EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII
|
|
- Danuta Krajewska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Miejsce na naklejkę z kodem szkoły dysleksja MFA-P1A1P-062 EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 13 stron (zadania 1 21). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin. 2. Rozwiązania i odpowiedzi zapisz w miejscu na to przeznaczonym przy każdym zadaniu. 3. W rozwiązaniach zadań rachunkowych przedstaw tok rozumowania prowadzący do ostatecznego wyniku oraz pamiętaj o jednostkach. 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem. 5. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl. 6. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie. 7. Podczas egzaminu możesz korzystać z karty wybranych wzorów i stałych fizycznych, linijki oraz kalkulatora. 8. Wypełnij tę część karty odpowiedzi, którą koduje zdający. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora. 9. Na karcie odpowiedzi wpisz swoją datę urodzenia i PESEL. Zamaluj pola odpowiadające cyfrom numeru PESEL. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe. Życzymy powodzenia! ARKUSZ I MAJ ROK 2006 Za rozwiązanie wszystkich zadań można otrzymać łącznie 50 punktów Wypełnia zdający przed rozpoczęciem pracy PESEL ZDAJĄCEGO KOD ZDAJĄCEGO
2 2 Egzamin maturalny z fizyki i astronomii Zadania zamknięte W zadaniach od 1. do 10. wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź. Zadanie 1. (1 pkt) Tomek wchodzi po schodach z parteru na piętro. Różnica wysokości między parterem a piętrem wynosi 3 m, a łączna długość dwóch odcinków schodów jest równa 6 m. Wektor całkowitego przemieszczenia Tomka ma wartość A. 3 m B. 4,5 m C. 6 m D. 9 m Zadanie 2. (1 pkt) Wykres przedstawia zależność wartości prędkości od czasu dla ciała o masie 10 kg, spadającego w powietrzu z dużej wysokości. Analizując wykres można stwierdzić, że podczas pierwszych 15 sekund ruchu wartość siły oporu A. jest stała i wynosi 50 N. B. jest stała i wynosi 100 N. C. rośnie do maksymalnej wartości 50 N. D. rośnie do maksymalnej wartości 100 N. v, m/s t, s Zadanie 3. (1 pkt) Rysunek przedstawia linie pola elektrostatycznego układu dwóch punktowych ładunków. Analiza rysunku pozwala stwierdzić, że ładunki są A. jednoimienne i q A > q B B. jednoimienne i q A < q B C. różnoimienne i q A > q B D. różnoimienne i q A < q B Zadanie 4. (1 pkt) Jądro izotopu U zawiera A. 235 neutronów. B. 327 nukleonów. C. 143 neutrony. D. 92 nukleony.
3 Egzamin maturalny z fizyki i astronomii 3 Zadanie 5. (1 pkt) Zdolność skupiająca zwierciadła kulistego wklęsłego o promieniu krzywizny 20 cm ma wartość A. 1/10 dioptrii. B. 1/5 dioptrii. C. 5 dioptrii. D. 10 dioptrii. Zadanie 6. (1 pkt) Piłkę o masie 1 kg upuszczono swobodnie z wysokości 1 m. Po odbiciu od podłoża piłka wzniosła się na maksymalną wysokość 50 cm. W wyniku zderzenia z podłożem i w trakcie ruchu piłka straciła energię o wartości około A. 1 J B. 2 J C. 5 J D. 10 J Zadanie 7. (1 pkt) Energia elektromagnetyczna emitowana z powierzchni Słońca powstaje w jego wnętrzu w procesie A. syntezy lekkich jąder atomowych. B. rozszczepienia ciężkich jąder atomowych. C. syntezy związków chemicznych. D. rozpadu związków chemicznych. Zadanie 8. (1 pkt) Stosowana przez Izaaka Newtona metoda badawcza, polegająca na wykonywaniu doświadczeń, zbieraniu wyników swoich i cudzych obserwacji, szukaniu w nich regularności, stawianiu hipotez, a następnie uogólnianiu ich poprzez formułowanie praw, to przykład metody A. indukcyjnej. B. hipotetyczno-dedukcyjnej. C. indukcyjno-dedukcyjnej. D. statystycznej. Zadanie 9. (1 pkt) Optyczny teleskop Hubble a krąży po orbicie okołoziemskiej w odległości około 600 km od powierzchni Ziemi. Umieszczono go tam, aby A. zmniejszyć odległość do fotografowanych obiektów. B. wyeliminować zakłócenia elektromagnetyczne pochodzące z Ziemi. C. wyeliminować wpływ czynników atmosferycznych na jakość zdjęć. D. wyeliminować działanie sił grawitacji. Zadanie 10. (1 pkt) Podczas odczytu za pomocą wiązki światła laserowego informacji zapisanych na płycie CD wykorzystywane jest zjawisko A. polaryzacji. B. odbicia. C. załamania. D. interferencji.
