METHOD FOR DETERMINATION OF CONFIGURATION FACTORS IN RADIATION HEAT TRANSFER. Mirosław ŻUKOWSKI
|
|
- Roman Białek
- 8 lat temu
- Przeglądów:
Transkrypt
1 The Jourl of Polsh Socet for Geometr d Egeerg Grphcs Volume 19 (9), METHOD FOR DETERMINATION OF CONFIGURATION FACTORS IN RADIATION HEAT TRANSFER Mrosłw ŻUKOWSKI Blstok Techcl Uverst, Deprtmet of Het Egeerg 45E Wesk st Blstok, Pold eml: mukowsk@p.edu.pl Astrct: The curret pper presets method for estmtg the cofgurto fctor het trsfer rdto uldgs. The umercl procedure c e used to determe ectl ths qutt eclosure wth comple geometr d strog grdet of surfces temperture. A verfcto of the method s lso reported ths work. The umercl results from the preseted method, mplemeted s computer progrm, re compred wth the ltcl soluto. A ver good greemet hs ee foud etwee these two procedures for determto of the cofgurto fctor. The totl error of the method, for the recommeded dest of surfce dvso, s out 1%. Kewords: cofgurto fctor, rdto het trsfer, umercl tegrto. 1 Itroducto I egeerg prctce d reserch, we ofte del wth closed spces tht c e chrctered smmetr of the temperture dstruto o surfces (for emple: rooms wth floor hetg or coolg celg, ehto rooms wth lrge re of glg). The log-wve rdto het trsfer frequetl represets gret prt of the het lce these tpes of eclosures. It s well kow tht the rdtve flu emtted from rtrr surfce to surfce c e ppromted the followg equto: 4 4 q = σε F θ θ, (1) ( ),,, where: σ = W/m /K 4 the Stef-Boltm costt, ε emssvt of surfces, F, cofgurto fctor, θ solute temperture of emttg surfces. A correct determto of F, fctor s dffcult d tme cosumg prolem for the comple room geometr. The cofgurto fctors c e clculted etwee perso d the surroudg surfces or ol etwee surfces. The frst ssue ws clerl referred Ro d couthors [1], Oek et l. [], d Kuh et l. [3]. I ths pper ol the secod prolem s cosdered. The et chpter presets method for determto of the cofgurto fctor usg umercl tegrto. Descrpto of the method The fudmetl formul for cofgurto fctor etwee sotherml d lckod surfces d s gve : F, = A dada, () πr A A, where: A re of the rdtve surfce, R legth of the vector (see Fg. 1), β polr gle etwee vector R d ut orml to the surfce. ISSN / PLN PTGGI
2 88 M. Żukowsk: Method for Determto of Cofgurto Fctors Rdto Het Trsfer We c ppromte Eq. () for the umercl tegrto form Eq. (3) dvdg d surfces to fte m cells A. Z r. R r. β, Y r β, X Fg. 1: Geometrc reltos for determg of the cofgurto fctor. m m,, F =, A ν, A A, (3) = 1 = 1 πr, where: v, vslt fctor (v, = 1 f da s vsle to da d v, = otherwse). The frst step of the procedure cludes: detfg sotherml prts of the eclosure d the cuttg these ples to smll detcl su-surfces. Net, the cose of β gle for ech pr of cells s determed through utomtc geerto of the tegrto pots coordtes. The ceter pot of the Crtes coordte sstem c e plced corer of the tested spce. Fg. 1 shows the geometrcl reltos for evlutg ( ) d ( ) gles f the frst su-surfce s stuted o XOY ple d the secod o YOZ ple. T. 1 cots the lgerc reltos for clcultg of tht c e emploed Eq. 3. Posto O O O O O O O O O O Tle 1. The reltos for determg, d,,, The lst step for clcultg cofgurto fctor of surfce cludes summg of the prtculr cofgurto fctors. These procedures re mplemeted s computer code.
