INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe. MTiSP pomiary częstotliwości i przesunięcia fazowego MTiSP 003 Autor: dr inż. Piotr Wyciślok Strona 1 / 8
Cel Celem ćwiczenia jest wykorzystanie w praktyce zjawisk fizycznych oraz własności matematycznych procesów fizycznych w celu określenia parametrów tych procesów na przykładzie badania częstotliwości i przesunięcia fazowego prądów(sygnałów) zmiennych. Przedmiot ćwiczenia W ramach ćwiczenia należy w oparciu o oscyloskop dwukanałowy (patrz ćwiczenia) wykorzystując generator funkcyjny sygnałów zmiennych znaleźć częstotliwość sygnału i jego przesunięcie fazowe. Podstawy teoretyczne Krzywa Lissajous (wym. lisażu) krzywa parametryczna wykreślona przez punkt wykonujący drgania harmoniczne w dwóch wzajemnie prostopadłych kierunkach. Dana jest wzorem: Nazwa pochodzi od nazwiska Jules a Antoine a Lissajous, który badał je używając do tego drgających kamertonów z umocowanymi do nich zwierciadełkami. Krzywe te nazywane są też figurami Lissajous. Kształt krzywych jest szczególnie uzależniony od współczynnika.dla współczynnika równego 1, krzywa jest elipsą, w szczególności zaś okręgiem dla: oraz odcinkiem dla Inne wartości współczynnika dają bardziej złożone krzywe, które są zamknięte, tylko gdy stosunek jest liczbą wymierną. Przykłady krzywych szczególnych i ich interpretacji przedstawia poniższy diagram: Autor: dr inż. Piotr Wyciślok Strona 1/9 Strona 2 / 8
Podstawy fizyczne ćwiczenia Do podstawowych metod pomiaru przesunięcia fazowego między dwoma sygnałami o tej samej częstotliwości należy metoda krzywych lissajous zwana w tym wypadku metodą elipsy. Polega na pomiarze parametrów elipsy powstającej na ekranie oscyloskopu, gdy do kanałów Y oraz X doprowadzone napięcia o tej samej częstotliwości, lecz przesunięte w fazie. Rysunek 1 Pomiar przesunięcia fazowego metodą elipsy a) dla kątów dużych, b) dla kątów małych Dla kątów mierzymy kąt przesunięcia fazowego na podstawie rysunku 1a. I tak dla wymiarów odcinków na osi Y otrzymuje się: Autor: dr inż. Piotr Wyciślok Strona 3 / 8
i podobnie na podstawie wymiarów odcinków na osi X: Dla kątów φ<π/3 mierzymy kąt przesunięcia fazowego na podstawie rysunku 1b. I tak dla wymiarów odcinków otrzymuje się: Lub przekształcając: Warunkiem, który musi być spełniony w metodzie elipsy jest równość amplitud wzdłuż obu osi, czyli AB = AD. Pomiaru częstotliwości za pomocą oscyloskopu dokonuje się najczęściej metodą krzywych Lissajous (krzywych interferencyjnych). Jest to metoda porównania częstotliwości badanego przebiegu z częstotliwością generatora wzorcowego przy zastosowaniu oscyloskopu jako detektora błędu. Do jednego kanału doprowadza się napięcie o częstotliwości badanej fy, a do drugiego napięcie z generatora wzorcowego o regulowanej w sposób ciągły częstotliwości fx(rys. 13). Przez jednoczesne wysterowanie toru X i Y dwoma różnymi sygnałami, na ekranie powstają figury Lissajous. Jeżeli stosunek obu częstotliwości jest równy liczbie całkowitej lub stosunkowi Rysunek 2. Pomiar częstotliwości przy pomocy figur Lissajous a) układ pomiarowy, b) przykład obliczania stosunku częstotliwości wzorcowej do mierzonej dwóch liczb całkowitych, wtedy na ekranie otrzymuje się obraz nieruchomy. drobna różnica częstotliwości powoduje obrót całego obrazu z szybkością proporcjonalną do przyrostu częstotliwości względem wartości, zapewniającej spełnienie powyższego warunku. Częstotliwość mierzoną wyznacza się prowadząc dwie wzajemnie prostopadłe sieczne przecinające jak na rys. 2b otrzymaną figurę i określając liczby punktów przecięcia. Ich stosunek wskazuje ile razy częstotliwość badana jest większa (lub mniejsza) od częstotliwości wzorcowej. Autor: dr inż. Piotr Wyciślok Strona 4 / 8