4 4 Egzamin maturalny z fizyki i astronomii Zadania otwarte Rozwiązanie zadań o numerach od 11 do 21 należy zapisać w wyznaczonych miejscach pod treścią zadania. Zadanie 11. Klocek (5 pkt) Drewniany klocek przymocowany jest do ściany za pomocą nitki, która wytrzymuje naciąg siłą o wartości 4 N. Współczynnik tarcia statycznego klocka o podłoże wynosi 0,2. W obliczeniach przyjmij, że wartość przyspieszenia ziemskiego jest równa 10 m/s (3 pkt) Oblicz maksymalną wartość powoli narastającej siły F, z jaką można poziomo ciągnąć klocek, aby nitka nie uległa zerwaniu (2 pkt) Oblicz wartość przyspieszenia, z jakim będzie poruszał się klocek, jeżeli usunięto nitkę łączącą klocek ze ścianą, a do klocka przyłożono poziomo skierowaną siłę o stałej wartości 6 N. Przyjmij, że wartość siły tarcia kinetycznego jest równa 1,5 N.
5 Egzamin maturalny z fizyki i astronomii 5 Zadanie 12. Krople deszczu (4 pkt) Z krawędzi dachu znajdującego się na wysokości 5 m nad powierzchnią chodnika spadają krople deszczu (2 pkt) Wykaż, że czas spadania kropli wynosi 1 s, a jej prędkość końcowa jest równa 10 m/s. W obliczeniach pomiń opór powietrza oraz przyjmij, że wartość przyspieszenia ziemskiego jest równa 10 m/s (2 pkt) Uczeń, obserwując spadające krople ustalił, że uderzają one w chodnik w jednakowych odstępach czasu co 0,5 sekundy. Przedstaw na wykresie zależność wartości prędkości od czasu dla co najmniej 3 kolejnych kropli. Wykonując wykres przyjmij, że czas spadania kropli wynosi 1 s, a wartość prędkości końcowej jest równa 10 m/s. Nr zadania Wypełnia Maks. liczba pkt egzaminator! Uzyskana liczba pkt
6 6 Egzamin maturalny z fizyki i astronomii Zadanie 13. Roleta (3 pkt) Roleta okienna zbudowana jest z wałka, na którym nawijane jest płótno zasłaniające okno (rys). Roletę można podnosić i opuszczać za pomocą sznurka obracającego wałek. sznurek roleta Zadanie 13.1 (1 pkt) Wyjaśnij, dlaczego w trakcie podnoszenia rolety ruchem jednostajnym, siła z jaką trzeba ciągnąć za sznurek nie jest stała. Przyjmij, że średnica wałka nie zależy od ilości płótna nawiniętego na wałek oraz pomiń siły oporu ruchu. Zadanie 13.2 (2 pkt) Oblicz pracę, jaką należy wykonać, aby podnieść rozwiniętą roletę, nawijając całkowicie płótno na wałek. Długość płótna całkowicie rozwiniętej rolety wynosi 2 m, a jego masa 2 kg.
