Wymagania z matematyki dla klasy VIII na poszczególne oceny

Podobne dokumenty
MATEMATYKA Podstawa programowa SZKOŁA BENEDYKTA

Wymagania z matematyki dla klasy VII na poszczególne oceny

ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

WYMAGANIA EDUKACUJNE Z MATEMATYKI Z PLUSEM DLA KLASY VIII WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ TEMAT

Wymagania z matematyki dla klasy IV na poszczególne oceny

Wymagania na poszczególne oceny szkolne Klasa 8

EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019

podstawowe (ocena dostateczna) rozszerzające (ocena dobra) wyrażenia tekstowe dotyczące kwadratowych

Wymagania na poszczególne oceny szkolne

EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019

EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) wykraczające (ocena celująca) DZIAŁ 1. PIERWIASTKI

MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI.

MATEMATYKA Z KLUCZEM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY ÓSMEJ

EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII

MATEMATYKA DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości;

Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII

Wymagania edukacyjne na poszczególne oceny klasa VIII

MATEMATYKA. klasa VII. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY ŚRÓDROCZNE I ROCZNE Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ

rozszerzające (ocena dobra)

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ

1. Formy sprawdzania wiedzy i umiejętności ucznia wraz z wagami ocen

PRZEDMIOTOWY SYSTEM OCENIANIA SZKOŁY PODSTAWOWEJ IM. JÓZEFA WYBICKIEGO W GOSTKOWIE MATEMATYKA DLA KLAS IV VI

Wymagania edukacyjne z matematyki w klasie VIII

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ

Wymagania edukacyjne z matematyki w klasie VIII.

Wymagania edukacyjne z matematyki w Szkole Podstawowej nr 16 w Zespole Szkolno-Przedszkolnym nr 1 w Gliwicach

Wymagania z matematyki dla klasy V na poszczególne oceny

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych ocen klasyfikacyjnych z matematyki klasa 8

SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI. Wymagania na poszczególne oceny klasa VIII Matematyka z kluczem

WYMAGANIA EDUKACYJNE

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W GIMNAZJUM

WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM

Przedmiotowy system oceniania uczniów z matematyki

L.p DZIAŁ Z PODRĘCZNIKA NaCoBezu kryteria sukcesu w języku ucznia

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Wymagania edukacyjne matematyka klasa VIII

Wymagania edukacyjne z matematyki dla klasy ósmej

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VIII DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY CELUJĄCY DZIAŁI. LICZBY I DZIAŁANIA

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:

ZASADY OCENIANIA Z MATEMATYKI. Liceum Ogólnokształcące Nr X im. Stefanii Sempołowskiej we Wrocławiu

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE

ZASADY OCENIANIA Z MATEMATYKI. Liceum Ogólnokształcące Nr X im. Stefanii Sempołowskiej we Wrocławiu

REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM

Matematyka z kluczem

Wymagania edukacyjne z matematyki w klasie III gimnazjum

MIEJSKI OŚRODEK DOSKONALENIA NAUCZYCIELI w KONINIE. ul. Sosnowa 6, Konin tel/fax lub

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VIII

Matematyka z kluczem

Wymagania z matematyki dla klasy VI na poszczególne oceny

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM

MATEMATYKA KLASA III GIMNAZJUM

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI

Wymagania edukacyjne na poszczególne stopnie szkolne klasa III

Wymagania edukacyjne klasa druga.

Wymagania edukacyjne klasa trzecia.

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum

Katalog wymagań programowych na poszczególne stopnie szkolne

ZASADY OCENIANIA Z MATEMATYKI. Liceum Ogólnokształcące Nr X im. Stefanii Sempołowskiej we Wrocławiu

ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM

Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132

Zasady Oceniania Przedmiot: Matematyka

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

PRZEDMIOTOWY SYSTEM OCENIANIA - MATEMATYKA

Wymagania edukacyjne z matematyki na poszczególne oceny do klasy VIII na rok szkolny 2018/2019

Wymagania edukacyjne z matematyki do klasy ósmej rok szkolny 2018/2019

Wymagania edukacyjne z matematyki w klasie VIII

PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot

Przedmiotowe Zasady Oceniania (PZO) z matematyki w klasach 4 6 Szkoły Podstawowej w Wąsowie

Wymagania edukacyjne z matematyki dla klasy VIII ocena roczna

Wymagania edukacyjne z matematyki dla klasy VIII. rok szkolny 2018/2019

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 2

Wymagania na poszczególne oceny w klasie VIII szkoły podstawowej do programu nauczania MATEMATYKA Z KLUCZEM

