Zintegrowana teoria autyzmu Obliczenia płynowe w modelo
|
|
- Dawid Sowiński
- 7 lat temu
- Przeglądów:
Transkrypt
1 Zintegrowana teoria autyzmu Instytut Informatyki Uniwersytet Marii Curie-Skłodowskiej w Lublinie gmwojcik@gmail.com, Google: gmwojcik INCF 2011 Warszawa, 16 grudnia 2011
2 1 Spektrum autyzmu - zintegrowana teoria 2
3 Spektrum autyzmu - zintegrowana teoria Grant realizowany z UMK w Toruniu, pod kierownictwem prof. dr. hab. Włodzisława Ducha.
4 Model Posnera przenoszenie uwagi Rysunek: Schemat sieci
5 Model Posnera przenoszenie uwagi INVALID dla V1(1,12) NEUTRAL dla V1(1) VALID dla V1(1,8) Difference N-V Difference I-N t [ms] f [Hz] Rysunek: Czasy reakcji modelu Posnera w zależności od pobudzenia
6 Model wizualnego rozpoznawania obiektów Rysunek: Schemat sieci
7 Atraktory w warstwie semantycznej Fuzzy Symbolic Dynamics 500 Fuzzy Symbolic Dynamics 500 Activation in Semantics layer [dyslex.proj] G 3 : µ = [0.37,...,0.41], σ = G 2 : µ = [0.8,...,0.12], σ = G : µ = [0.07,...,0.81], σ = 2 1 G 3 : µ = [0.37,...,0.41], σ = G 2 : µ = [0.8,...,0.12], σ = G : µ = [0.07,...,0.81], σ = 2 1 G 3 : µ = [0.37,...,0.41], σ = G 2 : µ = [0.8,...,0.12], σ = G : µ = [0.07,...,0.81], σ = 2 1 Rysunek: Obrazy uzyskane techniką FSD w modelu czytania
8 Maszyna płynowa LSM Liquid State Machine, Wolfgang Maass 2002 Rysunek: Schemat maszyny LSM X M (t) = (L M u)(t) (1) y(t) = f M (X M (t)) (2)
9 Teoria obliczeń płynowych W. Maass, T. Natschlaeger, and H. Markram, Real-time computing without stable states: A new framework for neural computation based on perturbations, Neural Computation, vol. 14, no. 11, pp , 2002.
10 Teoria obliczeń płynowych Stan X M (t) = (L M u)(t) jest wynikiem działania operatora L M na sygnał wejściowy u(t). W neuronaukach często takie operatory nazywa się filtrami. Formalnie taki operator rzutuje przestrzeń U n na (R R ) k, gdzie R R jest zbiorem rzeczywistych funkcji czasu, (R R ) k jest zbiorem wektorów zawierających k takich funkcji, natomiast U jest pewnym podzbiorem R R, a U n zbiorem wektorów zawierających n funkcji czasu w U.
11 Teoria obliczeń płynowych Maszyny LSM posiadają dwie podstawowe, abstrakcyjne własności: separacji (wzorców przez płyn) i aproksymacji (stanów płynu przez warstwę odczytującą). Pod warunkiem, że płyn posiada wystarczającą zdolność separacji (rozdzielczość), a warstwa odczytująca wystarczającą zdolność aproksymacji, istnieje matematyczny dowód (zbudowany w oparciu o twierdzenie aproksymacyjne Stone a-weierstrassa) potwierdzający uniwersalną moc obliczeniową maszyn LSM, niezależną ani od ich specyficznej struktury ani od implementacji.
12 Zdolność separacji wzorców Najprostszą metodą badania różnicy stanów jest pomiar odległości euklidesowej zaburzonych kolumn w poszczególnych krokach czasowych symulacji. Formalnie zapisuje się to w postaci równania: Xu M, (t) XM v (t) (3) gdzie X M u (t) i X M v (t) oznaczają stany płynu neuronalnego w czasie t dla strumieni wejściowych u i v.