7 Egzamin maturalny z fizyki i astronomii 7 Zadanie 14. Wahadło (4 pkt) Na nierozciągliwej cienkiej nici o długości 1,6 m zawieszono mały ciężarek, budując w ten sposób model wahadła matematycznego (2 pkt) Podaj, czy okres drgań takiego wahadła, wychylonego z położenia równowagi o niewielki kąt ulegnie zmianie, jeśli na tej nici zawiesimy mały ciężarek o dwukrotnie większej masie. Odpowiedź uzasadnij, odwołując się do odpowiednich zależności (2 pkt) Oblicz liczbę pełnych drgań, które wykonuje takie wahadło w czasie 8 s, gdy wychylono je o niewielki kąt z położenia równowagi i puszczono swobodnie. W obliczeniach przyjmij, że wartość przyspieszenia ziemskiego jest równa 10 m/s 2. Nr zadania Wypełnia Maks. liczba pkt egzaminator! Uzyskana liczba pkt
8 8 Egzamin maturalny z fizyki i astronomii Zadanie 15. Satelita (2 pkt) Satelita krąży po orbicie kołowej wokół Ziemi. Podaj, czy następujące stwierdzenie jest prawdziwe: Wartość prędkości liniowej tego satelity zmaleje po przeniesieniu go na inną orbitę kołową o większym promieniu. Odpowiedź uzasadnij, odwołując się do odpowiednich zależności. Zadanie 16. Pocisk (4 pkt) Stalowy pocisk, lecący z prędkością o wartości 300 m/s wbił się w hałdę piasku i ugrzązł w niej (3 pkt) Oblicz maksymalny przyrost temperatury pocisku, jaki wystąpi w sytuacji opisanej w zadaniu przyjmując, że połowa energii kinetycznej pocisku została zamieniona na przyrost energii wewnętrznej pocisku. Ciepło właściwe żelaza wynosi 450 J/(kg K) (1 pkt) Wyjaśnij krótko, na co została zużyta reszta energii kinetycznej pocisku.
9 Zadanie 17. Proton (5 pkt) Egzamin maturalny z fizyki i astronomii 9 W jednorodnym polu magnetycznym, którego wartość indukcji wynosi 0,1 T, krąży w próżni proton po okręgu o promieniu równym 20 cm. Wektor indukcji pola magnetycznego jest prostopadły do płaszczyzny rysunku i skierowany za tę płaszczyznę (2 pkt) Zaznacz na rysunku wektor prędkości protonu. Odpowiedź krótko uzasadnij, podając odpowiednią regułę (3 pkt) Wykaż, że proton o trzykrotnie większej wartości prędkości krąży po okręgu o trzykrotnie większym promieniu. Nr zadania Wypełnia Maks. liczba pkt egzaminator! Uzyskana liczba pkt
10 10 Egzamin maturalny z fizyki i astronomii Zadanie 18. Dwie soczewki (3 pkt) Dwie identyczne soczewki płasko-wypukłe wykonane ze szkła zamocowano na ławie optycznej w odległości 0,5 m od siebie tak, że główne osie optyczne soczewek pokrywają się. Na pierwszą soczewkę wzdłuż głównej osi optycznej skierowano równoległą wiązkę światła, która po przejściu przez obie soczewki była nadal wiązką równoległą biegnącą wzdłuż głównej osi optycznej (1 pkt) Wykonaj rysunek przedstawiający bieg wiązki promieni zgodnie z opisaną sytuacją. Zaznacz na rysunku położenie ognisk dla obu soczewek. główna oś optyczna 18.2 (2 pkt) Oblicz ogniskową układu zbudowanego w powietrzu z tych soczewek po złożeniu ich płaskimi powierzchniami. Przyjmij, że promienie krzywizny soczewek wynoszą 12,5 cm, a bezwzględne współczynniki załamania światła w powietrzu oraz szkle wynoszą odpowiednio 1 i 1,5.