Matematyka Wymagania edukacyjne dla uczniów klas VIII Rok szkolny 2018/2019. Dział Ocena Umiejętności Potęgi i pierwiastki. Na ocenę dopuszczającą

Poziom rozszerzony ocena dobra Dział 1. Statystyka i prawdopodobieństwo. opisuje przedstawione w porównuje wartości. w sytuacji, gdy oś pionowa danych

Wymagania edukacyjne i kryteria oceniania z matematyki dla ucznia klasy 8

Wymagania edukacyjne z matematyki dla klasy siódmej

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

1. Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi 1 LICZBA GODZIN LEKCYJNYCH

Wymagania edukacyjne na poszczególne oceny

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka

Kryteria ocen z matematyki - klasa VIII

ZESPÓŁ SZKÓŁ W OBRZYCKU

Katalog wymagań na poszczególne stopnie szkolne klasa 3

Kryteria oceniania z matematyki Klasa III poziom podstawowy

GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym

Wewnątrzszkolne kryteria ocen z matematyki Klasa VIII

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy

Transkrypt:

Wymagania z matematyki dla klasy VIII na poszczególne oceny Treści nauczania w klasie VIII na podstawie podstawy programowej I Obliczenia procentowe. 1) stosuje obliczenia procentowe do w kontekście praktycznym, również w przypadkach wielokrotnych podwyżek lub obniżek danej wielkości. II Proporcjonalność prosta. 1) podaje przykłady wielkości wprost proporcjonalnych; 2) wyznacza wartość przyjmowaną przez wielkość wprost proporcjonalną w przypadku konkretnej zależności proporcjonalnej, na przykład wartość zakupionego towaru w zależności od liczby sztuk towaru, ilość zużytego paliwa w zależności od liczby przejechanych kilometrów, liczby przeczytanych stron książki w zależności od czasu jej czytania itp.; 3) stosuje podział proporcjonalny. III Własności figur geometrycznych na płaszczyźnie. 1) wykonuje proste obliczenia geometryczne wykorzystując sumę kątów wewnętrznych trójkąta i własności trójkątów równoramiennych; 2) zna i stosuje w sytuacjach praktycznych twierdzenie Pitagorasa (bez twierdzenia odwrotnego); 3) przeprowadza proste dowody geometryczne o poziomie trudności nie większym niż w przykładach: a) dany jest ostrokątny trójkąt równoramienny ABC, w którym AC = BC. W tym trójkącie poprowadzono wysokość AD. Udowodnij, że kąt ABC jest dwa razy większy od kąta BAD, b) na bokach BC i CD prostokąta ABCD zbudowano, na zewnątrz prostokąta, dwa trójkąty równoboczne BCE i CDF. Udowodnij, że AE = AF.(12) IV Wielokąty. 1) stosuje wzory na pole trójkąta, prostokąta, kwadratu, równoległoboku, rombu, trapezu, a także do wyznaczania długości odcinków o poziomie trudności nie większym niż w przykładach: a) oblicz najkrótszą wysokość trójkąta prostokątnego o bokach długości: 5 cm, 12 cm i 13 cm, b) przekątne rombu ABCD mają długości AC = 8 dm i BD = 10 dm. Przekątną BD rombu przedłużono do punktu E w taki sposób, że odcinek BE jest dwa razy dłuższy od tej przekątnej. Oblicz pole trójkąta CDE. (zadanie ma dwie odpowiedzi).