13 Wpływ parametrów elektrycznych T=100 ms T=120 ms T=150 ms T=200 ms T=300 ms T=400 ms T=500 ms 20 d(u,v) τ [ms] Rysunek: Zdolność separacji zależna od stałej czasowej τ
14 Liczba lawin potencjału czynnościowego p x = 0.01 p x = D(s) s Rysunek: Nachylenie krzywej SOC dla N s = 6 i różnych wartości prawdopodobieństwa p x
15 Spektrum autyzmu - zintegrowana teoria Zjawiska nieliniowe w modelu 2k dv/dt [V/s] V [V] Rysunek: Przestrzeń fazowa Poincarégo potencjału błony komórkowej neuronu N25,22, Ns = 1
16 Spektrum autyzmu - zintegrowana teoria Zjawiska nieliniowe w modelu 2k dv/dt [V/s] V [V] Rysunek: Przestrzeń fazowa Poincarégo potencjału błony komórkowej neuronu N25,22, Ns = 12
17 Nowe narzędzie modelowania NESSIE NEuroinformatic System for Science, Industry and Education NESSIE
18 Klaster Lomond Rysunek: Klaster Lomond z serwerem Luna
19 Założenia systemu Tworząc koncepcję NESSIE, poczyniłem pewne założenia dotyczące jego podstawowych funkcjonalności: Wirtualne laboratorium Na początku system powinien umożliwić potencjalnym użytkownikom przeprowadzenie kilkunastu typów eksperymentów komputerowych z wykorzystaniem symulatorów GENESIS i PCSIM. Eksperymenty powinny dawać możliwość ustawiania podstawowych parametrów przez użytkownika. Eksperymenty powinny pozwolić na symulację modeli maszyn neuronalnych LSM i badanie zjawisk samoorganizującej się krytyczności.
20 Założenia systemu Wieloplatformowość Kompletna obsługa systemu powinna być zapewniona przez przeglądarkę internetową. Strona uruchamiania symulacji portalu powinna wyglądać zawsze tak samo, niezależnie od wyboru systemu operacyjnego i używanej przeglądarki. Modularność system NESSIE powinien składać się z konkretnych modułów i oferować możliwość rozbudowy o nowe moduły.
21 Założenia systemu Zastosowanie w edukacji system powinien umożliwić przeprowadzenie zajęć ze studentami, podczas których będą mogli zapoznać się z podstawami neuroobliczeń. Zastosowanie w nauce system powinien umożliwić uruchamianie zewnętrznych skryptów dostarczanych przez inne grupy badawcze. Zastosowanie w przemyśle system powinien dać możliwość zaprojektowania potencjalnych zastosowań teorii LSM w przemyśle i biznesie.
22 Założenia systemu Społeczność w systemie powinno znaleźć się forum NESSIE, wokół którego wykształci się społeczność użytkowników. Ideologia Korzystanie z NESSIE w celach niekomercyjnych powinno zawsze pozostać nieodpłatne. Skrypty i modele udostępnione w ramach NESSIE, jak również stanowiące otoczkę systemu oprogramowanie powinno być zgodne z duchem licencji GNU/GPL.
23 Struktura systemu Koncepcja aplikacji Ubuntu LAMP Server
24 Strona główna NESSIE Rysunek: Strona główna systemu NESSIE
25 My Lab Rysunek: Tabela nadzoru symulacji w My Lab
26 Książki
Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy. Obowiązkowy Polski VI semestr zimowy
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
E-E-A-1008-s5 Komputerowa Symulacja Układów Nazwa modułu. Dynamicznych. Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu E-E-A-1008-s5 Komputerowa Symulacja Układów Nazwa modułu Dynamicznych Nazwa modułu w języku
Bezpieczeństwo informacji oparte o kryptografię kwantową
WYŻSZA SZKOŁA BIZNESU W DĄBROWIE GÓRNICZEJ WYDZIAŁ ZARZĄDZANIA INFORMATYKI I NAUK SPOŁECZNYCH Instrukcja do laboratorium z przedmiotu: Bezpieczeństwo informacji oparte o kryptografię kwantową Instrukcja
Kierunek: Matematyka w technice