11 Egzamin maturalny z fizyki i astronomii 11 Zadanie 19. Echo (3 pkt) Jeżeli dwa jednakowe dźwięki docierają do ucha w odstępie czasu dłuższym niż 0,1 s są słyszane przez człowieka oddzielnie (powstaje echo). Jeśli odstęp czasu jest krótszy od 0,1 s dwa dźwięki odbieramy jako jeden o przedłużonym czasie trwania (powstaje pogłos). Oblicz, w jakiej najmniejszej odległości od słuchacza powinna znajdować się pionowa ściana odbijająca dźwięk, aby po klaśnięciu w dłonie słuchacz usłyszał echo. Przyjmij, że wartość prędkości dźwięku w powietrzu wynosi 340 m/s. Zadanie 20. Zbiornik z azotem (3 pkt) Stalowy zbiornik zawiera azot pod ciśnieniem 1200 kpa. Temperatura gazu wynosi 27 o C. Zbiornik zabezpieczony jest zaworem bezpieczeństwa, który otwiera się gdy ciśnienie gazu przekroczy 1500 kpa. Zbiornik wystawiono na działanie promieni słonecznych, w wyniku czego temperatura gazu wzrosła do 77 o C. Podaj, czy w opisanej sytuacji nastąpi otwarcie zaworu. Odpowiedź uzasadnij, wykonując niezbędne obliczenia. Przyjmij, że objętość zbiornika mimo ogrzania nie ulega zmianie. Nr zadania Wypełnia Maks. liczba pkt egzaminator! Uzyskana liczba pkt
12 12 Egzamin maturalny z fizyki i astronomii Zadanie 21. Energia wiązania (4 pkt) Wykres przedstawia przybliżoną zależność energii wiązania jądra przypadającej na jeden nukleon od liczby masowej jądra (2 pkt) Oblicz wartość energii wiązania jądra izotopu radonu (Rn) zawierającego 86 protonów i 134 neutrony. Wynik podaj w megaelektronowoltach (2 pkt) Wyjaśnij krótko pojęcie jądrowego niedoboru masy ( deficytu masy ). Zapisz formułę matematyczną pozwalającą obliczyć wartość niedoboru masy, jeśli znana jest energia wiązania jądra. Nr zadania Wypełnia Maks. liczba pkt 2 2 egzaminator! Uzyskana liczba pkt
13 Egzamin maturalny z fizyki i astronomii 13 BRUDNOPIS
EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MFA-P1_1P-092 EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII MAJ ROK 2009 POZIOM PODSTAWOWY Czas pracy 120 minut
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-R1A1P-062 POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 14
Zadanie 18. Współczynnik sprężystości (4 pkt) Masz do dyspozycji statyw, sprężynę, linijkę oraz ciężarek o znanej masie z uchwytem.
Przykładowy zestaw zadań z fizyki i astronomii Poziom podstawowy 11 Zadanie 18. Współczynnik sprężystości (4 pkt) Masz do dyspozycji statyw, sprężynę, linijkę oraz ciężarek o znanej masie z uchwytem. 18.1
EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII
Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII MFA-R1A1P-062 POZIOM ROZSZERZONY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny
EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII
Miejsce na naklejkę z kodem szkoły dysleksja MFA-R1_1P-072 EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY MAJ ROK 2007 Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny
MATERIAŁ DIAGNOSTYCZNY Z FIZYKI I ASTRONOMII
Miejsce na naklejkę z kodem szkoły dysleksja MATERIAŁ DIAGNOSTYCZNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 13
od maja 2007 roku FIZYKA I ASTRONOMIA
Aneks do informatora maturalnego od maja 007 roku FIZYKA I ASTRONOMIA Warszawa 006 Opracowano w Centralnej Komisji Egzaminacyjnej we współpracy z okręgowymi komisjami egzaminacyjnymi IV. STRUKTURA I FORMA
od maja 2007 roku FIZYKA I ASTRONOMIA
Aneks do informatora maturalnego od maja 007 roku FIZYKA I ASTRONOMIA Warszawa 006 Opracowano w Centralnej Komisji Egzaminacyjnej we współpracy z okręgowymi komisjami egzaminacyjnymi IV. STRUKTURA I FORMA
ZADANIA MATURALNE Z FIZYKI I ASTRONOMII
ZADANIA ZAMKNIĘTE W zadaniach od 1. do 10. wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź. Zadanie 1. (1 pkt) Samochód porusza się po prostoliniowym odcinku autostrady. Drogę przebytą
ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY LISTOPAD 01 Czas pracy: 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 12 stron. Ewentualny
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron (zadania
ARKUSZ EGZAMINACYJNY Z FIZYKI i ASTRONOMII
(Wypełnia kandydat przed rozpoczęciem pracy) KOD KANDYDATA ARKUSZ EGZAMINACYJNY Z FIZYKI i ASTRONOMII Instrukcja dla zdającego Czas pracy 120 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 12 stron.
MATERIAŁ DIAGNOSTYCZNY Z FIZYKI I ASTRONOMII
Miejsce na naklejkę z kodem szkoły dysleksja MATERIAŁ DIAGNOSTYCZNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15
PRÓBNY EGZAMIN MATURALNY Z FIZYKI
Miejsce na naklejkę z kodem (Wpisuje zdający przed rozpoczęciem pracy) KOD ZDAJĄCEGO OKRĘGOWA K O M I S J A EGZAMINACYJNA w KRAKOWIE PRÓBNY EGZAMIN MATURALNY Z FIZYKI Czas pracy 90 minut Informacje 1.
ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA
Miejsce na identyfikację szkoły AKUSZ PÓBNEJ MATUY Z OPEONEM FIZYKA I ASTONOMIA Instrukcja dla zdającego POZIOM PODSTAWOWY Czas pracy: 120 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 10 stron (zadania
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-072 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 2007 Czas pracy 180 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny
PRÓBNY EGZAMIN MATURALNY Z ZAMKOREM FIZYKA I ASTRONOMIA. Styczeń 2013 POZIOM ROZSZERZONY
PRÓBNY EGZAMIN MATURALNY Z ZAMKOREM FIZYKA I ASTRONOMIA Styczeń 2013 POZIOM ROZSZERZONY 1. Sprawdź, czy arkusz egzaminacyjny zawiera 10 stron (zadania 1 6). Ewentualny brak zgłoś przewodniczącemu zespołu
ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA
Miejsce na identyfikację szkoły AKUSZ PÓBNEJ MATUY Z OPEONEM FIZYKA I ASTONOMIA POZIOM PODSTAWOWY LISTOPAD 2012 Czas pracy: 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-R1A1P-052 POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15
PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII
Miejsce na naklejkę z kodem szkoły dysleksja PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera
ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA POZIOM PODSTAWOWY LISTOPAD 2013 Instrukcja dla zdającego Czas pracy: 120 minut 1. Sprawdź, czy arkusz egzaminacyjny
WOJEWÓDZKI KONKURS FIZYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS FIZYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2018/2019 08.03.2019 R. 1. Test konkursowy zawiera 14 zadań. Są to zadania zamknięte i otwarte. Na ich
EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII
Miejce na naklejkę z kodem zkoły dylekja MFA-PAP-06 EGZAMIN MAURALNY Z FIZYKI I ASRONOMII POZIOM PODSAWOWY Cza pracy 0 minut Intrukcja dla zdającego. Sprawdź, czy arkuz egzaminacyjny zawiera 3 tron (zadania
Stopień opanowania umiejętności sprawdzanych na egzaminie maturalnym z fizyki i astronomii w województwie pomorskim w sesji wiosennej 2006 roku
Stopień opanowania umiejętności sprawdzanych na egzaminie maturalnym z fizyki i astronomii w województwie pomorskim w sesji wiosennej 2006 roku Zadania egzaminacyjne zawarte w arkuszu I sprawdzały wiedzę
ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY LISTOPAD 2013 Czas pracy: 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny
Okręgowa Komisja Egzaminacyjna w Gdańsku Wydział Badań i Analiz
Stopień opanowania umiejętności sprawdzanych na egzaminie maturalnym z fizyki i astronomii w województwie kujawsko-pomorskim w sesji wiosennej 2006 roku Zadania egzaminacyjne zawarte w arkuszu I sprawdzały
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-P1A1P-062 POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 14
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 2009 Czas pracy 180 minut Instrukcja
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Instrukcja dla zdającego Czas pracy 180
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron
PRÓBNY EGZAMIN MATURALNY Z FIZYKI Z ASTRONOMIĄ
Wpisuje zdający przed rozpoczęciem pracy PESEL ZDAJĄCEGO Miejsce na nalepkę z kodem szkoły Instrukcja dla zdającego PRÓBNY EGZAMIN MATURALNY Z FIZYKI Z ASTRONOMIĄ Arkusz II (dla poziomu rozszerzonego)
MATERIAŁ DIAGNOSTYCZNY Z MATEMATYKI
dysleksja MATERIAŁ DIAGNOSTYCZNY Z MATEMATYKI Arkusz II POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla ucznia 1. Sprawdź, czy arkusz zawiera 12 ponumerowanych stron. Ewentualny brak zgłoś przewodniczącemu
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-P1A1P-061 POZIOM PODSTAWOWY Czas pracy 10 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1 stron.
WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2017/2018 ETAP III FINAŁ
WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2017/2018 ETAP III FINAŁ Czas rozwiązywania zadań 90 minut IMIĘ I NAZWISKO UCZNIA (wpisuje komisja konkursowa po rozkodowaniu pracy!) KOD UCZNIA:
14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (od początku do grawitacji)
Włodzimierz Wolczyński 14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY (od początku do grawitacji) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 2008 Czas pracy 180 minut Instrukcja
Aktualizacja, maj 2008 rok
1 00015 Mechanika nieba C Dane osobowe właściciela arkusza 00015 Mechanika nieba C Arkusz I i II Czas pracy 120/150 minut Instrukcja dla zdającego 1. Proszę sprawdzić, czy arkusz egzaminacyjny zawiera
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Instrukcja dla zdającego Czas pracy 180
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Miejsce na naklejkę ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU
EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII
Miejsce na naklejk z kodem szko y dysleksja MFA-P1A1P-062 EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R1_1P-091 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY STYCZEŃ ROK 2009 Czas pracy 180 minut
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R1_1P-091 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla
POZIOM PODSTAWOWY 18 MAJA 2017
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY
LUBELSKA PRÓBA PRZED MATURĄ 2019
1 MATEMATYKA - poziom podstawowy klasa 1 MAJ 2019 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
UZUPEŁNIA ZDAJĄCY miejsce na naklejkę
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9 maja 2017
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY MFA-P1_1P-082 MAJ ROK 2008 Czas pracy 120 minut
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja
UZUPEŁNIA ZDAJĄCY miejsce na naklejkę
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9 maja 2017
ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY LISTOPAD 2010 Instrukcja dla zdającego Czas pracy 150 minut 1. Sprawdź, czy arkusz egzaminacyjny
EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 13 stron (zadania
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od 1. do 5. są podane 4 odpowiedzi:
LUBELSKA PRÓBA PRZED MATURĄ klasa 2b
MATEMATYKA materiał ćwiczeniowy CZERWIEC 0 Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 4 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach od do są podane
PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII
Miejsce na naklejkę z kodem szkoły dysleksja PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera
KOD UCZNIA KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW III ETAP WOJEWÓDZKI. 09 lutego 2015
KOD UCZNIA KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW III ETAP WOJEWÓDZKI 09 lutego 2015 Ważne informacje: 1. Masz 120 minut na rozwiązanie wszystkich zadań. 2. Zapisuj szczegółowe obliczenia i komentarze
KONKURS MATEMATYCZNO FIZYCZNY 26 listopada 2009 r. Klasa II
...... imię i nazwisko ucznia... szkoła KONKURS MATEMATYCZNO FIZYCZNY 26 listopada 2009 r. Klasa II... ilość punktów Drogi uczniu! Przed Tobą zestaw 14 zadań. Pierwsze 10 to zadania zamknięte. Rozwiązanie
FIZYKA I ASTRONOMIA. Matura z Kwazarem. Życzymy powodzenia!
FIZYKA I ASTRONOMIA Matura z Kwazarem ARKUSZ PRÓBNEJ MATURY FIZYKA I ASTRONOMIA POZIOM PODSTAWOWY POZIOM PODSTAWOWY P00201 Instrukcje dla zdającego: 1. Sprawdź, czy arkusz egzaminacyjny zawiera 12 stron
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI Instrukcja
Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL We współpracy PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera
zadania zamknięte W zadaniach od 1. do 10. wybierz i zaznacz jedną poprawną odpowiedź.
zadania zamknięte W zadaniach od 1. do 10. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (1 p.) Wybierz ten zestaw wielkości fizycznych, który zawiera wyłącznie wielkości skalarne. a. ciśnienie,
MATERIAŁ DIAGNOSTYCZNY Z FIZYKI I ASTRONOMII
dysleksja MATERIAŁ DIAGNOSTYCZNY Z FIZYKI I ASTRONOMII Arkusz II POZIOM ROZSZERZONY Czas pracy 120 minut Instrukcja dla ucznia 1. Sprawdź, czy arkusz zawiera 14 ponumerowanych stron. Ewentualny brak zgłoś
Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI We współpracy z POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny
WOJEWÓDZKI KONKURS FIZYCZNY
Kod ucznia Punktacja za zadania Zadanie Zadanie Zadanie Zadanie Zadanie Zadanie Zadanie Razem 1. 2. 3. 4. 5. 6. 7. 3 p. 4 p. 6 p. 6 p. 7 p. 7 p. 7 p. 40 p. WOJEWÓDZKI KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW
POZIOM PODSTAWOWY 20 MAJA 2019
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 213 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY
LUBELSKA PRÓBA PRZED MATURĄ poziom podstawowy 1 MATEMATYKA LUTY Instrukcja dla zdającego. Czas pracy: 170 minut
LUBELSKA PRÓBA PRZED MATURĄ poziom podstawowy MATEMATYKA LUTY 0 Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 4 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3.
EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII
Miejsce na naklejkę EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY Instrukcja dla zdającego Czas pracy 150 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 12 stron (zadania 1 5). Ewentualny
LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 2 Klasa 2
Klasa POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla piszącego. Sprawdź, czy arkusz zawiera 8 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach od. do 5.
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. są podane 4 odpowiedzi:
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 200 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas pracy 120 minut Instrukcja
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-P1A1P-052 POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 13
LUBELSKA PRÓBA PRZED MATURĄ 2013
LUBELSKA PRÓBA PRZED MATURĄ 013 MATEMATYKA - poziom podstawowy MAJ 013 KLASA I Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron.. Rozwiązania zadań i odpowiedzi zamieść
POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut
POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut Klasa Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI
A-4 ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 15 stron. W zadaniach 1. do 0. są podane 4 odpowiedzi: A, B, C, D, z
PRÓBNY EGZAMIN MATURALNY Z ZAMKOREM FIZYKA I ASTRONOMIA. Marzec 2012 POZIOM PODSTAWOWY
PRÓBNY EGZAMIN MATURALNY Z ZAMKOREM FIZYKA I ASTRONOMIA Marzec 2012 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera 11 stron (zadania 1 18). Ewentualny brak zgłoś przewodniczącemu zespołu
00013 Mechanika nieba A
1 00013 Mechanika nieba A Dane osobowe właściciela arkusza 00013 Mechanika nieba A Czas pracy 90/150 minut Instrukcja dla zdającego 1. Proszę sprawdzić, czy arkusz egzaminacyjny zawiera 10 stron. Ewentualny
LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 1 Klasa 1
Klasa 1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 18 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach
RAPORT Z EGZAMINU MATURALNEGO
BIULETYN INFORMACYJNY OKRĘGOWEJ KOMISJI EGZAMINACYJNEJ Okręgowa Komisja Egzaminacyjna w Krakowie: Al. F. Focha 39, 30 119 Kraków tel. (012) 61 81 201, 202, 203 fax: (012) 61 81 200 e-mail: oke@oke.krakow.pl
EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII
Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII MFA-P1A1P-061 POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI LISTOPAD 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego. Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.
WOJEWÓDZKI KONKURS FIZYCZNY [ETAP WOJEWÓDZKI CZĘŚĆ I] ROK SZKOLNY 2010/2011 Czas trwania: 90 minut
MIEJSCE NA KOD UCZESNIKA KONKURSU WOJEWÓDZKI KONKURS FIZYCZNY [ETAP WOJEWÓDZKI CZĘŚĆ I] ROK SZKOLNY 2010/2011 Czas trwania: 90 minut Część pierwsza zawiera 6 zadań otwartych, za które możesz otrzymać maksymalnie
Wojewódzki Konkurs Fizyczny dla uczniów dotychczasowych gimnazjów i klas dotychczasowych gimnazjów województwa wielkopolskiego ETAP WOJEWÓDZKI
Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Fizyczny dla uczniów dotychczasowych gimnazjów i klas ETAP WOJEWÓDZKI Rok szkolny 2017/2018 Instrukcja dla ucznia 1. Sprawdź, czy test
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM, ROK SZKOLNY 2015/2016, ETAP REJONOWY
WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2015/2016 IMIĘ I NAZWISKO UCZNIA wpisuje komisja konkursowa po rozkodowaniu pracy! KOD UCZNIA: ETAP II REJONOWY Informacje: 1. Czas rozwiązywania
EGZAMIN MATURALNY Z FIZYKI POZIOM ROZSZERZONY
Nowiny gazeta codzienna 2 LO w Dębicy UZUPEŁNIA ZDAJĄCY KOD PESEL miejsce na naklejkę MFA 2017 A EGZAMIN MATURALNY Z FIZYKI POZIOM ROZSZERZONY PRZYKŁADOWY ARKUSZ EGZAMINACYJNY DATA: marzec 2017 CZAS PRACY:
EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII
Miejsce na naklejkę z kodem szkoły dysleksja MFA-P1_1P-072 EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY MAJ ROK 2007 Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny
LUBELSKA PRÓBA PRZED MATURĄ 2019
1 MATEMATYKA - poziom podstawowy klasa 1 MAJ 2019 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
Czas pracy 170 minut
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 010 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 15 stron.. W zadaniach od 1. do 0. są podane 4 odpowiedzi: