Eksploracja danych. Wielkie bazy danych. Zależności w bazach danych Przykład 1. Zależności w bazach danych Przykład 2
|
|
- Kacper Bednarczyk
- 9 lat temu
- Przeglądów:
Transkrypt
1 Wielkie bazy danych Eksploracja danych Marek Wojciechowski Instytut Informatyki Politechnika Poznańska Wielkie bazy danych (Very Large Databases) i hurtownie danych (Data Warehouses) Rozmiary współczesnych baz danych sieć sprzedaży Wal-Mart gromadzi dziennie dane dotyczące ponad 20 milionów transakcji koncern Mobil Oil rozwija magazyn danych pozwalający na przechowywanie ponad 100 terabajtów danych o wydobyciu ropy naftowej system satelitarnej obserwacji EOS zbudowany przez NASA generuje w każdej godzinie dziesiątki gigabajtów danych niewielkie supermarkety rejestrują codziennie sprzedaż tysięcy artykułów Wielkie wolumeny danych są trudne w analizowaniu Informacje o dotychczasowej działalności przedsiębiorstwa, poziomie i strukturze sprzedaży oraz cechach klientów mogą posłużyć do wspomagania podejmowania decyzji Zależności w bazach danych Przykład 1 wiek lat prawo kolor poj. moc razem kierowcy jazdy pojazdu silnika szkody biały czerwony czerwony czarny czerwony niebieski Kierowcy, którzy jeżdżą czerwonymi samochodami o pojemności 650 ccm, powodują wypadki drogowe Kierowcy w wieku powyżej 40 lat jeżdżą samochodami o pojemności większej niż 1600 ccm Kierowcy, którzy posiadają prawo jazdy dłużej niż 3 lata, nie powodują wypadków Kierowcy w wieku poniżej 30 lat jeżdżą samochodami koloru czerwonego Zależności w bazach danych Przykład 2 transakcja produkt dzień cena pizza sobota 48,40 1 mleko sobota 2,80 1 chleb sobota 1,50 2 piwo wtorek 16,20 2 orzeszki wtorek 8,50 3 chleb sobota 1,50 3 orzeszki sobota 25,50 3 piwo sobota 32,40 piwo i orzeszki są zawsze kupowane wspólnie chleb uczestniczy w transakcjach na kwotę większą niż 50 złotych
2 Data Mining - Eksploracja danych Eksploracja danych: zbiór technik automatycznego odkrywania nietrywialnych zależności i schematów (patterns) w dużych zbiorach danych (bazach i hurtowniach danych) Eksploracja danych często nazywana jest również odkrywaniem wiedzy w bazach danych (Knowledge Discovery in Databases) lub eksploracją baz danych (Database Mining) Eksploracja danych leży na przecięciu trzech dziedzin naukowych: baz danych, uczenia maszynowego i statystyki DANE DATA MINING SCHEMATY Dziedziny zastosowań eksploracji danych Handel i marketing identyfikacja profilu klienta na potrzeby marketingu kierunkowego wykrywanie schematów zakupów i planowanie lokalizacji artykułów Finanse i bankowość schematy wykorzystywania kradzionych kart kredytowych przewidywanie dochodowości portfela akcji, znajdowanie korelacji wśród wskaźników finansowych Nauka i technologia analiza strumieni wyników pomiarów wykrywanie alarmów w sieciach telekomunikacyjnych Internet (Web Mining) handel i marketing internetowy analiza zachowań użytkowników WWW personalizacja serwisów WWW Metody eksploracji danych Odkrywanie asocjacji (zbiorów częstych i reguł) Odkrywanie wzorców sekwencyjnych Klasyfikacja Odkrywanie charakterystyk Analiza skupień (klastrowanie) Dyskryminacja Regresja Wykrywanie zmian i odchyleń Metody eksploracji: odkrywanie asocjacji Odkrywanie asocjacji: znajdowanie związków pomiędzy występowaniem grup elementów w zbiorach danych Przykłady asocjacji: klienci, którzy kupują piwo, kupują również orzeszki klienci, którzy kupują chleb, masło i ser, kupują również wodę mineralną i ketchup Zastosowania odkrytych asocjacji: planowanie kampanii promocyjnych planowanie rozmieszczenia stoisk sprzedaży w supermarketach
3 Metody eksploracji: odkrywanie wzorców sekwencyjnych Odkrywanie wzorców sekwencyjnych: znajdowanie najczęściej występujących sekwencji elementów Przykłady wzorców sekwencyjnych: 10% klientów, kupiło wędkę, a następnie kalosze 5% użytkowników serwisu WWW odwiedziło w ciągu jednej sesji najpierw stronę wakacje.html, później promocje.html, a następnie dojazd_wlasny.html Zastosowania odkrytych sekwencji: przewidywanie sprzedaży marketing kierunkowy wykrywane symptomów wskazujących na możliwość awarii analiza zachowań użytkowników WWW Metody eksploracji: klasyfikacja Klasyfikacja: znajdowanie sposobu odwzorowywania danych w zbiór predefiniowanych klas (podzbiorów) Przykład klasyfikacji: automatyczny podział kierowców na powodujących i niepowodujących wypadków drogowych: kierowcy prowadzący czerwone pojazdy o pojemności 650 ccm powodują wypadki drogowe kierowcy, którzy posiadają prawo jazdy ponad 3 lata lub jeżdżą niebieskimi samochodami nie powodują wypadków drogowych Zastosowania klasyfikacji: diagnostyka medyczna rozpoznawanie trendów na rynkach finansowych automatyczne rozpoznawanie obrazów przydział kredytów bankowych Metody eksploracji: odkrywanie charakterystyk Odkrywanie charakterystyk: znajdowanie zwięzłych opisów (charakterystyk) podanego zbioru danych Przykład