V Oś liczbowa. Układ współrzędnych na płaszczyźnie. 1) znajduje środek odcinka, którego końce mają dane współrzędne (całkowite lub wymierne) oraz znajduje współrzędne drugiego końca odcinka, gdy dany jest jeden koniec i środek; 2) oblicza długość odcinka, którego końce są danymi punktami kratowymi w układzie współrzędnych; 3) dla danych punktów kratowych A i B znajduje inne punkty kratowe należące do prostej AB. VI Geometria przestrzenna. 1) rozpoznaje graniastosłupy i ostrosłupy w tym proste i prawidłowe; 2) oblicza objętości i pola powierzchni graniastosłupów prostych, prawidłowych i takich, które nie są prawidłowe o poziomie trudności nie większym niż w przykładowym zadaniu: Podstawą graniastosłupa prostego jest trójkąt równoramienny, którego dwa równe kąty mają po 45, a najdłuższy bok ma długość 6 2dm. Jeden z boków prostokąta, który jest w tym graniastosłupie ścianą boczną o największej powierzchni, ma długość 4 dm. Oblicz objętość i pole powierzchni całkowitej tego graniastosłupa.; 3) oblicza objętości i pola powierzchni ostrosłupów prawidłowych i takich, które nie są prawidłowe o poziomie trudności nie większym niż w przykładzie: Prostokąt ABCD jest podstawą ostrosłupa ABCDS, punkt M jest środkiem krawędzi AD, odcinek MS jest wysokością ostrosłupa. Dane są następujące długości krawędzi: AD = 10 cm, AS = 13 cm oraz AB = 20 cm. Oblicz objętość ostrosłupa. VII Wprowadzenie do kombinatoryki i rachunku prawdopodobieństwa. 1) wyznacza zbiory obiektów, analizuje i oblicza, ile jest obiektów, mających daną własność, w przypadkach niewymagających stosowania reguł mnożenia i dodawania; 2) przeprowadza proste doświadczenia losowe, polegające na rzucie monetą, rzucie sześcienną kostką do gry, rzucie kostką wielościenną lub losowaniu kuli spośród zestawu kul, analizuje je i oblicza prawdopodobieństwa zdarzeń w doświadczeniach losowych. VIII Odczytywanie danych i elementy statystyki opisowej. 1) interpretuje dane przedstawione za pomocą tabel, diagramów słupkowych i kołowych, wykresów, w tym także wykresów w układzie współrzędnych; 2) tworzy diagramy słupkowe i kołowe oraz wykresy liniowe na podstawie zebranych przez siebie danych lub danych pochodzących z różnych źródeł; IX Długość okręgu i pole koła. 1) oblicza długość okręgu o danym promieniu lub danej średnicy; 2) oblicza promień lub średnicę okręgu o danej długości okręgu; 3) oblicza pole koła o danym promieniu lub danej średnicy; 4) oblicza promień lub średnicę koła o danym polu koła;

5) oblicza pole pierścienia kołowego o danych promieniach lub średnicach obu okręgów tworzących pierścień. X Symetrie. 1) rozpoznaje symetralną odcinka i dwusieczną kąta; 2) zna i stosuje w zadaniach podstawowe własności symetralnej odcinka i dwusiecznej kąta jak w przykładowym zadaniu: Wierzchołek C rombu ABCD leży na symetralnych boków AB i AD. Oblicz kąty tego rombu.; 3) rozpoznaje figury osiowosymetryczne i wskazuje ich osie symetrii oraz uzupełnia figurę do figury osiowosymetrycznej przy danych: osi symetrii figury i części figury; 4) rozpoznaje figury środkowosymetryczne i wskazuje ich środki symetrii. XI Zaawansowane metody zliczania. 1) stosuje regułę mnożenia do zliczania par elementów o określonych własnościach; 2) stosuje regułę dodawania i mnożenia do zliczania par elementów w sytuacjach, wymagających rozważenia kilku przypadków, na przykład w zliczaniu liczb naturalnych trzycyfrowych podzielnych przez 5 i mających trzy różne cyfry albo jak w zadaniu: W klasie jest 14 dziewczynek i 11 chłopców. Na ile sposobów można z tej klasy wybrać dwuosobową delegację składającą się z jednej dziewczynki i jednego chłopca? XII Rachunek prawdopodobieństwa. 1) oblicza prawdopodobieństwa zdarzeń w doświadczeniach, polegających na rzucie dwiema kostkami lub losowaniu dwóch elementów ze zwracaniem; 2) oblicza prawdopodobieństwa zdarzeń w doświadczeniach, polegających na losowaniu dwóch elementów bez zwracania jak w przykładzie: Z urny zawierającej kule ponumerowane liczbami od 1 do 7 losujemy bez zwracania dwie kule. Oblicz prawdopodobieństwo tego, że suma liczb na wylosowanych kulach będzie parzysta.

Sprawność rachunkowa Wymagania ogólne na poszczególne oceny ocena niedostateczna dopuszczająca dostateczna dobra bardzo dobra celująca nie potrafi wykonywać najprostszych działań w pamięci, nie zna tabliczki mnożenia w zakresie 100, nie potrafi wykonywać dzielenia w zakresie 100 nawet przy pomocy nauczyciela potrafi wykonywać proste obliczenia w pamięci trudniejszych potrafi posługiwać się przy pomocy nauczyciela potrafi wykonywać nieskomplikowane obliczenia w pamięci trudniejszych potrafi posługiwać się sprawnie, ale z drobnymi błędami wykonuje obliczenia w pamięci trudniejszych sprawnie, ale z drobnymi błędami posługuje się potrafi weryfikować i interpretować otrzymane wyniki oraz oceniać sensowność sprawnie wykonuje obliczenia w pamięci trudniejszych sprawnie posługuje się potrafi weryfikować i interpretować otrzymane wyniki oraz oceniać sensowność sprawnie i bezbłędnie wykonuje obliczenia w pamięci trudniejszych sprawnie i bezbłędnie posługuje się potrafi weryfikować i interpretować otrzymane wyniki oraz oceniać sensowność

