -f - f DC Positive frequencies egative frequencies

Discrete Fourier ransform amplitude spectrum 5 const. - t / f f o - t / f

Discrete Fourier ransform amplitude spectrum 5 f o - t / f f=f s / - t / f

Eamples 53 Computer eercise: Create = samples of harmonic signal (t)=asin(f t), where A=, f = Hz, sampled with frequency f s = Hz. Plot the signal, determine its frequency spectra and plot them. Compute the inverse transform and compare the result with the original signal.

f()=sin() Eamples 54 8 6 4 - signal in time domain = #number of samples A= #amplitude f= #sinusoid frequency fs= #sampling frequency =/fs #time range #time scale t=arange(,,./fs) -4-6 #sinusoid sample values =A*sin(*pi*f*t) -8 -...3.4.5.6.7.8.9 #plotting figure() plot(t,) title('signal in time domain') label( ime [s]') ylabel('f()=sin()')

FF(sin()) Eamples #frequency base determination f=float(fs)/ f=arange(,*f,f) #determination of Fourier coefficients X=fft() 6 5 frequency spectrum 55 #plotting figure plot(f,abs(x)) title('frequency spectrum ) label('f') ylabel('ff(sin())') 4 3 3 4 5 6 7 8 9 f

IFF(FF(sin())) Eamples 56 #inverse ix=ifft(x) figure; plot(t,real(ix)) title('reconstructed signal') label('') ylabel('iff(ff(sin())) ) 8 6 Reconstructed signal 4 - -4-6 -8 -...3.4.5.6.7.8.9

Eamples 57 Computer eercise: Add the Gaussian noise of standard deviation = ( *randn(,) ) to the signal created in the previous ecercise. Plot the noised signal. Is it possible to determine the harmonic frequency using the time characteristic? Plot the frequency spectrum of the noised signal and determine the main harmonic component of the signal.

f()=sin()+noise f()=sin() Eamples 58 6 signal in time domain 4 6 signal in time domain - 4-4 -6...3.4.5.6.7.8.9 - -4-6...3.4.5.6.7.8.9

FF(sin()) FF(sin()) f()=sin() f()=sin()+noise Eamples 59 6 signal in time domain 6 signal in time domain 4 4 - - 6-4 -6...3.4.5.6.7.8.9 frequency spectrum DF 5-4 -6...3.4.5.6.7.8.9 frequency spectrum 45 5 4 4 35 3 3 5 5 5 3 4 5 6 7 8 9 f 3 4 5 6 7 8 9 f

FF(sin()) Eamples 6 6 frequency spectrum signal 5 4 threshold 3 noise 3 4 5 6 7 8 9 f

IFF(FF(sin())) Eamples 6 5 Reconstructed signal 5-5 - -5...3.4.5.6.7.8.9

Eamples 6 Computer eercise: Determine and plot the amplitude frequency spectrum of the ECG signal sampled at f s =36 Hz (remember to subtract the mean from the signal prior to Fourier transform. Use 4-point DF). Analyse the ECG signal spectrum. otice the mains frequency.

Eamples 63 6 5 ECG plot mains frequency 6 Hz 4 3 ECG spectrum 8 - - 5 5 5 3 time [s] 6 4 5 5 5 3 35 frequency [Hz]

In practice a Fast Fourier ransform (FF) is used 64 X n j n n e, dla,,, X n n e j n Single coefficient (F) log (FF) Zys /log 6 56 64 4 In FF symmetry and periodicity of comple harmonics is used 56 65535 48 3 5 644 468 64 48 ~4e6 58 86

f()=sin()+noise Short ime Fourier ransform 65 Consider the following non-stationary signal: 6 signal in time domain 4 - -4-6...3.4.5.6.7.8.9

FF(sin()) Short ime Fourier ransform 66 frequency spectrum 5 5 5 3 4 5 6 7 8 f What important information is lost in the frequency spectrum?

f()=sin()+noise Short ime Fourier ransform 67 6 signal in time domain 4 signal - window -4-6...3.4.5.6.7.8.9 DF(signal*window)

f()=sin()+noise Short ime Fourier ransform 68 6 signal in time domain 4 signal - window -4-6...3.4.5.6.7.8.9 DF(signal*window)

f()=sin()+noise Short ime Fourier ransform 69 6 signal in time domain 4 signal - window -4-6...3.4.5.6.7.8.9 DF(signal*window)

f()=sin()+noise Short ime Fourier ransform 7 6 signal in time domain 4 signal - window -4-6...3.4.5.6.7.8.9 DF(signal*window)

Short ime Fourier ransform 7

Short ime Fourier ransform 7 SF( ( n)) X ( m, ) ( n) w( n m) e n jn signal discrete time variable discrete frequency variable window function

Frequency Short ime Fourier ransform 73 35 3 5 mm aaaaaa tttttt llllllll aaaaaaa bbb 5 5.5..5..5.3.35.4.45 ime

Introduction to Matlab - summary 74. Fourier series. Eponential Fourier series 3. Fourier ransform 4. Discrete Fourier ransform 5. Fourier spectrum interpretation 6. Short ime Fourier ransform

SIGAL PROCESSIG Prezentacja multimedialna współfinansowana przez Unię Europejsą w ramach Europejsiego Funduszu Społecznego w projecie pt. Innowacyjna dydatya bez ograniczeń - zintegrowany rozwój Politechnii Łódziej - zarządzanie Uczelnią, nowoczesna oferta eduacyjna i wzmacniania zdolności do zatrudniania osób niepełnosprawnych Politechnia Łódza, ul. Żeromsiego 6, 9-94 Łódź, tel. (4) 63 8 83 www.apitalludzi.p.lodz.pl