odkrywania charakterystyk: opis pacjentów chorujących na anginę pacjenci chorujący na anginę cechują się temperaturą ciała wyższą niż 37.5 C, bólem gardła, osłabieniem organizmu Zastosowania odkrywania charakterystyk: znajdowanie zależności funkcyjnych pomiędzy zmiennymi określanie profilu klienta - zbioru cech charakterystycznych Metody eksploracji: analiza skupień Analiza skupień (klastrowanie): znajdowanie skończonego zbioru klas (podzbiorów) w bazie danych wiek klasa 1: wiek<25 i pensja<3 klasa 2: 25<wiek<50 i pensja<3 klasa 3: wiek>25 i 3<pensja<6 pensja [tys.] Zastosowania analizy skupień: określanie segmentów rynku na podstawie cech klientów odkrywanie grup podobnie zachowujących się użytkowników WWW na potrzeby personalizacji
4 Formy reprezentacji odkrytych schematów Znane w dziedzinach uczenia maszynowego i sztucznej inteligencji: sieci neuronowe drzewa decyzyjne listy decyzyjne sieci semantyczne proste i złożone reguły logiczne Założenie: wiedza powinna być reprezentowana w prostej i czytelnej dla człowieka postaci Eksploracja danych najczęściej wykorzystuje: wzorce częste (zbiory, sekwencje) reguły logiczne drzewa decyzyjne Reguły logiczne (1/2) Przykład prostej reguły logicznej: kolor_poj=czerwony AND pojemnosc=650 -> szkoda=tak Definicja reguły logicznej: r1(a1, v1) AND r2(a2, v2)... rj(aj, vj) -> -> rk(ak, vk) AND rl(al, vl)... rn(an, vn) ai jest atrybutem, vi jest wartością prostą (np. liczba, ciąg znaków) lub złożoną (np. zbiór), ri jest predykatem (np. równość, zawieranie) Lewa strona reguły nazywa się ciałem reguły (body), prawa strona nazywa się głową reguły (head) Reguła może być potwierdzana lub naruszana przez wybraną krotkę relacji Reguły logiczne (2/2) Każda reguła posiada wskaźniki statystycznej ważności i siły: wsparcie (support) i zaufanie (confidence) Wsparcie reguły odpowiada liczbie krotek potwierdzających daną regułę Zaufanie reguły odpowiada jej wiarygodności, tj. poprawności reguły w zbiorze krotek Temperat ura Ból _gł owy Ból _gardł a Di agnoza wysoka tak nie zatrucie wysoka tak nie zdrowy wysoka t ak t ak angi na wysoka ni e t ak angi na Drzewa decyzyjne Drzewo decyzyjne jest formą opisu wiedzy klasyfikującej Węzłom drzewa odpowiadają atrybuty eksplorowanej relacji Krawędzie opisują wartości atrybutów Liśćmi drzewa są wartości atrybutu klasyfikującego Adres Dochód Samochód Warszawa 4000 BMW Poznań 2900 Ford Poznań 1400 Toyota Warszawa 1000 Fiat Poznań 1600 Ford Poznań 3500 Ford Warszawa dochód adres Poznań dochód >1000 <=1000 >1400 <=1400 Ból _gardł a = t ak Di agnoza = angi na (S=50% C=100%) Temperat ura= wysoka Ból _gł owy= t ak Ból _gardł a= ni e Di agnoza= zat ruci e (S=25% C=100%) Temperat ura= wysoka Ból _gł owy= t ak Ból _gardł a= ni e Di agnoza= zdr owy ( S=25% C=100%) SAMOCHÓD BMW Fiat Ford Toyota
5 Eksploracja danych jako zaawansowane zapytania do bazy danych (1/2) Podejście szczególnie uzasadnione dla asocjacji i wzorców sekwencyjnych Użytkownik specyfikuje: klasę szukanych wzorców zbiór danych wejściowych kryteria selekcji (ograniczenia) dla wzorców System eksploracji danych (KDDMS): dobiera odpowiedni algorytm zwraca odkryte wzorce jako wynik zapytania kryteria selekcji (ograniczenia) dla wzorców Eksploracja danych ma charakter interaktywny i iteracyjny użytkownik zapytanie eksploracyjne odkryte wzorce KDDMS baza danych Eksploracja danych jako zaawansowane zapytania do bazy danych (2/2) Wiele prototypowych rozszerzeń SQL zaproponowanych w literaturze MineSQL (Politechnika Poznańska): mysets i s {a,b,d,e,f} {a,c,d,h}... mine itemset from (select s from mysets where i<=100) where support(itemset) > 10 Rozszerzenie standardu SQL o funkcje eksploracji danych mało prawdopodobne Eksploracji danych poświęcono oddzielne standardy część z nich "współpracuje" z językiem SQL Eksploracja danych dotychczasowe kierunki badań Najpopularniejsze dotychczasowe kierunki badań: coraz efektywniejsze algorytmy eksploracji danych skalowalne algorytmy eksploracji danych języki zapytań eksploracyjnych przetwarzanie zapytań eksploracyjnych algorytmy odkrywania wzorców częstych i reguł z ograniczeniami inkrementalne algorytmy eksploracji danych narzędzia graficzne dla eksploracji danych (wizualizacja) integracja eksploracji danych z systemami zarządzania bazami danych eksploracja rozproszonych baz danych architektury równoległe w eksploracji danych text mining, web mining Eksploracja danych nowe trendy Eksploracja strumieni danych jedno spojrzenie na dane Eksploracja danych w biologii molekularnej analiza sekwencji DNA, protein Eksploracja danych semi-strukturalnych kolekcje dokumentów XML Eksploracja danych multimedialnych np. wykrywanie podobieństw, plagiatów Kwestie prywatności w eksploracji danych
6 Standardy dla eksploracji danych SQL/MM Part 6 specyfikacja standardowej biblioteki typów obiektowych SQL Java Data Mining API interfejs do eksploracji danych z poziomu języka Java PMML język na bazie XML do opisu zadań (procesów) eksploracji danych Umożliwia współdzielenie (wymianę) modeli między aplikacjami Microsoft OLE DB for Data Mining protokół umożliwiający wykorzystywanie funkcji eksploracji danych z poziomu SQL uwzględnia PMML Oprogramowanie komercyjne dla eksploracji danych IBM Intelligent Miner, współpracuje z DB2, Oracle, Sybase, przeznaczony na platformy AIX, AS, OS Oracle9i Database Server with Data Mining Option Integral Solutions Clementine, współpracuje z Oracle, Sybase, Informix, Ingres, SAS Enterprise Miner... Data Mining - success stories Database Marketing w American Express analiza danych o klientach w celu znajdowania schematów ich preferencji wykorzystanie schematów dla precyzyjnej selekcji kolejnych klientów Efekt: ok. 10% wzrost zakupów z wykorzystaniem kart kredytowych Weryfikacja poprawności danych w Reuters wykrywanie prawdopodobnych przekłamań w wysokości publikowanych kursów wymiany walut Profil słuchacza w BBC odkrywanie profili widowni programów telewizyjnych w celu wyboru optymalnych pór ich nadawania Skład zespołu w Orlando Magic odkrywanie optymalnego składu i ustawienia zespołu rezultat: likwidacja trendu spadkowego Przyszłość eksploracji danych Eksploracja danych z nowej dziedziny naukowej staje się dziedziną dojrzałą Przyszłość dziedziny zależy od jej upowszechnienia się i praktycznej przydatności Problemy upowszechniania się eksploracji danych: ciągle wysoki koszt narzędzi eksploracji danych złożoność problemów eksploracji danych wiele instytucji dopiero wdraża hurtownie danych i jest na etapie analiz OLAP Sygnały pozytywne: powstawanie standardów regulujących sposoby wykorzystywania eksploracji danych dostęp wielu narzędzi komercyjnych, w tym przede wszystkim tych związanych z serwerami baz danych pozytywne doświadczenia wielu przedsiębiorstw i instytucji
Wielkie wolumeny danych są trudne w analizowaniu. system satelitarnej obserwacji EOS zbudowany przez NASA generuje
Eksploracja danych - Odkrywanie wiedzy w danych Marek Wojciechowski Instytut Informatyki Politechnika Poznańska Zależności w bazach danych Przykład 1 wiek lat prawo kolor poj. moc razem kierowcy jazdy
Eksploracja danych. Plan prezentacji. Problemy eksploracji danych. Wielkie bazy danych SCHEMATY. zakresie baz danych, uczenia maszynowego i statystyki
Problemy eksploracji danych dr inż. Maciej Zakrzewicz Instytut Informatyki Politechnika Poznańska Wielkie bazy danych Wielkie bazy danych (Very Large atabases) i hurtownie danych (ata Warehouses) Rozmiary
Data Mining Wykład 1. Wprowadzenie do Eksploracji Danych. Prowadzący. Dr inż. Jacek Lewandowski
Data Mining Wykład 1 Wprowadzenie do Eksploracji Danych Prowadzący Dr inż. Jacek Lewandowski Katedra Genetyki Wydział Biologii i Hodowli Zwierząt Uniwersytet Przyrodniczy we Wrocławiu ul. Kożuchowska 7,
Proces odkrywania wiedzy z baz danych
Proces odkrywania wiedzy z baz danych Wydział Informatyki Politechnika Białostocka Marcin Czajkowski email: m.czajkowski@pb.edu.pl Świat pełen danych Świat pełen danych Możliwości analizowania i zrozumienia
Eksploracja Danych. podstawy
Eksploracja Danych podstawy Bazy danych (1) Witold Andrzejewski, Politechnika Poznańska, Wydział Informatyki 2/633 Bazy danych (2) Witold Andrzejewski, Politechnika Poznańska, Wydział Informatyki 3/633
Implementacja metod eksploracji danych - Oracle Data Mining
Implementacja metod eksploracji danych - Oracle Data Mining 395 Plan rozdziału 396 Wprowadzenie do eksploracji danych Architektura Oracle Data Mining Możliwości Oracle Data Mining Etapy procesu eksploracji
Indeksy w bazach danych. Motywacje. Techniki indeksowania w eksploracji danych. Plan prezentacji. Dotychczasowe prace badawcze skupiały się na
Techniki indeksowania w eksploracji danych Maciej Zakrzewicz Instytut Informatyki Politechnika Poznańska Plan prezentacji Zastosowania indeksów w systemach baz danych Wprowadzenie do metod eksploracji
Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel
według przewidywań internetowego magazynu ZDNET News z 8 lutego 2001 roku eksploracja danych (ang. data mining ) będzie jednym z najbardziej rewolucyjnych osiągnięć następnej dekady. Rzeczywiście MIT Technology
Techniki i algorytmy eksploracji danych. Geneza (1) Geneza (2)
Techniki i algorytmy eksploracji danych Tadeusz Morzy Instytut Informatyki Politechnika Poznańska str. 1 Geneza (1) Dostępność danych Rozwój nowoczesnych technologii przechowywania i przetwarzania danych
Eksploracja Danych. Wprowadzenie. Co to jest eksploracja danych? Metody Zastosowania. Eksploracja danych. Wprowadzenie
Eksploracja Danych Wprowadzenie Co to jest eksploracja danych? Metody Zastosowania Wprowadzenie Celem wykładu jest wprowadzenie do tematyki eksploracji danych. Odpowiemy sobie na pytanie Czym jest eksploracja