3 The Jourl of Polsh Socet for Geometr d Egeerg Grphcs Volume 19 (9), Verfcto of the method The ccurc of developed method s checked comprso wth clculto results from ltcl formuls, whch re preseted T. [4, pp ]. The other reltos for clcultg cofgurto fctors for comple rrgemet of surfces hve tke from [5, p. 199]. c Tle. The cofgurto fctor for sc rrgemet of sotherml surfces [4]. A Smols A A A h F, ( )( ) h 1 + h + h h h l rctg rctg ( ) + π + + h h h h 1 + h + h + rctg + rctg π + h + h 1 1 rc tg c rc tg c rctg l( d1d d3 ) π c + c 4π d 1 ( + )( + c ) ( + + c ) ( + + c ) c = d = ( + + c ) ( + )( + c ) d3 = ( + c )( + c ) It s cosdered tpcl room wth floor hetg sstem wth surfce temperture grdet, show Fg., wth = ples. The sotherml surfces re dvded o m m cells. c temperture grdet Fg. : The detled shpe of the tested room. The umer of su-surfces s rgg etwee 4 d 4 per oe ple. The results of clcultos re ccurte, f the followg relto (clled summto rule) s equl to 1: = 1 = 1 F 1. (4), = It s troduced f d f fctors, whch re descred elow equtos. The ccurc creses f these fctors (verge vlue clculted for the ll ples) ted to (Fg. 3). f = F,,,, f = F F. (5) = 1 = 1 = 1 = 1 ISSN / PLN PTGGI
4 9 M. Żukowsk: Method for Determto of Cofgurto Fctors Rdto Het Trsfer,7 f,6,5,4,3,,1 m m 1 3 4,8 f,7,6,5,4,3,,1 m m Fg. 3: The depedece of f d f fctors o the umer of cells. From Fg. 3, we c e cocluded, tht the optml umer of su-surfces s 15. The totl error of umercl procedure, for cosderg cse, osclltes out 1%. Icresg the umer of m m cells ove 15 s ot recommeded the uthor for the tpcl cses. 4 Cocludg remrks The clcultos, sed o trdtol equtos, gve ver good ccurc for determto of the cofgurto fctors. But ltcl method s complcted d tme cosumg for more comple geometr. The ove dsdvtge prctcll elmtes ths procedure for lg 3-D oects wth strog temperture grdets of surfces. The method, whch s preseted the curret pper, llows to utomtcll geerte cofgurto fctors for eclosure geometr. We c ot good ccurc f the umer of su-surfces s 15. The totl error of ths umercl estmto s equl out 1% for the optml dest of surfce sudvso. Ackowledgemets Ths vestgto ws crred out uder grts of Blstok Techcl Uverst. Refereces [1]. Ro G. et l.: Algorthms for the clculto of the vew fctors etwee hum od d rectgulr surfces prllelepped evromets. Eerg d Buldgs, Vol. 19 (1), pp. 51-6, 199. []. Kuh K. et l.: Predctg hum geometr-relted fctors for detled rdto lss door spces. I: Proceedgs of the 7 th Itertol IBPSA Coferece Edhove, Netherlds, August 11-14, 3. [3]. Oek Y. et l.: Numercl clculto of gle fctors etwee hum od d rectgulr ples. I: Proceedgs of the 7 th Itertol Coferece o Ar Dstruto Rooms ROOMVENT, Aw HB, ed. Elsever, Amsterdm,. [4]. Wśewsk S. et l.: Wm cepł. Wdwctw Nukowo-Techce, Wrsw. Wd. IV, [5]. Kostowsk E.: Prepłw cepł. Wdwctwo Poltechk Śląske. Glwce, Wd. I,.