Posługiwanie się symboliką i językiem matematyki Prowadzenie rozumowań Znajomość i stosowanie poznanych twierdzeń Rozumienie pojęć matematycznych i znajomość ich definicji nie rozumie najprostszych pojęć matematycznych, nie potrafi podać przykładów modeli dla tych pojęć nawet przy pomocy nauczyciela nie zna elementarnych symboli matematycznych, nie potrafi wskazać założenia i tezy nie rozumie podstawowych twierdzeń, nie potrafi wskazać w zadaniu danych i niewiadomych, nie potrafi przy pomocy nauczyciela stworzyć prostego tekstu w stylu matematycznym intuicyjnie rozumie pojęcia, zna ich nazwy potrafi podać przykłady modeli dla tych pojęć. intuicyjnie rozumie podstawowe twierdzenia, potrafi wskazać założenie i tezę, zna symbole matematyczne potrafi wskazać dane, niewiadome, wykonuje rysunki z oznaczeniami do typowych zadań tworzy, z pomocą nauczyciela, proste teksty w stylu matematycznym. potrafi przeczytać definicje zapisane za pomocą symboli potrafi stosować twierdzenia w typowych zadaniach, potrafi podać przykład potwierdzający prawdziwość twierdzenia. potrafi naśladować podane w analogicznych sytuacjach. tworzy proste teksty w stylu matematycznym potrafi sformułować definicje, zapisać je, operować pojęciami, stosować je potrafi sformułować twierdzenie proste i odwrotne, potrafi przeprowadzić proste wnioskowania analizuje treść zadania, układa plan, samodzielnie rozwiązuje typowe zadania. tworzy proste teksty w stylu matematycznym z użyciem symboli. umie klasyfikować pojęcia, podaje szczególne przypadki. uzasadnia twierdzenia w nietrudnych przypadkach, stosuje uogólnienia i analogie do formułowanych hipotez. umie analizować i doskonalić swoje. samodzielnie potrafi formułować twierdzenia i definicje. uogólnia, wykorzystuje uogólnienia i analogie. operuje twierdzeniami i je dowodzi. potrafi oryginalnie rozwiązać zadanie, także o podwyższonym stopniu trudności. samodzielnie potrafi formułować twierdzenia i definicje z użyciem symboli matematycznych

Prezentowanie wyników swojej pracy w różnych formach Stosowanie wiedzy przedmiotowej w rozwiązywaniu pozamatematycznych Rozwiązywanie zadań z wykorzystaniem poznanych metod Analizowanie tekstów w stylu matematycznym uczeń przy pomocy nauczyciela nie potrafi odczytywać danych z prostych tekstów, rysunków i tabeli. nie zna zasad stosowania podstawowych algorytmów, nie ich potrafi stosować nawet przy pomocy nauczyciela nie potrafi zastosować umiejętności matematycznych do praktycznych z pomocą nauczyciela nie potrafi zaprezentować wyników swojej pracy w żadnej formie odczytuje, z pomocą nauczyciela, dane z prostych tekstów, rysunków, tabel. zna zasady stosowania podstawowych algorytmów, stosuje je z pomocą nauczyciela. praktycznych, z pomocą nauczyciela. swojej pracy w sposób narzucony przez nauczyciela. odczytuje dane z prostych tekstów, rysunków, tabel. stosuje podstawowe algorytmy w typowych zadaniach. praktycznych. swojej pracy w sposób jednolity, wybrany przez siebie. odczytuje dane z tekstów, rysunków, tabel. stosuje algorytmy w sposób efektywny, potrafi sprawdzić wyniki po ich zastosowaniu. różnych praktycznych. swojej pracy na różne sposoby, nie zawsze dobrze dobrane do problemu. odczytuje i porównuje dane z tekstów, rysunków, tabel, wykresów. stosuje algorytmy uwzględniając nietypowe, szczególne przypadki i uogólnienia. nietypowych z innych dziedzin. swojej pracy we właściwie wybrany przez siebie sposób. odczytuje i analizuje dane z tekstów, rysunków, tabel, wykresów. stosuje algorytmy w zadaniach nietypowych. skomplikowanych z innych dziedzin. swojej pracy w różnorodny sposób, dobiera formę prezentacji do problemu.