DYNAMIC FEEDBACK STABILIZATION OF NONLINEAR RC LADDER NETWORK

Podobne dokumenty
ELEKTRYKA Wojciech MITKOWSKI, Anna OBRĄCZKA Katedra Automatyki, Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

ZESZYTY NAUKOWE NR 10(82) AKADEMII MORSKIEJ W SZCZECINIE. Probabilistic Analysis of Marine Binary Technical Systems Represented by Boolean Models

FUZZY SUPPORT VECTOR MACHINES BASED ON DENSITY ESTIMATION WITH GAUSSIAN MIXTURE FOR MULTICLASS PROBLEMS

Metoda Monte-Carlo i inne zagadnienia 1

Punktowa zupełność oraz punktowa degeneracja wybranej klasy układów dyskretnych singularnych niecałkowitego rzędu

Revenue Maximization. Sept. 25, 2018

Machine Learning for Data Science (CS4786) Lecture 8. Kernel PCA & Isomap + TSNE

Rachunek lambda, zima

Hard-Margin Support Vector Machines

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Convolution semigroups with linear Jacobi parameters

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

DODATKOWE ĆWICZENIA EGZAMINACYJNE

Articulated Body Motion Tracking by Combined Particle Swarm Optimization and Particle Filtering

Title: On the curl of singular completely continous vector fields in Banach spaces

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Tychy, plan miasta: Skala 1: (Polish Edition)

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

OpenPoland.net API Documentation

tum.de/fall2018/ in2357

The Diagrammatic Coaction

Stargard Szczecinski i okolice (Polish Edition)

DOI: / /32/37

deep learning for NLP (5 lectures)

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

ALA MA KOTA PRESCHOOL URSYNÓW WARSAW POLAND

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

Steeple #3: Gödel s Silver Blaze Theorem. Selmer Bringsjord Are Humans Rational? Dec RPI Troy NY USA

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

OBWIESZCZENIE MINISTRA INFRASTRUKTURY. z dnia 18 kwietnia 2005 r.

Akademia Morska w Szczecinie. Wydział Mechaniczny

Klaps za karę. Wyniki badania dotyczącego postaw i stosowania kar fizycznych. Joanna Włodarczyk

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

QUANTITATIVE ASSESSMENT OF CONSTRUCTION RISK

All Saints Day. Chants of the Proper of the Mass for. Adapted to English words and Edited by. Bruce E. Ford

PRZEDZIAŁOWE METODY ROZWIĄZYWANIA ALGEBRAICZNYCH RÓWNAŃ NIELINIOWYCH MECHANIKI KONSTRUKCJI


Few-fermion thermometry

JĘZYK ANGIELSKI POZIOM PODSTAWOWY

Jak zasada Pareto może pomóc Ci w nauce języków obcych?

JĘZYK ANGIELSKI KARTA ROZWIĄZAŃ ZADAŃ 6., 7. i 8.

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2



Zestawienie czasów angielskich

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

Odpowiedzi do zadań zamieszczonych w arkuszu egzaminu ósmoklasisty z języka angielskiego 17 KWIETNIA 2019 opracowane przez ekspertów Nowej Ery

A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations

17-18 września 2016 Spółka Limited w UK. Jako Wehikuł Inwestycyjny. Marek Niedźwiedź. InvestCamp 2016 PL

Previously on CSCI 4622

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

POLITYKA PRYWATNOŚCI / PRIVACY POLICY

RADIO DISTURBANCE Zakłócenia radioelektryczne

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

PARAMETRY TECHNICZNE DEKLAROWANE PRZEZ PRODUCENTA POTWIERDZONE BADANIAMI / RATINGS ASSIGNED BY THE MANUFACTURER AND PROVED BY TESTS

SNP SNP Business Partner Data Checker. Prezentacja produktu

THE APPLICATION OF THE TOOLS OF SPATIAL STATISTICS TO EVALUATION REGIONAL DIFFERENTIATION OF POLISH AGRICULTURE

European Crime Prevention Award (ECPA) Annex I - new version 2014

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

RADIO DISTURBANCE Zakłócenia radioelektryczne

A DIFFERENT APPROACH WHERE YOU NEED TO NAVIGATE IN THE CURRENT STREAMS AND MOVEMENTS WHICH ARE EMBEDDED IN THE CULTURE AND THE SOCIETY