Kierunek: Matematyka w technice Wykaz modułów kształcenia z podziałem na semestry Forma zajęć: W wykład C ćwiczenia L laboratorium P projekt S searium E egza Semestr 1 Analiza matematyczna I Algebra liniowa
Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych
Mechatronika i inteligentne systemy produkcyjne Modelowanie systemów mechatronicznych Platformy przetwarzania danych 1 Sterowanie procesem oparte na jego modelu u 1 (t) System rzeczywisty x(t) y(t) Tworzenie
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO
ECTS Razem 30 Godz. 330
3-letnie stacjonarne studia licencjackie kier. Matematyka profil: ogólnoakademicki Semestr 1 Przedmioty wspólne Algebra liniowa z geometrią analityczną I 7 30 30 E Analiza matematyczna I 13 60 60 E Technologie
Bezpieczeństwo informacji oparte o kryptografię kwantową
WYŻSZA SZKOŁA BIZNESU W DĄBROWIE GÓRNICZEJ WYDZIAŁ ZARZĄDZANIA INFORMATYKI I NAUK SPOŁECZNYCH Instrukcja do laboratorium z przedmiotu: Bezpieczeństwo informacji oparte o kryptografię kwantową Instrukcja
Algorytmy sztucznej inteligencji
Algorytmy sztucznej inteligencji Dynamiczne sieci neuronowe 1 Zapis macierzowy sieci neuronowych Poniżej omówione zostaną części składowe sieci neuronowych i metoda ich zapisu za pomocą macierzy. Obliczenia
3-letnie (6-semestralne) stacjonarne studia licencjackie kier. matematyka stosowana profil: ogólnoakademicki. Semestr 1. Przedmioty wspólne
3-letnie (6-semestralne) stacjonarne studia licencjackie kier. matematyka stosowana profil: ogólnoakademicki Semestr 1 Przedmioty wspólne Nazwa przedmiotu ECTS W Ć L P S Zal. Algebra liniowa z geometrią
Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII. Kierunek Matematyka. Studia stacjonarne i niestacjonarne I i II stopnia
Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII Kierunek Matematyka Studia stacjonarne i niestacjonarne I i II stopnia Organizacja roku akademickiego 2017/2018 Studia stacjonarne I
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2016/2017 Język wykładowy: Polski
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne I. 1 Nazwa modułu kształcenia Analiza i przetwarzanie sygnałów 2 Nazwa jednostki prowadzącej moduł (należy wskazać nazwę zgodnie ze Statutem PSW Instytut,
Teraz bajty. Informatyka dla szkół ponadpodstawowych. Zakres rozszerzony. Część 1.
Teraz bajty. Informatyka dla szkół ponadpodstawowych. Zakres rozszerzony. Część 1. Grażyna Koba MIGRA 2019 Spis treści (propozycja na 2*32 = 64 godziny lekcyjne) Moduł A. Wokół komputera i sieci komputerowych
Laboratorium przez Internet w modelu studiów inżynierskich
Laboratorium przez Internet w modelu studiów inżynierskich Remigiusz Rak Marcin Godziemba-Maliszewski Andrzej Majkowski Adam Jóśko POLITECHNIKA WARSZAWSKA Ośrodek Kształcenia na Odległość Laboratorium
Podsumowanie wyników ankiety
SPRAWOZDANIE Kierunkowego Zespołu ds. Programów Kształcenia dla kierunku Informatyka dotyczące ankiet samooceny osiągnięcia przez absolwentów kierunkowych efektów kształcenia po ukończeniu studiów w roku
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr 1 (3h) Wprowadzenie do obsługi platformy projektowej Quartus II Instrukcja pomocnicza do laboratorium z przedmiotu
Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia I stopnia (inżynierskie)
Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia I stopnia (inżynierskie) Temat: Pomiar prędkości kątowych samolotu przy pomocy czujnika ziemskiego pola magnetycznego 1. Analiza właściwości
Budowa uniwersalnej architektury dla Laboratorium Wirtualnego
Budowa uniwersalnej architektury dla Laboratorium Wirtualnego Projekt badawczy 4 T11F 010 24 Kierownik projektu: Katarzyna Kulińska Instytut Chemii Bioorganicznej PAN, Agenda Wstęp Koncepcja Laboratorium
Tematy prac dyplomowych w Katedrze Awioniki i Sterowania. Studia: I stopnia (inżynierskie)
Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia I stopnia (inżynierskie) Temat: Skalowanie czujników prędkości kątowej i orientacji przestrzennej 1. Analiza właściwości czujników i układów
Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka
Modelowanie jako sposób opisu rzeczywistości Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka 2015 Wprowadzenie: Modelowanie i symulacja PROBLEM: Podstawowy problem z opisem otaczającej
Cyfronet w CTA. Andrzej Oziębło DKDM
Cyfronet w CTA Andrzej Oziębło DKDM ACK CYFRONET AGH Akademickie Centrum Komputerowe CYFRONET Akademii Górniczo-Hutniczej im. Stanisława Staszica w Krakowie ul. Nawojki 11 30-950 Kraków 61 tel. centrali:
Informatyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod Nazwa Nazwa w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Programy grafiki rastrowej,
Sztuczne sieci neuronowe
www.math.uni.lodz.pl/ radmat Cel wykładu Celem wykładu jest prezentacja różnych rodzajów sztucznych sieci neuronowych. Biologiczny model neuronu Mózg człowieka składa się z około 10 11 komórek nerwowych,
Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 16 zaliczenie z oceną
Wydział: Zarządzanie i Finanse Nazwa kierunku kształcenia: Zarządzanie Rodzaj przedmiotu: specjalnościowy Opiekun: prof. nadzw. dr hab. Zenon Biniek Poziom studiów (I lub II stopnia): II stopnia Tryb studiów:
ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów
ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów. Cel ćwiczenia Badanie układów pierwszego rzędu różniczkującego, całkującego
Instytut Technologii Informatycznych w Inżynierii Lądowej (L-5) powstał w roku 2006 z połączenia Instytutu Metod Komputerowych w Inżynierii Lądowej
Instytut Technologii Informatycznych w Inżynierii Lądowej (L-5) powstał w roku 2006 z połączenia Instytutu Metod Komputerowych w Inżynierii Lądowej (Z. Waszczyszyn, B. Olszowski, Cz. Cichoń, M. Radwańska,
Modelowanie rynków finansowych z wykorzystaniem pakietu R
Modelowanie rynków finansowych z wykorzystaniem pakietu R Metody numeryczne i symulacje stochastyczne Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Całkowanie
Elektrotechnika II stopień ogólnoakademicki. stacjonarne. przedmiot specjalnościowy. obowiązkowy polski semestr II semestr letni. tak. Laborat. 30 g.
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Metody estymacji parametrów i sygnałów Estimation methods of parameters
Laboratorium MATLA. Ćwiczenie 6 i 7. Mała aplikacja z GUI
Laboratorium MATLA Ćwiczenie 6 i 7 Mała aplikacja z GUI Opracowali: - dr inż. Beata Leśniak-Plewińska dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej Instytut Metrologii i Inżynierii Biomedycznej
Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"
Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres
Informatyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod Nazwa Nazwa w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Programy grafiki rastrowej,
Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych.
Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych. Jedną z metod symulacji dynamiki cieczy jest zastosowanie metody siatkowej Boltzmanna.
