PNEUMATIC MUSCLE MEASUREMENT RESULTS AND SIMULATION MODELS



Podobne dokumenty
Lecture 18 Review for Exam 1

SG-MICRO... SPRĘŻYNY GAZOWE P.103

Medical electronics part 10 Physiological transducers

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

IDENTYFIKACJA PARAMETRÓW CHARAKTERYZUJĄCYCH OBCIĄŻENIE SEKCJI OBUDOWY ZMECHANIZOWANEJ SPOWODOWANE DYNAMICZNYM ODDZIAŁYWANIEM GÓROTWORU

WYZNACZENIE CHARAKTERYSTYKI TŁUMIENIA KOLUMNY HYDROPNEUMATYCZNEJ CITROENA C5 DETERMINING OF DAMPING CHARACTERISTIC OF CITROEN C5 HYDROPNEUMATIC STRUT

Knovel Math: Jakość produktu

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

NAPRĘŻENIA ŚCISKAJĄCE PRZY 10% ODKSZTAŁCENIU WZGLĘDNYM PRÓBEK NORMOWYCH POBRANYCH Z PŁYT EPS O RÓŻNEJ GRUBOŚCI

ROZPRAWA DOKTORSKA. Model obliczeniowy ogrzewań mikroprzewodowych

DYNAMIC STIFFNESS COMPENSATION IN VIBRATION CONTROL SYSTEMS WITH MR DAMPERS

Selection of controller parameters Strojenie regulatorów

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Tadeusz SZKODNY. POLITECHNIKA ŚLĄSKA ZESZYTY NAUKOWE Nr 1647 MODELOWANIE I SYMULACJA RUCHU MANIPULATORÓW ROBOTÓW PRZEMYSŁOWYCH

WYBRANE PROBLEMY BADAWCZE EKOLOGII, ORGANIZACJI I INFRASTRUKTURY TRANSPORTU

4. EKSPLOATACJA UKŁADU NAPĘD ZWROTNICOWY ROZJAZD. DEFINICJA SIŁ W UKŁADZIE Siła nastawcza Siła trzymania

BADANIA WYTRZYMA OŒCI NA ŒCISKANIE PRÓBEK Z TWORZYWA ABS DRUKOWANYCH W TECHNOLOGII FDM

PRZEWODNIK PO PRZEDMIOCIE. Negotiation techniques. Management. Stationary. II degree

Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

TRANSPORT PROBLEMS 2009 PROBLEMY TRANSPORTU Volume 4 Issue 3 Part 2

WYKORZYSTANIE OPROGRAMOWANIA ADAMS/CAR RIDE W BADANIACH KOMPONENTÓW ZAWIESZENIA POJAZDU SAMOCHODOWEGO

Pomiary hydrometryczne w zlewni rzek

WSPÓŁCZYNNIK PRACY ZŁĄCZA CIERNEGO GÓRNICZEJ, KORYTARZOWEJ OBUDOWY PODATNEJ

SIMULATION STUDIES OF VANE PUMP CHARACTERISTICS WITH A FUZZY CONTROLLER BADANIA SYMULACYJNE CHARAKTERYSTYK POMPY ŁOPATKOWEJ Z REGULATOREM FLC

Urbanek J., Jabłoński A., Barszcz T ssswedfsdfurbanek J., Jabłoński A., Barszcz T., Wykonanie pomiarów

WERYFIKACJA MODELU DYNAMICZNEGO PRZEKŁADNI ZĘBATEJ W RÓŻNYCH WARUNKACH EKSPLOATACYJNYCH

WIELOMIANOWE MODELE WŁAŚCIWOŚCI MECHANICZNYCH STOPÓW ALUMINIUM

Badania doświadczalne wielkości pola powierzchni kontaktu opony z nawierzchnią w funkcji ciśnienia i obciążenia

Materiałowe i technologiczne uwarunkowania stanu naprężeń własnych i anizotropii wtórnej powłok cylindrycznych wytłaczanych z polietylenu

OPBOX ver USB 2.0 Mini Ultrasonic Box with Integrated Pulser and Receiver

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

ANALIZA OBCIĄŻEŃ JEDNOSTEK NAPĘDOWYCH DLA PRZESTRZENNYCH RUCHÓW AGROROBOTA

Country fact sheet. Noise in Europe overview of policy-related data. Poland

RESEARCH ON THE TRIBOLOGICAL PARAMETERS FOR MATERIALS COUPLES USED FOR VALVES, VALVE GUIDES AND SEAT INSERTS

Projekt ICT for IST. Moduł Ruch i siły. Elżbieta Kawecka Seminarium dla nauczycieli, OEIiZK, 18 maja 2010