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

RESONANCE OF TORSIONAL VIBRATION OF SHAFTS COUPLED BY MECHANISMS

MAGNESY KATALOG d e s i g n p r o d u c e d e l i v e r

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

TEORIA CZASU FUTURE SIMPLE, PRESENT SIMPLE I CONTINOUS ODNOSZĄCYCH SIĘ DO PRZYSZŁOŚCI ORAZ WYRAŻEŃ BE GOING TO ORAZ BE TO DO SOMETHING

Sargent Opens Sonairte Farmers' Market

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)


Appendix. Studia i Materiały Centrum Edukacji Przyrodniczo-Leśnej R. 10. Zeszyt 2 (17) /

Grupa Pancerniki ARMADILLOS

HAPPY ANIMALS L01 HAPPY ANIMALS L03 HAPPY ANIMALS L05 HAPPY ANIMALS L07

HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08

The Lorenz System and Chaos in Nonlinear DEs

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

Zmiany techniczne wprowadzone w wersji Comarch ERP Altum

Please fill in the questionnaire below. Each person who was involved in (parts of) the project can respond.

Angielski bezpłatne ćwiczenia - gramatyka i słownictwo. Ćwiczenie 7

Stateczność pojazdów szynowych i samochodowych

UMOWY WYPOŻYCZENIA KOMENTARZ

Język angielski. Poziom rozszerzony Próbna Matura z OPERONEM i Gazetą Wyborczą CZĘŚĆ I KRYTERIA OCENIANIA ODPOWIEDZI POZIOM ROZSZERZONY CZĘŚĆ I

Konsorcjum Śląskich Uczelni Publicznych

ZASTOSOWANIE FUNKCJONAŁU HU-WASHIZU W PLASTYCZNEJ ANALIZIE MES PŁYT GRUBYCH

ANALIZA WŁAŚCIWOŚCI FILTRU PARAMETRYCZNEGO I RZĘDU

Dolny Slask 1: , mapa turystycznosamochodowa: Plan Wroclawia (Polish Edition)

Symmetry and Geometry of Generalized Higgs Sectors

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

Lekcja 1 Przedstawianie się

Angielski bezpłatne ćwiczenia - gramatyka i słownictwo. Ćwiczenie 5

UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie

Egzamin maturalny z języka angielskiego na poziomie dwujęzycznym Rozmowa wstępna (wyłącznie dla egzaminującego)

Moduł odtwarzacza plików MP3 audio

ARKUSZ PRÓBNEJ MATURY Z OPERONEM

Transkrypt:

ELEKRYKA Zeszyt (3 Ro LVI Paweł SKRUH, Jerzy BARANOWSKI, Wojcech MIKOWSKI Departmet of Automatcs, AGH Uversty of Scece ad echology DYNAMI FEEDBAK SABILIZAION OF NONLINEAR R LADDER NEWORK Summary. he goal of ths paper s to study stablzato techques for a class of R ladder etwors. he system s a electrcal crcut that cossts of olear resstors ad capactors. he crcut's dyamc behavor ca be modeled by olear dfferetal equatos. he problem s to determe the dyamc feedbac cotrol law that asymptotcally stablzes the system. It s show that wth a lear ad olear dyamc feedbac cotrol, the eergy of the closed-loop system asymptotcally decays to zero. he asymptotc stablty of the closed-loop system s proved by LaSalle's varace prcple usg approprate Lyapuov fucto. he results of umercal computatos are cluded to verfy theoretcal aalyss ad mathematcal formulato. Keywords: olear R ladder etwor, stablzato, dyamc feedbac, Lyapuov fucto SABILIZAJA NIELINIOWYH OBWODÓW DRABINKOWYH R ZA POMOĄ DYNAMIZNEGO SPRZĘśENIA ZWRONEGO Streszczee. W pracy rozwaŝoo zagadee stablzacj dla wybraej lasy uładów drabowych typu R. Wybraa lasa uładów obejmuje obwody eletrycze, sładające sę z rezystorów odesatorów o elowych charaterystyach. Dyama uładu jest opsywaa za pomocą elowych rówań róŝczowych. W pracy poazao, Ŝe zastosowae dyamczego sprzęŝea zwrotego asymptotycze stablzuje system do zera. RozwaŜoo zarówo lowe, ja elowe sprzęŝee zwrote. Własość asymptotyczej stablośc uładu zamętego została poazaa z wyorzystaem odpowedch fucjoałów Lapuowa oraz twerdzea LaSalle a. Wy teoretycze zostały zweryfowae przez oblczea umerycze symulacje omputerowe. Słowa luczowe: elowe obwody drabowe R, stablzacja, dyamcze sprzęŝee zwrote, fucjoały Lapuowa. INRODUION Almost all real systems are olear ad t s well ow that olearty requres advaced aalyss [,, 5, 4, 3]. he dyamcs of olear system s dffcult to aalyze