przedmiot kierunkowy (podstawowy / kierunkowy / inny HES) obieralny (obowiązkowy / nieobowiązkowy) polski semestr VI
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2018/2019
Właściwości dynamiczne kolektora słonecznego a efektywność instalacji grzewczej
Właściwości dynamiczne kolektora słonecznego a efektywność instalacji grzewczej mgr inż. Joanna Aleksiejuk 2016-09-19 Problemy gospodarki energią i środowiskiem w rolnictwie, leśnictwie i przemyśle spożywczym
Podstawy metodologiczne symulacji
Sławomir Kulesza kulesza@matman.uwm.edu.pl Symulacje komputerowe (05) Podstawy metodologiczne symulacji Wykład dla studentów Informatyki Ostatnia zmiana: 26 marca 2015 (ver. 4.1) Spirala symulacji optymistycznie
Tematy prac dyplomowych w Katedrze Awioniki i Sterowania. Studia: II stopnia (magisterskie)
Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia II stopnia (magisterskie) Temat: Układ sterowania płaszczyzną sterową o podwyższonej niezawodności 1. Analiza literatury. 2. Uruchomienie
II. MODUŁY KSZTAŁCENIA
PROGRAM STUDIÓW I. INFORMACJE OGÓLNE 1. Nazwa jednostki prowadzącej kierunek: W y d z i a ł M a t e m a t y k i i I n f o r m a t y k i 2. Nazwa kierunku: I n f o r m a t y k a 3. Poziom kształcenia: s
Modelowanie matematyczne a eksperyment
Modelowanie matematyczne a eksperyment Budowanie modeli w środowisku Hildegard Urban-Woldron Ogólnopolska konferencja, 28.10. 2011, Warszawa Plan Budowanie modelu w środowisku Równania i wartości Uruchomienie
Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII. Kierunek Matematyka. Studia stacjonarne i niestacjonarne I i II stopnia
Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII Kierunek Matematyka Studia stacjonarne i niestacjonarne I i II stopnia Organizacja roku akademickiego 2016/2017 Studia stacjonarne I
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia I. Informacje ogólne Podstawy Automatyki 2 Nazwa jednostki prowadzącej moduł (należy wskazać nazwę zgodnie ze Statutem PSW Instytut, Zakład) Instytut
Podstawy Informatyki Computer basics
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Tomasz Pawlak. Zastosowania Metod Inteligencji Obliczeniowej
1 Zastosowania Metod Inteligencji Obliczeniowej Tomasz Pawlak 2 Plan prezentacji Sprawy organizacyjne Wprowadzenie do metod inteligencji obliczeniowej Studium wybranych przypadków zastosowań IO 3 Dane
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach PROGRAM KSZTAŁCENIA. Studia III stopnia (doktoranckie) kierunek Informatyka
Uniwersytet Śląski Wydział Informatyki i Nauki o Materiałach PROGRAM KSZTAŁCENIA Studia III stopnia (doktoranckie) kierunek Informatyka (przyjęty przez Radę Wydziału Informatyki i Nauki o Materiałach w
Procedura modelowania matematycznego
Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie
Kierunek: Informatyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia
Wydział: Informatyki, Elektroniki i Telekomunikacji Kierunek: Informatyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 217/218 Język wykładowy: Polski Semestr 1 IIN-1-13-s
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji
Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.
Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 13-1- Projekt pn. Wzmocnienie potencjału dydaktycznego
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy oólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK
GMWØJCIK Publications
GMWØJCIK Publications A. Gajos and G. M. Wojcik, Electroencephalographic detection of synesthesia, Annales Universitatis Mariae Curie-Sklodowska, Sectio AI: Informatica, vol. 14, no. 3, pp. 43 52, 2014.
Efektywność algorytmów
Efektywność algorytmów Algorytmika Algorytmika to dział informatyki zajmujący się poszukiwaniem, konstruowaniem i badaniem własności algorytmów, w kontekście ich przydatności do rozwiązywania problemów
PROJEKT INŻYNIERSKI I
Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Rok Semestr Jednostka prowadząca Osoba sporządzająca Profil Rodzaj
Modele Obliczeń. Wykład 1 - Wprowadzenie. Marcin Szczuka. Instytut Matematyki, Uniwersytet Warszawski
Modele Obliczeń Wykład 1 - Wprowadzenie Marcin Szczuka Instytut Matematyki, Uniwersytet Warszawski Wykład fakultatywny w semestrze zimowym 2014/2015 Marcin Szczuka (MIMUW) Modele Obliczeń 2014/2015 1 /
Podstawy elektroniki i miernictwa
Podstawy elektroniki i miernictwa Kod modułu: ELE Rodzaj przedmiotu: podstawowy; obowiązkowy Wydział: Informatyki Kierunek: Informatyka Poziom studiów: pierwszego stopnia Profil studiów: ogólnoakademicki
O ALGORYTMACH I MASZYNACH TURINGA
O ALGORYTMACH I MASZYNACH TURINGA ALGORYTM (objaśnienie ogólne) Algorytm Pojęcie o rodowodzie matematycznym, oznaczające współcześnie precyzyjny schemat mechanicznej lub maszynowej realizacji zadań określonego
Laboratorium LAB1. Moduł małej energetyki wiatrowej
Laboratorium LAB1 Moduł małej energetyki wiatrowej Badanie charakterystyki efektywności wiatraka - kompletnego systemu (wiatrak, generator, akumulator) prędkość wiatru - moc produkowana L1-U1 Pełne badania
Informatyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod Nazwa Programy grafiki rastrowej, wektorowej i 3d Nazwa w języku angielskim Programs of raster,
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w
Najprostszy schemat blokowy
Definicje Modelowanie i symulacja Modelowanie zastosowanie określonej metodologii do stworzenia i weryfikacji modelu dla danego układu rzeczywistego Symulacja zastosowanie symulatora, w którym zaimplementowano
LABORATORIUM WIRTUALNE W DYDAKTYCE I BADANIACH NAUKOWYCH
LABORATORIUM WIRTUALNE W DYDAKTYCE I BADANIACH NAUKOWYCH prof. dr hab. inż. Bogdan GALWAS, doc. dr inż. Elżbieta PIWOWARSKA, mgr inż. Marcin GODZIEMBA-MALISZEWSKI Ośrodek Kształcenia na Odległość OKNO
Projekt efizyka. Multimedialne środowisko nauczania fizyki dla szkół ponadgimnazjalnych. Zjawisko Halla. Ćwiczenie wirtualne
Projekt efizyka Multimedialne środowisko nauczania fizyki dla szkół ponadgimnazjalnych. Zjawisko Halla Ćwiczenie wirtualne Marcin Zaremba 2014-06-30 Projekt współfinansowany przez Unię Europejską w ramach
Naukowe Koło Nowoczesnych Technologii
Naukowe Koło Nowoczesnych Technologii Naukowe Koło Nowoczesnych Technologii Opiekun: dr hab., prof. ndzw. Tadeusz Szumiata Przewodniczący: Mateusz Staszewski, MiBM semestr IV Poszczególne dziedziny działań
Laboratorium KOMPUTEROWE PROJEKTOWANIE UKŁADÓW
Laboratorium KOMPUTEROWE PROJEKTOWANIE UKŁADÓW SYMULACJA UKŁADÓW ELEKTRONICZNYCH Z ZASTOSOWANIEM PROGRAMU SPICE Opracował dr inż. Michał Szermer Łódź, dn. 03.01.2017 r. ~ 2 ~ Spis treści Spis treści 3
Sieć przesyłająca żetony CP (counter propagation)
Sieci neuropodobne IX, specyficzne architektury 1 Sieć przesyłająca żetony CP (counter propagation) warstwa Kohonena: wektory wejściowe są unormowane jednostki mają unormowane wektory wag jednostki są
Skalowalna Platforma dla eksperymentów dużej skali typu Data Farming z wykorzystaniem środowisk organizacyjnie rozproszonych
1 Skalowalna Platforma dla eksperymentów dużej skali typu Data Farming z wykorzystaniem środowisk organizacyjnie rozproszonych D. Król, Ł. Dutka, J. Kitowski ACC Cyfronet AGH Plan prezentacji 2 O nas Wprowadzenie
WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI
WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)
PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA
MATEMATYKA STOSOANA PLAN STUDIÓ STACJONARNYCH PIERSZEGO STOPNIA semestr: 1. w grupach 14.4- -060 prowadzenie do psychologii 15 15 30 2 S-PP/OH 11.1- -810 stęp do logiki i teorii mnogości 30 30 60 1 8 P1
Metoda cyfrowej korelacji obrazu w badaniach geosyntetyków i innych materiałów drogowych