Krytyczne czynniki sukcesu w zarządzaniu projektami

Projekt rejestratora obiektów trójwymiarowych na bazie frezarki CNC. The project of the scanner for three-dimensional objects based on the CNC

OPORY W RUCHU OSCYLACYJNYM MECHANIZMÓW MASZYN GÓRNICZYCH

1A. Which of the following five units is NOT the same as the other four? A) joule B) erg C) watt D) foot pound E) newton meter

Typ VME FOR THE MEASUREMENT OF VOLUME FLOW RATES IN DUCTS

OPTYMALIZACJA STEROWANIA MIKROKLIMATEM W PIECZARKARNI

Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

Akademia Morska w Szczecinie. Wydział Mechaniczny

CZTEROKULOWA MASZYNA TARCIA ROZSZERZENIE MOŻLIWOŚCI BADAWCZYCH W WARUNKACH ZMIENNYCH OBCIĄŻEŃ

BADANIA MODELOWE OGNIW PALIWOWYCH TYPU PEM

Przewody elektroenergetyczne z izolacją XLPE

PRZESTRZENNY MODEL PRZENOŚNIKA TAŚMOWEGO MASY FORMIERSKIEJ

PRACA DYPLOMOWA Magisterska

RESONANCE OF TORSIONAL VIBRATION OF SHAFTS COUPLED BY MECHANISMS

Badanie oporu toczenia opon do samochodów osobowych na różnych nawierzchniach

WYBÓR PUNKTÓW POMIAROWYCH

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

MATEMATYCZNY MODEL PĘTLI HISTEREZY MAGNETYCZNEJ

WÓJCIK Ryszard 1 KĘPCZAK Norbert 2

OKREŚLENIE WŁAŚCIWOŚCI MECHANICZNYCH SILUMINU AK132 NA PODSTAWIE METODY ATND.

YKXS, YKXSżo 0,6/1 kv. Kable elektroenergetyczne z izolacją XLPE. Norma IEC :2004. Konstrukcja. Zastosowanie. Właściwości

YAKXS, YAKXSżo 0,6/1 kv. Kable elektroenergetyczne z izolacją XLPE. Norma IEC :2004. Konstrukcja. Zastosowanie.

SG-R... SPRĘŻYNY GAZOWE P (2 x S) 60+(2 x S) 42/45+(2 x S) 50+(2 x S) 32+(2 x S) 38+(2 x S) P.67 P.68 P.69 P.70 P.71 P.72

Szafa mroźnicza Freezing cabinet. Typ Type. Dane techniczne Technical data. Model Model SMI 04. SMI 04 Indus. Strona 1/9 Page 1/9

Updated Action Plan received from the competent authority on 4 May 2017

Badanie amortyzatorów na uniwersalnym stanowisku do diagnostyki układu nonego pojazdu samochodowego

G14L LPG toroidal tank

The Overview of Civilian Applications of Airborne SAR Systems

THE INFLUENCE OF OIL LEAK IN MODERN VEHICLE SHOCK ABSORBER ON ITS DUMPING CHARACTERISTICS

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

photo graphic Jan Witkowski Project for exhibition compositions typography colors : : janwi@janwi.com

WPŁYW OBRÓBKI TERMICZNEJ ZIEMNIAKÓW NA PRĘDKOŚĆ PROPAGACJI FAL ULTRADŹWIĘKOWYCH

KOMPUTEROWE MODELOWANIE SIECI WODOCIĄGOWYCH JAKO NARZĘDZIE DO ANALIZY PRĘDKOŚCI PRZEPŁYWU WODY

WPŁYW SZYBKOŚCI STYGNIĘCIA NA WŁASNOŚCI TERMOFIZYCZNE STALIWA W STANIE STAŁYM

WYKAZ PRÓB / SUMMARY OF TESTS. mgr ing. Janusz Bandel

Teoretyczny model panewki poprzecznego łożyska ślizgowego. Wpływ wartości parametru zużycia na nośność łożyska