P. Sruch, J. Baraows, W. Mtows ad troduces to terestg pheomea such as bfurcatos, lmt cycles ad chaos. O the other had, olear electroc elemets have a wde rage of use may areas of electrcal egeerg. hey are corporated to crcuts order to desg electroc devces wth specfc features le parametrc amplfers, up-coverters, mxers, low-power mcrowave oscllators, electroc tug devces, etc. ypcal olear elemets clude olear capactors (varactor dode, jucto dode, olear ductors (saturable core ductor, Josephso juctos, ferroresoat power systems ad olear resstors (tuel dode, thyrstor, dead-zoe coductor, serally coected Zeer dodes, eo bulb, etc.. he propertes of electrcal ladder etwors have bee a subject of earler research. otrol problems for lear RL, R, L ad RL electrcal crcuts are wdely dscussed [7-9]. he dyamcs ad detaled characterstcs of olear electrcal crcuts are cosdered [6]. he papers [, ] cope wth lear ad olear stablzato techques for a olear RL crcut. o stablze the system, Authors have costructed varous forms of the feedbac. he asymptotc stablty of the closed-loop system has bee proved by LaSalle's varace prcple [4] usg specal Lyapuov fuctos. I [] stablzato problem of olear RL ladder etwors wth lear dyamc feedbac cotrol was cosdered. Research cluded ths paper was maly motvated ad spred by results obtaed [3, -3, 5-9]. hey have played a crucal role ad cleared the way to the ma results. he paper s orgazed as follows. I the ext two sectos, we shortly descrbe olear resstors ad olear capactors. I Secto 4, a olear R ladder etwor s troduced ad ts dyamcs s descrbed. I Secto 5, lear dyamc feedbac cotrol law s proposed ad t s proved that ths feedbac asymptotcally stablzes the system. Secto 6 s devoted to the system stablzato usg olear dyamc feedbac cotrol. I Secto 7, a smulato example s preseted. ocludg remars are gve Secto 8.. NONLINEAR RESISORS A resstor s a electrc devce that defes statc relato betwee voltage ad curret. hs statc relato s represeted by the equato r ( v, = voltage ad the curret ad r :R R R s a fucto., where v ad deote the A resstor s lear f the fucto r s lear. I that case, r ( v, ca tae several forms from whch the most famous s mpedece form: measured Ohms [ Ω ]. hs formula s also ow as Ohms' law. v = R, where R s the resstace A resstor s olear, f r s olear the relato r ( v, that ls the voltage v to the curret. We call a resstor dsspatve f for all real umbers v ad we have that ( v, = v r. (

Dyamc feedbac stablzato he product v represets the power suppled to the compoet; therefore a dsspatve resstor s characterzed by the property that o voltage-curret par ca produce egatve power. Most resstors electrocs are dsspatve compoets but o-dsspatve resstors certaly exst ad are owadays assembled usg semcoductors. I ths paper, t s assumed that the voltage drops across resstors preseted Fg. ca be modeled as where deote the currets the crcut, resstaces, =,, K,. v R dp = ( R( = R( p&, p represet the electrc charges, R stad for the 3. NONLINEAR APAIORS A capactor s defed as a electrc compoet whose charge s a fucto of voltage. Its capactace s defed as the dervatve of the charge q wth respect to the voltage v ( q ( v dq =. (3 dv he curret flowg through a capactor s smply the tme dervatve of the charge ( v dq =. (4 If a capactor s lear ts charge s v q =, (5 ad so the curret through the capactor s ( v d dv = =. (6 Modelg a olear capactor by replacg wth ( q (6 s geeral a ot good approach, because ( q vares wth tme. However, f s ot a strog fucto of q ad q does ot vary sgfcatly wth tme, we ca use t as approxmato our aalyss. I ths paper, we assume that the voltage drops across capactors preseted Fg ca be wrtte as v = j t = d q, (7