Metoda cyfrowej korelacji obrazu w badaniach geosyntetyków i innych materiałów drogowych Jarosław Górszczyk Konrad Malicki Politechnika Krakowska Instytut Inżynierii Drogowej i Kolejowej Wprowadzenie Dokładne
KARTA KURSU. Grafika komputerowa
KARTA KURSU Nazwa Nazwa w j. ang. Grafika komputerowa Computer graphics Kod Punktacja ECTS* 3 Koordynator dr inż. Krzysztof Wójcik Zespół dydaktyczny: dr inż. Krzysztof Wójcik dr inż. Mateusz Muchacki
P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H
W O J S K O W A A K A D E M I A T E C H N I C Z N A W Y D Z I A Ł E L E K T R O N I K I Drukować dwustronnie P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H Grupa... Data wykonania
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e
PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA MATEMATYKA. od roku akademickiego 2013/2014 (ze zmianami zatw. 2 VII 2014)
PLAN STUDIÓ STACJONARNYCH PIRSZGO STOPNIA MATMATYKA od roku akademickiego 2013/2014 (ze zmianami zatw. 2 VII 2014) Semestr 1 CTS stęp do logiki i teorii mnogości 45 75 1 7 Analiza matematyczna 1 60 90
kierunkowy (podstawowy / kierunkowy / inny HES) nieobowiązkowy (obowiązkowy / nieobowiązkowy) język polski III semestr letni (semestr zimowy / letni)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Układy elektroniczne w maszynach elektrycznych Nazwa modułu w języku angielskim
System wspomagania harmonogramowania przedsięwzięć budowlanych
System wspomagania harmonogramowania przedsięwzięć budowlanych Wojciech Bożejko 1 Zdzisław Hejducki 2 Mariusz Uchroński 1 Mieczysław Wodecki 3 1 Instytut Informatyki, Automatyki i Robotyki Politechnika
Liczba godzin w semestrze II r o k. Nazwa modułu. PLAN STUDIÓW (poziom studiów) I STOPNIA studia (forma studiów) stacjonarne
PLAN STUDIÓW (poziom studiów) I STOPNIA studia (forma studiów) stacjonarne (kierunek studiów) informatyka specjalności: programowanie systemów i baz danych, systemy i sieci komputerowe, informatyczne systemy
Wstęp do sieci neuronowych, wykład 8 Uczenie nienadzorowane.
Wstęp do sieci neuronowych, wykład 8. M. Czoków, J. Piersa, A. Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 1-811-6 Projekt pn. Wzmocnienie potencjału dydaktycznego
HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM
ZASTOSOWANIE SIECI NEURONOWYCH W SYSTEMACH AKTYWNEJ REDUKCJI HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM WPROWADZENIE Zwalczanie hałasu przy pomocy metod aktywnych redukcji hałasu polega
PRZEWODNIK PO PRZEDMIOCIE
PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Rok Semestr Jednostka prowadząca Osoba sporządzająca Profil Rodzaj przedmiotu INFORMATYKA Bezpieczeństwo i Higiena
Infrastruktura PLGrid Nowa jakość usług informatycznych w służbie nauki
Infrastruktura PLGrid Nowa jakość usług informatycznych w służbie nauki Maciej Czuchry, Mariola Czuchry ACK Cyfronet AGH Katedra Robotyki i Mechatroniki, Kraków 2015 Agenda ACK Cyfronet AGH główne kompetencje
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka finansowa Rocznik: 2014/2015 Język wykładowy: Polski Semestr
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: MODELOWANIE PROCESÓW ENERGETYCZNYCH Kierunek: ENERGETYKA Rodzaj przedmiotu: specjalności obieralny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE
Automatyka i Robotyka studia stacjonarne drugiego stopnia
#384 #380 dr inż. Mirosław Gajer Projekt i implementacja narzędzia do profilowania kodu natywnego przy wykorzystaniu narzędzi Android NDK (Project and implementation of tools for profiling native code
PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA MATEMATYKA. od roku akademickiego 2015/2016
PLAN STUDIÓ STACJONARNYCH PIRSZGO STOPNIA MATMATYKA od roku akademickiego 20/2016 Semestr 1 stęp do logiki i teorii mnogości 45 75 1 7 Analiza matematyczna 1 1) 60 90 8 Algebra liniowa 1 60 90 7 Geometria
Pakiety Informatyczne w Mechanice i Budowie Maszyn