ASSESSMENT OF IMPACT OF THE RHEOLOGICAL PARAMETERS CHANGE ON SENSITIVITY OF THE ASPHALT STRAIN BASED ON THE TEST RESULTS

Zarządzanie sieciami telekomunikacyjnymi

SHP / SHP-T Standard and Basic PLUS

Zbigniew H. ŻUREK BADANIA STANU FERROMAGNETYCZNYCH ELEMENTÓW MASZYN W POLU MAGNETYCZNYM

WYZNACZANIE CHARAKTERYSTYK SIŁOWNIKÓW UDAROWYCH Z NASTAWIANĄ OBJĘTOŚCIĄ KOMORY

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Few-fermion thermometry

PARAMETRY TECHNICZNE DEKLAROWANE PRZEZ PRODUCENTA POTWIERDZONE BADANIAMI / RATINGS ASSIGNED BY THE MANUFACTURER AND PROVED BY TESTS

Streszczenie rozprawy doktorskiej

Odpowietrznik / Vent Charakterystyka pracy / Performance characteristic: Wykres ciœnienia wyjœciowego p2 w funkcji ciœnienia steruj¹cego p4 Diagram -

BŁĘDY OKREŚLANIA MASY KOŃCOWEJ W ZAKŁADACH SUSZARNICZYCH WYKORZYSTUJĄC METODY LABORATORYJNE

Electromagnetism Q =) E I =) B E B. ! Q! I B t =) E E t =) B. 05/06/2018 Physics 0

DETEKCJA FAL UDERZENIOWYCH W UKŁADACH ŁOPATKOWYCH CZĘŚCI NISKOPRĘŻNYCH TURBIN PAROWYCH

ISSUE OF THE COMPUTER SIMULATION OF THE FIBROUS FILTER MATERIALS

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

Hard-Margin Support Vector Machines

Rodzaj obliczeń. Data Nazwa klienta Ref. Napędy z pasami klinowymi normalnoprofilowymi i wąskoprofilowymi 4/16/ :53:55 PM

MULTI CRITERIA EVALUATION OF WIRELESS LOCAL AREA NETWORK DESIGNS

Innowacje społeczne innowacyjne instrumenty polityki społecznej w projektach finansowanych ze środków Europejskiego Funduszu Społecznego

BARIERA ANTYKONDENSACYJNA

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

WENTYLATORY PROMIENIOWE SINGLE-INLET DRUM BĘBNOWE JEDNOSTRUMIENIOWE CENTRIFUGAL FAN

OpenPoland.net API Documentation

Transkrypt:

Zbigniew PILCH Tomasz BIENIEK PNEUMATIC MUSCLE MEASUREMENT RESULTS AND SIMULATION MODELS ABSTRACT In the paper the advantages of pneumatic muscle are described. In the article are also presented: Measurement stand for determine the static and dynamic characteristic pneumatic muscle MAS-10-88N (Festo manufacture). Mathematical model of pneumatic muscle for static and dynamic simulations. Results of the simulations for differents conditions pressures supply. Keywords: pneumatic muscle, simulation models, biomechanics 1. INTRODUCTION Pneumatic (fluidic) muscle is a single-acting actuator. Fluid Muscle is a membrane construction system or, to put it more simply, a tube which constructs under pressure. The basic concept lies in the combination of an impervious, flexible hose and a covering of woven fibres as tensile material in a rhomboidal mesh. This results in a three-dimensional grid structure 2. Zbigniew PILCH, Ph.D., Tomasz BIENIEK, M.Sc. Eng. e-mail: zbigniew.pilch@polsl.pl, bieniekmaxi@interia.pl Politechnika Śląska, Wydział Elektryczny, Katedra Mechatroniki, Akademicka 10a, 44-100 Gliwice, POLAND PROCEEDINGS OF ELECTROTECHNICAL INSTITUTE, Issue 240, 2009

180 Z. Pilch, T. Bieniek Fig. 1. Fluidic muscle general view The medium flowing inwards changes the shape of the grid sructure by expansion, thius generating a tensile force in the axial direction. The grid structure couses the muscle to shorten up to the neutral axis and as a internal pressure is increased. This corresponds to a stroke of approx. 25% of the initial unloaded length 2. The advantage a pneumatic muscle are: resistant to dust and dirt, dynamic, powerful, judder-free. 2. STAND TO RESEARCH PNEUMATIC MUSCLE In the article [3] the quick-release test rig is described. The muscle force is measured using a strain gauges by using strain gauges at the fixing muscle. The length muscle is detected by optical encoders on the deflector roll 4. The test stand was described in the MSc work 1 and designed in the Inventor Program. The CAD model is presented in figure 2 (left side). Figure 2b (right side) presents Setup measures. Fig. 2. Test stand: CAD model (left), view of real stand (right)

Pneumatic muscle measurement results and simulation models 181 The diameter for pneumatic muscle (contraction and increase diameter) is measured by using the Clock detector which accuracy is 0,01 mm. Four different springs are responsible for load muscle. 3. RESULTS OF THE MEASUREMENT First type a research: static characteristics. The pressure values changes the pneumatic muscle shape. The universal dependence is: low values on the internal pressure fluid minimal deformation (contraction and increase diameter), high value on the internal pressure fluid maximal deformation (contraction and increase diameter). The percentage contraction values are described by the relations: l0 l k = 100%, (1) l 0 where: l 0 l initial length muscle, length muscle. A length pneumatic muscle depends on pressure values and load. The measurements for standstill muscle were realized. The figure 3a showed results of measure increase diameter versus length muscle for different pressure: 1, 2,...,6 bar. The muscel was not duty. Points in the figure measurement values, curves approximation function (polynominals 2 and 3 grade). The figure 3b shows changes of contraction values on percentage during different loads. The loads was realized for springs in differents constant springs (c 1 = 10 N/mm; c 2 = 18N/mm; c 3 = 35,8 N/mm and c 4 = 66,22 N/mm). The magenta curve for not duty muscel. PROCEEDINGS OF ELECTROTECHNICAL INSTITUTE, Issue 240, 2009

182 Z. Pilch, T. Bieniek Fig. 3a. Increase diameter of the muscle for different pressure 1 Fig. 3b. The percentage contraction versus different pressure for different loades 1

Pneumatic muscle measurement results and simulation models 183 Second type a research: dynamic characteristics. The dynamic change of time contractions is essential and has been taken into account during this researches. The laser displacement sensor (Keyence LK-G series) uses time dependent measure on the contraction. For example the figure 4a shows the results contraction muscle (mm) measure versus time (ms). The muscle is not duty. Pressures supply 6 bar. Whole characteristic wi has divided for three ranges: A the properly contraction, B second contraction phase, C phase of return to initial shape. Fig. 4b presents first range time dependent on the axial displacement free and of the muscle. Fig. 4a. Contraction of the muscle versus time (muscel is not duty, pressure 6bar) 1 The linear equations for described change axial displacement free and of the muscle versus time using of Matlab functions (polyfit function) are determine. The example of range A (fig. 4b) the equation is determined: k = 0,1339 t 50,4387. The velocity of the deformation is described by the equation: dk v =, (2) dt The velicity for the range A is 0,1339 mm/ms = 133,9 mm/s. Fig. 4b. Range A of the fig. 4a 1

184 Z. Pilch, T. Bieniek The table 1 presents values of velocity in range A, B and C for different values of pressures and loads. load Pressure [bar] Velocity in range A [mm/s] Velocity in range B [mm/s] Velocity in range C [mm/s] 0 1 8,8 0,4 38,9 0 2 8,9 0,3 87,4 0 3 54,0 0,4 103,0 0 5 124,8 0,4 128,6 0 6 133,9 0,4 132,0 0 7 147,9 0,5 118,0 c = 35,8 [N/mm] 1 8,6 0,1 12,1 c = 35,8 [N/mm] 2 2,8 0,1 4,5 c = 35,8 [N/mm] 3 12,6 0,1 25,0 c = 35,8 [N/mm] 5 34,8 0,1 68,7 c = 35,8 [N/mm] 6 55,2 0,2 51,0 c =3 5,8 [N/mm] 7 74,9 0,2 53,3 4. STATIC AND DYNAMIC SIMULATION MODELS Static and dynamic characteristics from the measurements allows construct simulation models in Matlab/Simulnk environment. First type a simulation models: static models. The results of the measures are basis for generating a calculate models. First model base in values of pressures [bar] and different load. This values contractions [mm], pressures and loads for the matrix are notations. 3-dimensional relations presents figure 5a. Input in the model is realize with the help of the green blocks. This matrix is implanted in the simulation model (fig. 5b) in block Look-Up Table 2D. The row index input value is the constant in the spring. The column index input value is reserved for value of pressure. Output of the block is contraction value (mm). The muscle force is product values of contraction and constant spring.