P. Sruch, J. Baraows, W. Mtows where j deote the currets the crcut, q represet the electrc charges, capactaces, =,, K,. stad for the 4. SYSEM DESRIPION Let us cosder a olear aalog crcut show Fg.. he crcut cossts of a set of resstors ad capactors that are coected together to form a etwor. he resstors ad capactors have geeral olear characterstcs. Fg.. R ladder etwor Rys.. Obwód drabowy typu R Accordg to Krchhoff's voltage law, the currets the crcut are modeled by the equatos: R R ( + j = d ( t u + j j =, (8, (9 ad so o R ( + j j =. ( Applyg Krchhoff's curret law to the crcut yelds j + =, ( j =, ( + 3 ad cosequetly j = +, (3 j =. (4

Dyamc feedbac stablzato 3 Itroducg the otato = [ K ( ], (5 t = [ j j K j ( ] j, (6 t = [ p p K p ( ] p, (7 t = [ q q K q ( ] q, (8 t dp dq =, j =, (9 ad substtutg the varables j (8-( by the expressos (-(4 we get R R ( p p + dp p R ( p& = u, ( p + 3 dp p p p & =, ( ( p p + dp p p & =. ( Wthout loss of geeralty t ca be assumed that ( p& R ( p& R =, (3 for =,, K, ad ( p, p ( p = + =, (4 for =,, K,, ad ( p ( p = =. (5 he, the crcut s dyamc behavor ca be modeled by the followg equato: ( p p& + ( p p Bu R & =, (6 where R ( p& dag( ( p& R ( p& K R ( p& =, (7 R

4 P. Sruch, J. Baraows, W. Mtows d e K f d e3 K f3 d3 K ( p =, (8 M M M O M M K d e K f d where d =, (9 ( p d = + ( p ( p, (3 for =, 3, K,, e = f =, (3 ( p [ K ] B =. (3 he tal codto ( p = p s gve as well. he objectve of the paper s to study the R ladder etwor (6 uder the followg codtos: (A he fuctos R (, ( the set Ω, where (A R ( ξ >, ( ξ > Lemma, =,, K, are cotuous wth cotuous dervatves Ω R s a eghborhood of zero; for ξ Ω ad ξ =,, K,., ( ξ ξ = ξ ( ξ ξ > for Ω\ { } Proof. he lemma s equvalet to the statemet that for every ξ. (33 ξ Ω the matrx ( ξ s postve defte. It ca be observed, that the matrx ( ξ s a trdagoal matrx ad ts determat ca be computed by the recursve formula [4, p. 54]. Usg ths formula, the leadg prcpal mors M ca be expressed as follows: M = K, (34 ( ξ ( ξ ( ξ for =, 3, K,. he leadg prcpal mors =,, K,. hs meas that the matrx ( ξ s postve defte. ξ for M are postve, because ( >

Dyamc feedbac stablzato 5 5. LINEAR DYNAMI FEEDBAK ONROL LAW Let us cosder the system (6 wth lear dyamc feedbac gve the followg form: where R w, a >, b >, >. he resultg closed-loop system becomes u + aw = bu, w ( w w & =, (35 ( ( w + p = w + B p =, (36 ( p p& ( p ( + BB p + Bw( = R & + t, (37 + ( a + b w + bb p = w&. (38 heorem. Suppose the assumptos (A-(A hold. he the closed-loop system (37, (38 s locally asymptotcally stable. Proof. he proof reles o mposg a sutable Lyapuov fucto for the closed-loop system (37, (38. Followg caddate s cosdered: p a V p,w = w t + b ( ( ( ( ξ ξ d ξ + + ( w B p. (39 he tegral the formula (39 deotes a le tegral alog the straght le the space from the begg pot to the edg pot p. It ca be prove by usg Lemma that ths tegral s postve for ξ ad equals zero for ξ =. he dervatve of the fuctoal (39 becomes V& a b a = w t b ( p,w = w w& + ( ( p p p& + w + B p ( ( w& + B p& (. ( w& + p ( p p& u w& + B p& R (4 Evaluatg the tme dervatve of V alog the soluto of the system (37, (38 gves V& a b ( p,w = w ( bu aw + p ( p R( p& ( Bu ( p p u ( bu aw u B R( p& Bu ( p p (. (4 After some elemetary calculatos V& b ( p,w = ( bu aw ( Bu ( p p R( p& Bu ( p p (, (4

6 P. Sruch, J. Baraows, W. Mtows t ca be see that V& b ( p,w = w& p& R( p& p&. It should be oted that V ( p,w > for col ( p w Ω \ { }, V (, = ad V ( p,w ( p, w Ωc, c col, where Ω c s a compact set defed as follows: Ω { z = ( p,w : p Ω, w R,V ( z c} c = < c s a real postve umber, col(, w [ p w ] (43 & for col, (44 p =. he ext part of the proof s based o the LaSalle s varace prcple [4]. Accordg to ths prcple, the trajectores of the closed-loop system (37, (38 startg largest varat set S, where { z Ω V& ( =} Ω c eter the S = : z. (45 From V & ( z = t follows that w& = ad p& =. hs mples that w ( t p p =. Usg ths result (6 ad (35 yelds c a ( p p B w = b w = ad. (46 It s easy to show that the equato (46 has soluto oly for w = because a >, b > ad Lemma s vald. hus w = ad = p for all > t. hs meas that S = { } cotas oly the zero soluto, ad by LaSalle s prcple, the org asymptotcally stable ( the Lyapuov sese. + R s 6. NONLINEAR DYNAMI FEEDBAK ONROL LAW Let us cosder the system (6 wth olear dyamc feedbac gve the followg form: u = K + aw = bu, w ( w w & =, (47 ( w + p ( w + B p =, (48 K where K ( K + w + B p( = γ, (49 t ad K >, γ >.

Dyamc feedbac stablzato 7 he closed-loop system s gve by the followg equatos: R( p& p& + ( p + BB p + Bw =, (5 K K b b w& + a + w + B p = K K. (5 heorem. Suppose the assumptos (A-(A hold. he the closed-loop system (5, (5 s locally asymptotcally stable. Proof. he proof ca be dvded to two parts. Frst, t ca be proved that V p a K t = d l b ξ + λ K ( p,w w + ( ( ξ ξ ( (5 s the Lyapuov fucto for the system (5, (5. he, followg the method as the prevous secto, t ca be cocluded by LaSalle s theorem [4] that the trajectores ted to the org { } as t goes to fty. 7. SIMULAION EXAMPLE R crcuts are useful, smple ad robust passve electrc crcuts. hey play tegral roles everyday electroc equpmet such as traffc lghts, pacemaers, audo ad rado equpmet. Whle ther applcatos are umerous ad vared, they are mostly used for ther sgal flterg capabltes ad precse tmg abltes (for example: We-brdge oscllator, phase-shft oscllator, hgh pass ad low pass flters, etc.. I ths secto, a smple R crcut wth olear elemets s aalyzed to verfy mathematcal formulato from the prevous sectos. Let us cosder the crcut preseted Fg.. Fg.. R ladder etwor wth = Rys.. Obwód drabowy typu R dla =

8 P. Sruch, J. Baraows, W. Mtows he resstaces R ad R are lear [ Ω], R = [ Ω] R =. 3. (53. he characterstcs of the capactaces ad are olear ad gve the aalytc form: ( ( = exp(. p ( = 5exp. ( p p p, (54 3 p. (55 5 he dyamcs of electrc charge flow the crcut ca be descrbed by the equato ( p p& + ( p p Bu R & =, (56 where R R ( p& =, (57 R ( p = ( p ( ( ( ( p p p + p [ ], (58 B =, (59 ( = [ p p ] p. (6 t Here p represets the vector of electrc charges, u s the cotrol voltage, R u R, t > p,. he voltage of the power source s measured volts [V], the resstace of the resstors s measured ohms [Ω], the capactace of the capactors s measured farads [F] ad the charge across the capactors s measured coulombs []. he followg tal codtos are used for the dfferetal equato (56: ( 3., p ( p = =. (6. Let us troduce oe-dmesoal parallel compesator +. w = 5. u, w( = w&, (6 ad desg the cotroller. 5( w + p u =. (63 It s easy to chec that the assumptos (A-(A hold as well as Lemma s vald. Accordg to heorem the closed-loop system (56, (6, (63 s asymptotcally stable. he trajectores of the ope-loop system (dot le ad closed-loop system (sold le are show Fgs. 3-5.