WYDZIAŁ INŻYNIERII MECHANICZNEJ I ROBOTYKI Katedra Systemów Energetycznych i Urządzeń Ochrony Środowiska Informatyka w Inżynierii Mechanicznej Pakiety Informatyczne w Mechanice i Budowie Maszyn Cel Przedmiotu:
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia
Repetytorium z matematyki 3,0 1,0 3,0 3,0. Analiza matematyczna 1 4,0 2,0 4,0 2,0. Analiza matematyczna 2 6,0 2,0 6,0 2,0
PROGRAM STUDIÓW I INFORMACJE OGÓLNE 1. Nazwa jednostki prowadzącej kierunek: Wydział Matematyki i Informatyki 2. Nazwa kierunku: Informatyka 3. Oferowane specjalności: 4. Poziom kształcenia: studia pierwszego
Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A
Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A Marcin Polkowski (251328) 15 marca 2007 r. Spis treści 1 Cel ćwiczenia 2 2 Techniczny i matematyczny aspekt ćwiczenia 2 3 Pomiary - układ RC
WSKAŹNIKI ILOŚCIOWE - Punkty ECTS w ramach zajęć: Efekty kształcenia. Wiedza Umiejętności Kompetencje społeczne (symbole) MK_1. Analiza matematyczna
PROGRAM STUDIÓW I INFORMACJE OGÓLNE 1. Nazwa jednostki prowadzącej kierunek: Wydział Matematyki i Informatyki 2. Nazwa kierunku: Informatyka 3. Oferowane specjalności: 4. Poziom kształcenia: studia pierwszego
Stochastic modelling of phase transformations using HPC infrastructure
Stochastic modelling of phase transformations using HPC infrastructure (Stochastyczne modelowanie przemian fazowych z wykorzystaniem komputerów wysokiej wydajności) Daniel Bachniak, Łukasz Rauch, Danuta
Zaprojektowanie i zbadanie dyskryminatora amplitudy impulsów i generatora impulsów prostokątnych (inaczej multiwibrator astabilny).
WFiIS LABOATOIM Z ELEKTONIKI Imię i nazwisko:.. TEMAT: OK GPA ZESPÓŁ N ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA Zaprojektowanie i zbadanie
Spis treści. Od autorów / 9
Od autorów / 9 Rozdział 1. Bezpieczny i legalny komputer / 11 1.1. Komputer we współczesnym świecie / 12 Typowe zastosowania komputera / 12 1.2. Bezpieczna i higieniczna praca z komputerem / 13 Wpływ komputera
Kierunek: Informatyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia
Wydział: Informatyki, Elektroniki i Telekomunikacji Kierunek: Informatyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2016/2017 Język wykładowy: Polski Semestr 1 IIN-1-103-s
Inżynieria Bezpieczeństwa I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych.
Wstęp do teorii sztucznej inteligencji Wykład III Modele sieci neuronowych. 1 Perceptron model najprostzszy przypomnienie Schemat neuronu opracowany przez McCullocha i Pittsa w 1943 roku. Przykład funkcji
MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH
MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH 1. Przedmiot nie wymaga przedmiotów poprzedzających 2. Treść przedmiotu Proces i cykl decyzyjny. Rola modelowania matematycznego w procesach decyzyjnych.
Rys. 1. Wzmacniacz odwracający
Ćwiczenie. 1. Zniekształcenia liniowe 1. W programie Altium Designer utwórz schemat z rys.1. Rys. 1. Wzmacniacz odwracający 2. Za pomocą symulacji wyznaczyć charakterystyki częstotliwościowe (amplitudową
Kierunek: Informatyka Poziom studiów: Studia I stopnia Forma studiów: Stacjonarne. audytoryjne. Wykład Ćwiczenia
Wydział: Informatyki, Elektroniki i Telekomunikacji Kierunek: Informatyka Poziom studiów: Studia I stopnia Forma studiów: Stacjonarne Rocznik: 2019/2020 Język wykładowy: Polski Semestr 1 z Kierunkowe 10
Szkoła programisty PLC : sterowniki przemysłowe / Gilewski Tomasz. Gliwice, cop Spis treści
Szkoła programisty PLC : sterowniki przemysłowe / Gilewski Tomasz. Gliwice, cop. 2017 Spis treści O autorze 9 Wprowadzenie 11 Rozdział 1. Sterownik przemysłowy 15 Sterownik S7-1200 15 Budowa zewnętrzna
Współczesne modele oprogramowania
Współczesne modele oprogramowania Wykład nr 1 Organizacja zajęć, zasady uzyskiwania zaliczenia, zakres tematyczny przedmiotu. Akademia Górniczo-Hutnicza 06.10.2014, Kraków dr inż. Andrzej Opaliński andrzej.opalinski@agh.edu.pl