dr inż. Olga Siedlecka-Lamch 14 listopada 2011 roku Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Eksploracja danych
- Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska 14 listopada 2011 roku 1 - - 2 3 4 5 - The purpose of computing is insight, not numbers Richard Hamming Motywacja - Mamy informację,
Integracja technik eksploracji danych ]V\VWHPHP]DU]G]DQLDED]GDQ\FK QDSU]\NáDG]LH2UDFOHi Data Mining
Integracja technik eksploracji danych ]V\VWHPHP]DU]G]DQLDED]GDQ\FK QDSU]\NáDG]LH2UDFOHi Data Mining 0LNRáDM0RU]\ Marek Wojciechowski Instytut Informatyki PP Eksploracja danych 2GNU\ZDQLHZ]RUFyZZGX*\FK
Data Mining i odkrywanie wiedzy w bazach danych
Data Mining i odkrywanie wiedzy w bazach danych Maciej Zakrzewicz Instytut Informatyki Politechniki Poznańskiej mzakrz@cs.put.poznan.pl Streszczenie Intensywnie rozwijająca się dziedzina odkrywania wiedzy
Analiza danych i data mining.
Analiza danych i data mining. mgr Katarzyna Racka Wykładowca WNEI PWSZ w Płocku Przedsiębiorczy student 2016 15 XI 2016 r. Cel warsztatu Przekazanie wiedzy na temat: analizy i zarządzania danymi (data
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Plan wykładów Wprowadzenie - integracja
Hurtownie danych - przegląd technologii
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Plan wykład adów Wprowadzenie - integracja
Wprowadzenie do technologii informacyjnej.
Wprowadzenie do technologii informacyjnej. Data mining i jego biznesowe zastosowania dr Tomasz Jach Definicje Eksploracja danych polega na torturowaniu danych tak długo, aż zaczną zeznawać. Eksploracja
INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH
INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH 1. Czym jest eksploracja danych Eksploracja danych definiowana jest jako zbiór technik odkrywania nietrywialnych zależności i schematów w dużych
w ekonomii, finansach i towaroznawstwie
w ekonomii, finansach i towaroznawstwie spotykane określenia: zgłębianie danych, eksploracyjna analiza danych, przekopywanie danych, męczenie danych proces wykrywania zależności w zbiorach danych poprzez
Szczegółowy opis przedmiotu zamówienia
ZP/ITS/19/2013 SIWZ Załącznik nr 1.1 do Szczegółowy opis przedmiotu zamówienia Przedmiotem zamówienia jest: Przygotowanie zajęć dydaktycznych w postaci kursów e-learningowych przeznaczonych dla studentów
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. EKSPLORACJA DANYCH Ćwiczenia. Adrian Horzyk. Akademia Górniczo-Hutnicza
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING EKSPLORACJA DANYCH Ćwiczenia Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
Rozdział 1 Wprowadzenie do baz danych. (c) Instytut Informatyki Politechniki Poznańskiej 1
Rozdział 1 Wprowadzenie do baz danych 1 Model danych 2 Funkcje systemu zarządzania bazą danych Wymagania spójność bazy danych po awarii trwałość danych wielodostęp poufność danych wydajność rozproszenie
INŻYNIERIA OPROGRAMOWANIA
INSTYTUT INFORMATYKI STOSOWANEJ 2013 INŻYNIERIA OPROGRAMOWANIA Inżynieria Oprogramowania Proces ukierunkowany na wytworzenie oprogramowania Jak? Kto? Kiedy? Co? W jaki sposób? Metodyka Zespół Narzędzia
Eksploracja danych (data mining)
Eksploracja (data mining) Tadeusz Pankowski www.put.poznan.pl/~pankowsk Czym jest eksploracja? Eksploracja oznacza wydobywanie wiedzy z dużych zbiorów. Eksploracja badanie, przeszukiwanie; np. dziewiczych
POLITECHNIKA LUBELSKA Wydział Elektrotechniki Kierunek: INFORMATYKA II stopień niestacjonarne i Informatyki. Część wspólna dla kierunku
Część wspólna dla kierunku 1 IMN1.01 Obiektowe projektowanie SI 15 15 E 3 3 2 IMN1.02 Teleinformatyka 15 15 E 4 4 3 IMN2.01 Modelowanie i analiza systemów dyskretnych 15 15 E 3 3 4 IMN2.02 Wielowymiarowa
Wprowadzenie do technologii Business Intelligence i hurtowni danych
Wprowadzenie do technologii Business Intelligence i hurtowni danych 1 Plan rozdziału 2 Wprowadzenie do Business Intelligence Hurtownie danych Produkty Oracle dla Business Intelligence Business Intelligence
INFORMATYKA Pytania ogólne na egzamin dyplomowy
INFORMATYKA Pytania ogólne na egzamin dyplomowy 1. Wyjaśnić pojęcia problem, algorytm. 2. Podać definicję złożoności czasowej. 3. Podać definicję złożoności pamięciowej. 4. Typy danych w języku C. 5. Instrukcja
Data Mining Kopalnie Wiedzy
Data Mining Kopalnie Wiedzy Janusz z Będzina Instytut Informatyki i Nauki o Materiałach Sosnowiec, 30 listopada 2006 Kopalnie złota XIX Wiek. Odkrycie pokładów złota spowodowało napływ poszukiwaczy. Przeczesywali
PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"
PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych
Plan prezentacji 0 Wprowadzenie 0 Zastosowania 0 Przykładowe metody 0 Zagadnienia poboczne 0 Przyszłość 0 Podsumowanie 7 Jak powstaje wiedza? Dane Informacje Wiedza Zrozumienie 8 Przykład Teleskop Hubble
Razem godzin w semestrze: Plan obowiązuje od roku akademickiego 2014/15 - zatwierdzono na Radzie Wydziału w dniu r.