Dyamc feedbac stablzato 9 Fg. 3. he electrc charge p the ope-loop crcut (dot le ad closed-loop crcut (sold le. he same smulato results are show dfferet tme wdows p t w uładze otwartym (la przerywaa oraz w uładze zamętym (la cągła. e sam przebeg jest poazay w róŝych oach czasowych Rys. 3. Dyama zma ładuu eletryczego ( Fg. 4. he electrc charge p the ope-loop crcut (dot le ad closed-loop crcut (sold le Rys. 4. Dyama zma ładuu eletryczego p w uładze otwartym (la przerywaa oraz w uładze zamętym (la cągła

3 P. Sruch, J. Baraows, W. Mtows Fg. 5. he state varable w of the compesator. he same smulato results are show dfferet tme wdows w t ompesatora dyamczego. e sam przebeg jest poazay w róŝych oach czasowych Rys. 5. rajetora ( 8. ONLUSIONS I the paper, lear ad olear techques for stablzato of a class of olear R ladder etwors have bee vestgated. It has bee show that the system s asymptotcally stable whe lear dyamc feedbac s appled. he asymptotc stablty of the closed-loop system has bee proved by LaSalle's varace prcple usg approprate Lyapuov fucto. he smlar results have bee obtaed wth olear dyamc feedbac. Numercal calculatos ad computer smulatos have bee performed the MathWors MALAB /Smul evromet to show the effectveess of the proposed methods. AKNOWLEDGEMEN hs wor was supported by Mstry of Scece ad Hgher Educato Polad the years 8- as a research project No N N54 4434.

Dyamc feedbac stablzato 3 BIBLIOGRAPHY. Gucehemer J.M., Holms P.: Nolear Oscllatos, Dyamcal Systems ad Bfurcatos of Vector Felds. Sprger, Berl 983.. Hayash.: Nolear Oscllatos Physcal Systems. McGraw-Hll, New Yor 964. 3. Kobayash.: Low ga adaptve stablzato of udamped secod order systems. Archves of otrol Sceces, Vol., No. -, p. 63-75. 4. LaSalle J., Lefschetz S.: Stablty by Lapuov's Drect Method wth Applcatos. Academc Press, New Yor, Lodo 96. 5. Morsy N.: he heory of Nolear otrol Systems. PWN, Warszawa 967. 6. Mtows S.: Nolear Electrc rcuts. Wydawctwa AGH, Kraów 999. 7. Mtows W.: Stablzato of Dyamc Systems. WN, Warszawa 99. 8. Mtows W.: Dyamc feedbac L ladder etwor. Bullet of the Polsh Academy of Sceces: echcal Sceces 3, Vol. 5, No., p. 73-8. 9. Mtows W.: Stablzato of L ladder etwor. Bullet of the Polsh Academy of Sceces: echcal Sceces 4, Vol. 5, No., p. 9-4.. Mtows W.: Aalyss of udamped secod order systems wth dyamc feedbac. otrol ad yberetcs 4, Vol. 33. No. 4, p. 564-57.. Mtows W., Sruch P.: Stablzato of secod-order systems by lear posto feedbac. Proc. of the th IEEE Iteratoal oferece o Methods ad Models Automato ad Robotcs, Mędzyzdroje, Polad, 9 August September 4, p. 73-78.. Mtows W., Sruch P.: Stablzato methods of a o-lear oscllator. Proc. of the th IEEE Iteratoal oferece o Methods ad Models Automato ad Robotcs, Mędzyzdroje, Polad, 3 August September 5, p. 5-. 3. Mtows W., Sruch P.: Stablzato results of secod-order systems wth delayed postve feedbac. I: Modellg Dyamcs Processes ad Systems, Edted by W. Mtows ad J. Kacprzy. Seres Studes omputatoal Itellgece 9, Vol. 8, p. 99-8, Sprger, Berl, Hedelberg 9. 4. Moo F..: haotc Vbratos: A Itroducto for Appled Scetsts ad Egeers. Joh Wlley & Sos, New Yor 4. 5. Sruch P.: Stablzato of secod-order systems by o-lear feedbac. Iteratoal Joural of Appled Mathematcs ad omputer Scece 4, Vol. 4, No. 4, p. 455-46. 6. Sruch P.: Stablzato of lear fte dmesoal oscllatory systems. PhD dssertato, Aadema Górczo-Hutcza, Departmet of Automatcs, Kraów 5. 7. Sruch P.: Stablzato methods for olear secod-order systems. Archves of otrol Sceces 9, Vol. 9, No., p. 5-6.