Pneumatic muscle measurement results and simulation models 185 Fig. 5a. Muscle contraction [mm] versus pressure [bar] and loads [N/mm] 1 Fig. 5b. The model for computed the loaded by forces and contractions 1 The figure 6a presents the 3D isobaric characteristic for the muscle MAS-10-88N. Figure 6b shows that characteristic for 2D representation. The values for isobaric characteristics has been taken from the computer program Festo MuscleSim v.2.0.1.5 5. Fig. 6a. Force of a muscle [N] versus pressure [bar] and contraction [mm]

186 Z. Pilch, T. Bieniek Fig. 6b. The isobaric characteristic for the muscel type MAS-10-88N Second type a simulation models: dynamic model. The dynamic model was build by the kinematic model which is presented below in the figure 7. Where in the model: c m muscel stiffnes [N/mm], k m damping coefficient for the muscel [Ns/mm], c s stiffnes of loading spring [N/mm], m mass in the end of the muscel [kg], F(t) external force [N]. The dynamic model was formulated by using the Lagrange a formula: Fig. 7. The model for dynamic simulations d Ek Ek EP D = Fi i = 1,2,..., n dt q qi qi q i (3)

Pneumatic muscle measurement results and simulation models 187 where: E k kinetic energy, E p potential energy, D dissipation energy, F loading force; q generalize displacement, q = dq / dt generalize velocity. The kinetic energy for model in figure 7 is described by equation: E K 1 = 2 n 2 m y i i = i= 1 2 1 my 2 (4) Derivative of the kinetic energy is described by equation: d E k = my dt y 1 (5) The potential energy for model in figure 6 is described by equation (6): 1 2 1 2 EP = cm y + cs y + mgy 2 2 (6) Derivatives of a potencial energy are described by: E p y = c m y + c y + mg s (7) The dissipation energy for model in figure 6 is described by equation (8). The derivative from dissipation energy is relative to velocity. The equation (9) shows this relation: n 1 2 1 2 D = k y m i = km y (8) i 2 i= 1 2 D k q = i m y (9)

188 Z. Pilch, T. Bieniek The final equation for the motion is described by equation: m y cm y + cs y + mg = F( t) km y (10) where: y displacement for mass m (free end the muscel) [mm], y = dy / dt velocity for mass m (free end the muscel) [mm/s], The model for dynamic simulations implemented in Matlab/Simulink presents figure 8. Fig. 8. The dynamic simulation model This model was based on the equation (10). The equation (10) was written in Fcn block (number 1 in the figure 8). The isobaric characteristic for the muscle was implemented by block Look-Up Table 2D (number 2 in the model). In this model, block number 3 shows the course of pressure (example shows figure 9). Block number 4 presents the course of the external force F(t). The simulations for dynamic model was realized for two courses of the pressure. The change of the pressures was taken to consideration in figure 9. The simulations was realized for assumptions: Changes of the pressure is linear (model not take into account nonlinear change of pressure inside muscel). First num. experiment jump value of the pressure from 0bar to 6bar. Second num. experim. increase from 0bar to 6bar in time 0,1s. Model based for isobaric characteristic from computer program (not from measurement). The damping coefficient of the muscle is not veryfying.

Pneumatic muscle measurement results and simulation models 189 Fig. 9. Two courses of the pressure for dynamic simulations The results of numeric experiments presents next figure (10). Figure 10a presents contractions for two courses of the pressure (figure 9). Figure 10b presents velocity (contraction speed) and 10c accelerations for two courses of the pressure (figure 9). Fig. 10a. Contractions [mm] versus time [s] for two courses of pressure

190 Z. Pilch, T. Bieniek Fig. 10b. Velocity [mm/s] versus time [s] for two courses of pressure Fig. 10c. Acceleration [mm/s 2 ] versus time [s] for two courses of pressure

Pneumatic muscle measurement results and simulation models 191 5. SUMMARY This article presents results of researches for pneumatic muscle MAS-10-88N. The generally conclusions are: The pneumatic muscle have many advantages (resistant to dirt, dynamic, and powerful). This type of actuator is able to be interesting alternative for different applications. The fault of pneumatic muscle depends of the force not only from the pressure (this dependence is obligatory for classicals pneumatics drives standard cylinders) but from contraction (isobaric characteristics fig. 6a and 6b) F = f(p,k) as well. The conclusions from those researches are: The test stand (fig. 2) ist for static characteristics measured oriented. This stand enable the contraction and increase diameter measured. The model for dynamic simulations based in the equation of the Lagrange formula. This model enable simulations with different preconditions (courses of pressure and external forces). The results of simulations (velocity fig. 10b and acceleration fig. 10c) are very dependent of pressure increase. The simulation model should take into consideration the speed of the pressure values (second simulation model the linear dependence between pressure value and the time). LITERATURE 1. Bieniek T.: Elaboration of a mathematical model and laboratory stand project used in pneumatic muscle research. MSc work realize in Mechatronic Division, Electrical Faculty, Silesian University of Technology, Gliwice 2008. 2. Bulletins of FESTO Company: Info 501 3. Dindorf K.: Modelling of musculotendon systems using pneumatic actuators. BIO- ALGORITHMS AND MED-SYSTEMS, Journal edited by medical college Jagiellonian University, Vol. 1, no. 1/2, 2005, pp. 147-156.

192 Z. Pilch, T. Bieniek 4. Kerscher T., Albiez J., Zöllner J.M., Dillmann R. (IEEE Member): Evaluation of the Dynamic Model of Fluidic Muscles using Quick-Release, http://ieeexplore.ieee.org/ file name: 01639161.pdf 5. Computer program Festo MuscleSim v.2.0.1.5 from the page http://www.festo.com/ /INetDomino/coorp_sites/en/9629a4820d7e6468c1256b410050e38e.htm Manuscript submitted 09.02.2009 Reviewed by Andrzej Pochanke MIĘSIEŃ PNEUMATYCZNY WYNIKI POMIARÓW ORAZ MODELE SYMULACYJNE Z. PILCH, T. BIENIEK STRESZCZENIE W pracy przedstawiono wyniki pomiarów dla stanu statycznego i dynamicznego mięśnia pneumatycznego. Mięsień pneumatyczny zaliczany jest do klasy aktuatorów jednostronnego działania (tzn. o jednym ruchu roboczym). W rozdziale 1 omówiono krótko budowę mięśnia. W dużym uproszczeniu można powiedzieć, że jest to element o konstrukcji membranowej. Ściślej jest to giętki, podatny przewód opleciony podatnym, rozciągliwym materiałem o strukturze romboidalnej. W rezultacie daje o strukturę trójwymiarowej siatki. Elementy wykonawcze cechują się szeregiem zalet. Najważniejsze z nich to: odporność na zanieczyszczenia zewnętrzne i wewnętrzne (jakość zasilającego czynnika), duża dynamika odkształcenia, możliwość przenoszenia dużych obciążeń. W rozdziale 2 przedstawiono zbudowane stanowisko pomiarowe, na którym przeprowadzono badania pomiarowe. Do pomiaru skrócenia mięśnia oraz zmiany jego średnicy wykorzystano czujniki zegarowe o dokładności pomiaru 0,01 mm. Jako obciążenie dla badanego mięśnia zastosowano sprężyny o różnych stałych (c 1 = 10 N/mm; c 2 = 18 N/mm; c 3 = 35,8 N/mm oraz c 4 = 66,22 N/mm). Stanowisko zaprojektowano w programie Inventor. W rozdziale 3 przedstawiono i omówiono wyniki przeprowadzonych pomiarów. Pierwsza część dotyczy pomiarów statycznych. Na rys. 3a zamieszczono rodzinę charakterystyk (dla ciśnienia zasilania 1, 2,,6 bar) przyrostu promienia zewnętrznego mięśnia w funkcji jego długości. Na rysunku widoczne są punkty pomiarowe oaz linią ciągłą oznaczone funkcje aproksymujące te wartości. Rysunek 3b przedstawia procentową kontrakcję - daną zależnością (1) w funkcji różnych wartości ciśnienia zasilania mięśnia. Kolejne krzywe odnoszą się do różnych wartości obciążenia mięśnia.

Pneumatic muscle measurement results and simulation models 193 Na podstawie przeprowadzonych badań pomiarowych oraz uzyskanych z nich wyników opracowano modele służące do wyznaczania charakterystycznych dla mięśnia pneumatycznego wielkości (wymiary średnica, skrócenie oraz siła) w funkcji wielkości wejściowych (siła obciążenia, ciśnienie zasilania mięśnia). Pierwszy z przedstawionych modeli (rys. 5b) to model pozwalający wyznaczyć skrócenie wyrażone w procentach oraz w milimetrach, wartość siły, z jaką działa mięsień. Wielkościami zadanymi jest ciśnienie powietrza oraz stała sprężyny. W dalszej części przedstawiono model dynamiczny mięśnia pneumatycznego zaimplementowany w środowisku Matlab/Simulink bazujący na wyprowadzonym równaniu ruchu oraz charakterystyce izobarycznej mięśnia (model na rys. 8). W dalszej części przedstawiono wyniki symulacji czasowe charakterystyki skrócenia, prędkości i przyspieszenia mięśnia. Artykuł podsumowano wnioskami w punkcie 5.