Część wspólna dla kierunku 1 IMS1.01 Obiektowe projektowanie SI 2 2 E 3 60 3 2 IMS1.02 Teleinformatyka 2 2 E 4 60 4 3 IMS2.01 Modelowanie i analiza systemów dyskretnych 2 2 E 3 60 3 4 IMS2.02 Wielowymiarowa
Modelowanie Data Mining na wielką skalę z SAS Factory Miner. Paweł Plewka, SAS
Modelowanie Data Mining na wielką skalę z SAS Factory Miner Paweł Plewka, SAS Wstęp SAS Factory Miner Nowe narzędzie do data mining - dostępne od połowy 2015 r. Aktualna wersja - 14.1 Interfejs webowy
Pojęcie systemu baz danych
Pojęcie systemu baz danych System baz danych- skomputeryzowany system przechowywania danych/informacji zorganizowanych w pliki. Składa się z zasadniczych elementów: 1) Danych 2) Sprzętu 3) Programów 4)
Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu
i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2012 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę
Wykład I. Wprowadzenie do baz danych
Wykład I Wprowadzenie do baz danych Trochę historii Pierwsze znane użycie terminu baza danych miało miejsce w listopadzie w 1963 roku. W latach sześcdziesątych XX wieku został opracowany przez Charles
Inżynieria biomedyczna
Inżynieria biomedyczna Projekt Przygotowanie i realizacja kierunku inżynieria biomedyczna studia międzywydziałowe współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego.
SYLABUS. Dotyczy cyklu kształcenia Realizacja w roku akademickim 2016/2017. Wydział Matematyczno - Przyrodniczy
Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS Dotyczy cyklu kształcenia 2014-2018 Realizacja w roku akademickim 2016/2017 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu
Metody eksploracji danych. Reguły asocjacyjne
Metody eksploracji danych Reguły asocjacyjne Analiza podobieństw i koszyka sklepowego Analiza podobieństw jest badaniem atrybutów lub cech, które są powiązane ze sobą. Metody analizy podobieństw, znane
Eksploracja danych a serwisy internetowe Przemysław KAZIENKO
Eksploracja danych a serwisy internetowe Przemysław KAZIENKO Wydział Informatyki i Zarządzania Politechnika Wrocławska kazienko@pwr.wroc.pl Dlaczego eksploracja danych w serwisach internetowych? Kanały
5 Moduył do wyboru II *[zobacz opis poniżej] 4 Projektowanie i konfiguracja sieci komputerowych Z
1. Nazwa kierunku informatyka 2. Cykl rozpoczęcia 2016/2017L 3. Poziom kształcenia studia drugiego stopnia 4. Profil kształcenia ogólnoakademicki 5. Forma prowadzenia studiów stacjonarna Specjalizacja:
data mining machine learning data science
data mining machine learning data science deep learning, AI, statistics, IoT, operations research, applied mathematics KISIM, WIMiIP, AGH 1 Machine Learning / Data mining / Data science Uczenie maszynowe
Wprowadzenie Sformułowanie problemu Typy reguł asocjacyjnych Proces odkrywania reguł asocjacyjnych. Data Mining Wykład 2
Data Mining Wykład 2 Odkrywanie asocjacji Plan wykładu Wprowadzenie Sformułowanie problemu Typy reguł asocjacyjnych Proces odkrywania reguł asocjacyjnych Geneza problemu Geneza problemu odkrywania reguł
Ewelina Dziura Krzysztof Maryański
Ewelina Dziura Krzysztof Maryański 1. Wstęp - eksploracja danych 2. Proces Eksploracji danych 3. Reguły asocjacyjne budowa, zastosowanie, pozyskiwanie 4. Algorytm Apriori i jego modyfikacje 5. Przykład
Programowanie obiektowe
Programowanie obiektowe Wykład 13 Marcin Młotkowski 27 maja 2015 Plan wykładu Trwałość obiektów 1 Trwałość obiektów 2 Marcin Młotkowski Programowanie obiektowe 2 / 29 Trwałość (persistence) Definicja Cecha
5 Moduył do wyboru II *[zobacz opis poniżej] 4 Projektowanie i konfiguracja sieci komputerowych Z
1. Nazwa kierunku informatyka 2. Cykl rozpoczęcia 2016/2017Z, 2016/2017L 3. Poziom kształcenia studia drugiego stopnia 4. Profil kształcenia ogólnoakademicki 5. Forma prowadzenia studiów niestacjonarna
Hurtownie danych - przegląd technologii
Hurtownie danych - przegląd technologii Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Biznesowe słowniki pojęć biznesowych odwzorowania pojęć
AUREA BPM Oracle. TECNA Sp. z o.o. Strona 1 z 7
AUREA BPM Oracle TECNA Sp. z o.o. Strona 1 z 7 ORACLE DATABASE System zarządzania bazą danych firmy Oracle jest jednym z najlepszych i najpopularniejszych rozwiązań tego typu na rynku. Oracle Database
1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie
Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty
Krzysztof Kawa. empolis arvato. e mail: krzysztof.kawa@empolis.com
XI Konferencja PLOUG Kościelisko Październik 2005 Zastosowanie reguł asocjacyjnych, pakietu Oracle Data Mining for Java do analizy koszyka zakupów w aplikacjach e-commerce. Integracja ze środowiskiem Oracle
Model logiczny SZBD. Model fizyczny. Systemy klientserwer. Systemy rozproszone BD. No SQL
Podstawy baz danych: Rysunek 1. Tradycyjne systemy danych 1- Obsługa wejścia 2- Przechowywanie danych 3- Funkcje użytkowe 4- Obsługa wyjścia Ewolucja baz danych: Fragment świata rzeczywistego System przetwarzania
Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym
POLITECHNIKA WARSZAWSKA Instytut Technik Wytwarzania Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym Marcin Perzyk Dlaczego eksploracja danych?
Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 30 zaliczenie z oceną. ćwiczenia 30 zaliczenie z oceną
Wydział: Zarządzanie i Finanse Nazwa kierunku kształcenia: Zarządzanie Rodzaj przedmiotu: podstawowy Opiekun: prof. nadzw. dr hab. Zenon Biniek Poziom studiów (I lub II stopnia): I stopnia Tryb studiów:
Systemy Wspomagania Decyzji
Reguły Asocjacyjne Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności March 18, 2014 1 Wprowadzenie 2 Definicja 3 Szukanie reguł asocjacyjnych 4 Przykłady użycia 5 Podsumowanie Problem Lista
Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu
i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2007 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę
Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18
Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)
SZKOLENIA SAS. ONKO.SYS Kompleksowa infrastruktura inforamtyczna dla badań nad nowotworami CENTRUM ONKOLOGII INSTYTUT im. Marii Skłodowskiej Curie
SZKOLENIA SAS ONKO.SYS Kompleksowa infrastruktura inforamtyczna dla badań nad nowotworami CENTRUM ONKOLOGII INSTYTUT im. Marii Skłodowskiej Curie DANIEL KUBIK ŁUKASZ LESZEWSKI ROLE ROLE UŻYTKOWNIKÓW MODUŁU
Analiza i wizualizacja danych Data analysis and visualization
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
METODY EKSPLORACJI DANYCH I ICH ZASTOSOWANIE
Zeszyty Naukowe PWSZ w Płocku Nauki Ekonomiczne, t. XXI, 2015. Państwowa Wyższa Szkoła Zawodowa w Płocku METODY EKSPLORACJI DANYCH I ICH ZASTOSOWANIE Wprowadzenie Współczesne firmy przechowują i przetwarzają
Odkrywanie wiedzy. Marcin Szeląg Zakład ISWD, Instytut Informatyki, Politechnika Poznańska
Odkrywanie wiedzy Marcin Szeląg Zakład ISWD, Instytut Informatyki, Politechnika Poznańska 7.10.2015 1 Plan prezentacji 1 Informacje organizacyjne 2 Zakres tematyczny przedmiotu 3 Wprowadzenie do Odkrywania
AUTOMATYKA INFORMATYKA
AUTOMATYKA INFORMATYKA Technologie Informacyjne Sieć Semantyczna Przetwarzanie Języka Naturalnego Internet Edytor Serii: Zdzisław Kowalczuk Inteligentne wydobywanie informacji z internetowych serwisów
INŻYNIERIA OPROGRAMOWANIA
INSTYTUT INFORMATYKI STOSOWANEJ 2014 Nowy blok obieralny! Testowanie i zapewnianie jakości oprogramowania INŻYNIERIA OPROGRAMOWANIA Inżynieria Oprogramowania Proces ukierunkowany na wytworzenie oprogramowania
Wprowadzenie do Hurtowni Danych. Mariusz Rafało
Wprowadzenie do Hurtowni Danych Mariusz Rafało mrafalo@sgh.waw.pl WARSTWA PREZENTACJI HURTOWNI DANYCH Wykorzystanie hurtowni danych - aspekty Analityczne zbiory danych (ADS) Zbiór danych tematycznych (Data
Specjalizacja magisterska Bazy danych
Specjalizacja magisterska Bazy danych Strona Katedry http://bd.pjwstk.edu.pl/katedra/ Prezentacja dostępna pod adresem: http://www.bd.pjwstk.edu.pl/bazydanych.pdf Wymagania wstępne Znajomość podstaw języka
Hurtownie danych - przegląd technologii
Hurtownie danych - przegląd technologii Problematyka zasilania hurtowni danych - Oracle Data Integrator Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel
LITERATURA. C. J. Date; Wprowadzenie do systemów baz danych WNT Warszawa 2000 ( seria Klasyka Informatyki )
LITERATURA C. J. Date; Wprowadzenie do systemów baz danych WNT Warszawa 2000 ( seria Klasyka Informatyki ) H. Garcia Molina, Jeffrey D. Ullman, Jennifer Widom; Systemy baz danych. Kompletny podręcznik
rodzaj zajęć semestr 1 semestr 2 semestr 3 Razem Lp. Nazwa modułu E/Z Razem W I
1. Nazwa kierunku informatyka 2. Cykl rozpoczęcia 2017/2018L 3. Poziom kształcenia studia drugiego stopnia 4. Profil kształcenia ogólnoakademicki 5. Forma prowadzenia studiów stacjonarna Specjalność: grafika
POLITECHNIKA LUBELSKA Wydział Elektrotechniki Kierunek: INFORMATYKA II stopień niestacjonarne i Informatyki. Część wspólna dla kierunku
Część wspólna dla kierunku 1 IMN1.01 Obiektowe projektowanie SI 15 15 E 3 3 2 IMN1.02 Teleinformatyka 15 15 E 4 4 3 IMN2.01 Modelowanie i analiza systemów dyskretnych 15 15 E 3 3 4 IMN2.02 Wielowymiarowa
Ekspert MS SQL Server Oferta nr 00/08
Ekspert MS SQL Server NAZWA STANOWISKA Ekspert Lokalizacja/ Jednostka organ.: Pion Informatyki, Biuro Hurtowni Danych i Aplikacji Wspierających, Zespół Jakości Oprogramowania i Utrzymania Aplikacji Szczecin,
Podyplomowe Studium Informatyki w Bizniesie Wydział Matematyki i Informatyki, Uniwersytet Łódzki specjalność: Tworzenie aplikacji w środowisku Oracle
Podyplomowe Studium Informatyki w Bizniesie Wydział Matematyki i Informatyki, Uniwersytet Łódzki specjalność: Tworzenie aplikacji w środowisku Oracle EFEKTY KSZTAŁCENIA Wiedza Absolwent tej specjalności
Investing f or Growth
Investing for Growth Open Business Solution OB One - zintegrowane oprogramowanie modułowe wspomagające zarządzanie firmą w łatwy i przejrzysty sposób pozwala zaspokoić wszystkie potrzeby księgowe, administracyjne
Hurtownie danych. Wprowadzenie do systemów typu Business Intelligence
Hurtownie danych Wprowadzenie do systemów typu Business Intelligence Krzysztof Goczyła Teresa Zawadzka Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika
I rok. semestr 1 semestr 2 15 tyg. 15 tyg. Razem ECTS. laborat. semin. ECTS. konwer. wykł. I rok. w tym. Razem ECTS. laborat. semin. ECTS. konwer.
Wydział Informatyki i Nauki o Materiałach Kierunek Informatyka studia I stopnia inżynierskie studia stacjonarne 08- IO1S-13 od roku akademickiego 2015/2016 A Lp GRUPA TREŚCI PODSTAWOWYCH kod Nazwa modułu
Spis treści. Przedmowa
Spis treści Przedmowa V 1 SQL - podstawowe konstrukcje 1 Streszczenie 1 1.1 Bazy danych 1 1.2 Relacyjny model danych 2 1.3 Historia języka SQL 5 1.4 Definiowanie danych 7 1.5 Wprowadzanie zmian w tabelach
2
1 2 3 4 5 Dużo pisze się i słyszy o projektach wdrożeń systemów zarządzania wiedzą, które nie przyniosły oczekiwanych rezultatów, bo mało kto korzystał z tych systemów. Technologia nie jest bowiem lekarstwem
Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 16 zaliczenie z oceną
Wydział: Zarządzanie i Finanse Nazwa kierunku kształcenia: Zarządzanie Rodzaj przedmiotu: specjalnościowy Opiekun: prof. nadzw. dr hab. Zenon Biniek Poziom studiów (I lub II stopnia): II stopnia Tryb studiów:
Hurtownie danych. 31 stycznia 2017
31 stycznia 2017 Definicja hurtowni danych Hurtownia danych wg Williama Inmona zbiór danych wyróżniający się następującymi cechami uporządkowany tematycznie zintegrowany zawierający wymiar czasowy nieulotny
rodzaj zajęć semestr 1 semestr 2 semestr 3 Razem Lp. Nazwa modułu E/Z Razem W I
1. Nazwa kierunku informatyka 2. Cykl rozpoczęcia 2017/2018Z, 2017/2018L 3. Poziom kształcenia studia drugiego stopnia 4. Profil kształcenia ogólnoakademicki 5. Forma prowadzenia studiów niestacjonarna
Portale raportowe, a narzędzia raportowe typu self- service
Portale raportowe, a narzędzia raportowe typu self- service Bartłomiej Graczyk Kierownik Projektów / Architekt rozwiązań Business Intelligence E mail: bartek@graczyk.info.pl Site: www.graczyk.info.pl Agenda
Transformacja wiedzy w budowie i eksploatacji maszyn
Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces
Bazy danych. Zenon Gniazdowski WWSI, ITE Andrzej Ptasznik WWSI
Bazy danych Zenon Gniazdowski WWSI, ITE Andrzej Ptasznik WWSI Wszechnica Poranna Trzy tematy: 1. Bazy danych - jak je ugryźć? 2. Język SQL podstawy zapytań. 3. Mechanizmy wewnętrzne baz danych czyli co
KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Metody drążenia danych D1.3
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
Razem godzin w semestrze: Plan obowiązuje od roku akademickiego 2016/17 - zatwierdzono na Radzie Wydziału w dniu r.
Część wspólna dla kierunku 1 IMS1.01 Obiektowe projektowanie SI 2 2 E 3 60 3 2 IMS1.02 Teleinformatyka 2 2 E 4 60 4 3 IMS2.01 Modelowanie i analiza systemów dyskretnych 2 2 E 3 60 3 4 IMS2.02 Wielowymiarowa
Zintegrowany System Informatyczny (ZSI)
Zintegrowany System Informatyczny (ZSI) ZSI MARKETING Modułowo zorganizowany system informatyczny, obsługujący wszystkie sfery działalności przedsiębiorstwa PLANOWANIE ZAOPATRZENIE TECHNICZNE PRZYGOTOWANIE
2011-11-04. Instalacja SQL Server Konfiguracja SQL Server Logowanie - opcje SQL Server Management Studio. Microsoft Access Oracle Sybase DB2 MySQL
Instalacja, konfiguracja Dr inŝ. Dziwiński Piotr Katedra InŜynierii Komputerowej Kontakt: piotr.dziwinski@kik.pcz.pl 2 Instalacja SQL Server Konfiguracja SQL Server Logowanie - opcje SQL Server Management
LITERATURA. Wprowadzenie do systemów baz danych C.J.Date; WNT Warszawa 2000
LITERATURA Wprowadzenie do systemów baz danych C.J.Date; WNT Warszawa 2000 Systemy baz danych. Pełny wykład H. Garcia Molina, Jeffrey D. Ullman, Jennifer Widom;WNT Warszawa 2006 Wprowadzenie do systemów
Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie
Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2012 Zagadnienia do omówienia 1. Miejsce i rola w firmie 2. Przegląd architektury
Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych
Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych AUTOMATYKA INFORMATYKA Technologie Informacyjne Sieć Semantyczna Przetwarzanie Języka Naturalnego Internet Edytor Serii: Zdzisław
SAS wybrane elementy. DATA MINING Część III. Seweryn Kowalski 2006
SAS wybrane elementy DATA MINING Część III Seweryn Kowalski 2006 Algorytmy eksploracji danych Algorytm eksploracji danych jest dobrze zdefiniowaną procedurą, która na wejściu otrzymuje dane, a na wyjściu
Seeon Enterprise Search Engine. Rozwiązanie obsługiwane przez eo Networks S.A.
Seeon Enterprise Search Engine Rozwiązanie obsługiwane przez eo Networks S.A. Seeon Enterprise Search Engine SeeOn Search Engine to kompleksowy, w pełni gotowy do wdrożenia silnik wyszukiwania dedykowany
Prof. Stanisław Jankowski
Prof. Stanisław Jankowski Zakład Sztucznej Inteligencji Zespół Statystycznych Systemów Uczących się p. 228 sjank@ise.pw.edu.pl Zakres badań: Sztuczne sieci neuronowe Maszyny wektorów nośnych SVM Maszyny
ERDAS ADE Suite edytor baz danych Oracle Spatial
ERDAS ADE Suite edytor baz danych Oracle Spatial III Konferencja naukowo-techniczna WAT i GEOSYSTEMS Polska, Serock, 12 czerwca, 2008 ERDAS, Inc. A Hexagon Company. All Rights Reserved Czym jest ERDAS
Administracja bazami danych. dr inż. Grzegorz Michalski
Administracja bazami danych dr inż. Grzegorz Michalski Bazy danych Historia Najwcześniejsze znane użycie terminu baza danych miało miejsce w listopadzie 1963, kiedy odbyło się sympozjum pod nazwą "Development
Szybkość instynktu i rozsądek rozumu$
Szybkość instynktu i rozsądek rozumu$ zastosowania rozwiązań BigData$ Bartosz Dudziński" Architekt IT! Już nie tylko dokumenty Ilość Szybkość Różnorodność 12 terabajtów milionów Tweet-ów tworzonych codziennie
Grupy pytań na egzamin magisterski na kierunku Informatyka (dla studentów dziennych studiów II stopnia)
Grupy pytań na egzamin magisterski na kierunku Informatyka (dla studentów dziennych studiów II stopnia) WERSJA WSTĘPNA, BRAK PRZYKŁADOWYCH PYTAŃ DLA NIEKTÓRYCH PRZEDMIOTÓW Należy wybrać trzy dowolne przedmioty.
Metadane. Data Maining. - wykład VII. Paweł Skrobanek, C-3 pok. 323 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006
Metadane. Data Maining. - wykład VII Paweł Skrobanek, C-3 pok. 323 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006 Plan 1. Metadane 2. Jakość danych 3. Eksploracja danych (Data mining) 4. Sprawy róŝne
Co to jest Business Intelligence?
Cykl: Cykl: Czwartki z Business Intelligence Sesja: Co Co to jest Business Intelligence? Bartłomiej Graczyk 2010-05-06 1 Prelegenci cyklu... mariusz@ssas.pl lukasz@ssas.pl grzegorz@ssas.pl bartek@ssas.pl
Multi-wyszukiwarki. Mediacyjne Systemy Zapytań wprowadzenie. Architektury i technologie integracji danych Systemy Mediacyjne
Architektury i technologie integracji danych Systemy Mediacyjne Multi-wyszukiwarki Wprowadzenie do Mediacyjnych Systemów Zapytań (MQS) Architektura MQS Cechy funkcjonalne MQS Cechy implementacyjne MQS
STUDIA NIESTACJONARNE I STOPNIA Przedmioty kierunkowe
STUDIA NIESTACJONARNE I STOPNIA Przedmioty kierunkowe Technologie informacyjne prof. dr hab. Zdzisław Szyjewski 1. Rola i zadania systemu operacyjnego 2. Zarządzanie pamięcią komputera 3. Zarządzanie danymi
Personalizowane rekomendacje w e-commerce, czyli jak skutecznie zwiększyć przychody w sklepie on-line
Personalizowane rekomendacje w e-commerce, czyli jak skutecznie zwiększyć przychody w sklepie on-line Paweł Wyborski - Agenda Kim jesteśmy Czym są personalizowane rekomendacje Jak powstają rekomendacje,