3 P. Sruch, J. Baraows, W. Mtows 8. Sruch P.: Feedbac stablzato of a class of olear secod-order systems. Nolear Dyamcs, Vol. 59, No. 4, p. 68-69. 9. Sruch P.: Feedbac stablzato of dstrbuted parameter gyroscopc systems. I: Modellg Dyamcs Processes ad Systems, Edted by W. Mtows ad J. Kacprzy, Seres Studes omputatoal Itellgece, Vol. 8, p. 85-97, Sprger, Berl, Hedelberg 9.. Sruch P.: Stablzato of olear RL ladder etwor. Proc. of the 7th oferece o omputer Methods ad Systems, 6-7 November 9, Kraów, p. 59-64.. Sruch P., Baraows J.: Lear feedbac cotrol of a olear RL crcut. Proc. of the 3th Iteratoal oferece o Fudametals of Electrotechcs ad rcut heory I-SPEO 9, Glwce Ustroń, Polad, -3 May 9, p. 75-76.. Sruch P., Baraows J.: Nolear feedbac cotrol of a olear RL crcut. Proc. of the 3th Iteratoal oferece o Fudametals of Electrotechcs ad rcut heory I-SPEO 9, Glwce Ustroń, Polad, -3 May 9, p. 77-78. 3. Nayfeh A.H., Moo D..: Nolear Oscllatos. Joh Wley & Sos, New Yor 979. 4. urowcz A: heory of Matrces, 6 th Edto. Wydawctwa AGH, Kraów 5. Wpłyęło do Redacj da weta r. Recezet: Dr hab. Ŝ. Zbgew Goryca, prof. Pol. Radomsej Omówee W pracy rozwaŝoo zagadee stablzacj dla wybraej lasy uładów drabowych typu R. Wybraa lasa uładów obejmuje obwody eletrycze, sładające sę z rezystorów odesatorów o elowych charaterystyach. Wartość rezystacj dla rezystorów elowych jest fucją prądu. Nelowy odesator charateryzuje sę tym, Ŝe jego pojemość zaleŝy od apęca występującego a oładzach odesatora lub od ładuu zgromadzoego a tych oładzach. W rzeczywstośc wszyste obwody eletrycze są elowe, gdyŝ wszyste elemety rzeczywste wyazują cechy elowośc. Dyama uładu drabowego R moŝe być modelowaa matematycze za pomocą elowych rówań róŝczowych zwyczajych. Na podstawe tego modelu sostruowao dyamcze sprzęŝea zwrote, tóre asymptotycze stablzują system. Zapropoowao zarówo lowe, ja elowe regulatory. Własość asymptotyczej stablośc uładu zamętego została poazaa z wyorzystaem odpowedch fucjoałów Lapuowa oraz twerdzea LaSalle a. Wy teoretycze zostały zweryfowae przez oblczea umerycze symulacje omputerowe.

Dyamc feedbac stablzato 33 Obwody elowe są powszeche stosowae w urządzeach eletryczych eletroczych. Dzę elemetom elowym jest moŝlwe realzowae tach czyośc, ja prostowae, stablzacja apęca prądu, modulacja detecja sygałów, wytwarzae sygałów o róŝych ształtach tp. Aalza uładów elowych jest truda bardzo często przyblŝoa. Metoda badaa tach uładów polega zazwyczaj a learyzacj poszczególych elemetów lub aalze umeryczej. Dlatego teŝ a szczególą uwagę zasługują rozwązaa aaltycze, tóre uwzględają elowośc występujące w uładze.