Rysunek 3 Figury Lissajous Dla takiego samego stosunku obu częstotliwości zyskuje się różne obrazy na ekranie oscyloskopu w zależności od różnicy faz pomiędzy obu sygnałami rys. 3. Figury Lissajous o regularnych kształtach uzyskuje się tylko dla przebiegów sinusoidalnych lub z nieznaczną zawartością harmonicznych. Przebiegi niekształcone dają dodatkowe zapętlenia na figurach, utrudniające pomiar. Metodę krzywych interferencyjnych stosuje się wówczas, gdy stosunek obu częstotliwości nie przekracza 10. Przebieg ćwiczenia 1. Opracować układ pomiarowy, w którym można wykonać jednocześnie pomiary dwu wielkości zmiennych (napięć) w oparciu o wejścia analogowe AIx. Sygnał, dla którego należy zmierzyć częstotliwość oraz przesunięcie fazowe, zdefiniować generatorem dostarczanym wraz z kartą MyDAQ z wyjściem na AOx. 2. W oparciu o kartę pomiarową MyDAQ, płytkę stykową, (instrukcja dla karty po polsku: https://www.ni.com/pdf/manuals/375745.pdf) Autor: dr inż. Piotr Wyciślok Strona 5 / 8
3. przewody łączące, zbudować układ pomiarowy. (Uwaga! Nie podłączać zasilania przed sprawdzeniem obwodu przez prowadzącego!). Należy zwrócić uwagę na prawidłowość podłączeń. 4. Do generowania sygnałów wykorzystać funkcję Function Generator http://www.ni.com/tutorial/11503/en/ (patrz rysunek poniżej). Pamiętać o ustawieniu rodzaju funkcji (sinusoidalne), i numeru wyjścia (Signal Route). 5. Przeanalizować pozostałe ustawienia i dokonać jawnego ich doboru (element sprawozdania): 6. Do pomiarów wykorzystać NI ELVISmx Oscilloscope- aplikację pakietu MyDAQ (http://www.ni.com/tutorial/11502/en/): Autor: dr inż. Piotr Wyciślok Strona 6 / 8
7. Dla trzech różnych (w zakresie częstotliwości) generowanych sygnałów należy w oparciu o krzywe lissajous określić wartość częstotliwości sygnału oraz jego przesunięcie fazowe względem sygnału odniesienia. (W sprawozdaniu zamieścić zrzuty ekranu w momencie dokonywania pomiaru). Uzyskane krzywe będące podstawą pomiaru częstotliwości powinny być stabilne i tylko w jednym przypadku może to być okrąg (elipsa)! Sprawozdanie W sprawozdaniu należy zamieścić: 1. Opis przeprowadzonych pomiarów, z uwzględnieniem wszystkich elementów mających wpływ na dokładność. 2. Wskazanie źródeł niedokładności pomiarów. 3. Przedstawić opis dokonanych ustawień parametrów sygnału wraz z uzasadnieniem dla każdego badanego sygnału. 4. Zebrane pomiary z dyskusja błędu. (Wyniki pomiarów zamieścić we oparciu o dokonane zrzuty ekranu). 5. Rozwiązanie zadań kontrolnych: Określ dla poniższych krzywych stosunki częstotliwości sygnałów. Na podstawie poniższych wykresów Lissajous określ możliwe kąty przesunięcia fazowego Autor: dr inż. Piotr Wyciślok Strona 7 / 8
6. Wnioski i podsumowanie Literatura 1. Rydzewski J. Pomiary oscyloskopowe. WNT, Warszawa 1994. 2. Jellonek A., Karkowski Z.Miernictwo radiotechniczne. WNT, Warszawa 1972. 3. Elektronika Praktyczna 2007 Pomiary oscyloskopowe Autor: dr inż. Piotr Wyciślok Strona 8 / 8