5 The Jourl of Polsh Socet for Geometr d Egeerg Grphcs Volume 19 (9), METODA OBLICZANIA STOSUNKÓW KONFIGURACJI PŁASZ- CZYZN IZOTERMICZNYCH STOSOWANA W RADIACYJNEJ WY- MIANIE CIEPŁA W prktce żerske mm cęsto do ce pomescem chrkteruącm sę dużą smetrą tempertur powerch pregród (p. w prpdku stosow ogrew podłogowego lu chłodee suftowe, sloów wstwowch dużm preskleem). Chcąc w sposó dokłd dokoć l komfortu ceplego or uwględć promeowe długoflowe w cłkowtm lse cepł, musm olcć stosuk kofgurc płsc otermcch wch róweż współckm kofgurc. Moż to ucć podstwe worów lu omogrmów, gd roptruem proste ukłd geometrce. Ntomst stosowe metod ltce lu grfce do l wm cepł drode promeow długoflowego w pomescech o łożom kstłce est skomplkowe rdo prcochłoe. W referce propoowo metodę olc wrtośc współck kofgurc uącą umercm rowąu trdcego rów cłkowego. W celu określe dokłdośc preetowe metod porówo reultt smulc komputerowe wkm dokłdm otrmm podstwe olceń wkorstem worów ltcch. Pr stosowu optmle wrtośc gęstośc podłu płsc mksml łąd umercego oscow wos około 1%. ISSN / PLN PTGGI
Using average-variance number system in calculation of a synthetic development measure
dr ż. Kesr Nered Istytut Ifortyk w Zrządzu Uwersytet Szczecńsk kesr@szfr.uv.szczec.pl dr ż. Mrusz Borwsk Istytut Grfk Koputerowej Systeów Multedlych Poltechk Szczeńsk rusz.orwsk@w.ps.pl Usg verge-vrce
Gamma3. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
Gmm3 Nottios Trditiol me Geerlized icomplete gmm fuctio Trditiol ottio, z, z Mthemtic StdrdForm ottio Gmm, z, z Primry defiitio 06.07.0.000.0, z, z z z t t t Specific vlues Specilized vlues 06.07.03.000.0,
ANALYSIS OF RESONANCE PHENOMENA IN COMPLEX FRACTIONAL ORDER CIRCUITS ANALIZA ZJAWISK REZONANSOWYCH W ZŁOŻONYCH OBWODACH UŁAMKOWEGO RZĘDU
EEKTRYKA 06 ezyt (38) Ro XII Agez JAKUBOWSKA-CISEK, Juz WACAK Sle Uverty of Techology ANAYSIS OF RESONANCE PHENOMENA IN COMPEX FRACTIONA ORDER CIRCUITS Sury. Aly of the reoce pheoe coplex crcut of the
Chapter 1: Review Exercises
Chpter : Review Eercises Chpter : Review Eercises - Evlute the following integrls:..... 6. 8. ( + ) 9. +.. ( + ). ( ). 8. 9....... 6. 7. (csc + + ) sin tn 6. ( )( + ) 7. ) 8.. + ( + )( ). ( ) sin sin sec
CS 6170: Computational Topology, Spring 2019 Lecture 09
CS 6170: Computtionl Topology, Spring 2019 Lecture 09 Topologicl Dt Anlysis for Dt Scientists Dr. Bei Wng School of Computing Scientific Computing nd Imging Institute (SCI) University of Uth www.sci.uth.edu/~beiwng
Logo pole ochronne. 1/2 a. 1/4 a
1/2 1/4 Logo pole ochronne Obszr wokół znku, w obrębie którego nie może się pojwić żdn obc form, zrówno grficzn jk i tekstow to pole ochronne. Do wyznczeni pol ochronnego służy moduł konstrukcyjny o rozmirze
NARZÊDZIA PNEUMATYCZNE
K l uc z uda ro w y 6 1 0 N m 1 /2 3 68 2, 6 k od: MA 2 4 6 0 Z est a w - k l uc z uda ro w y 36 0 N m 1 /2 260 16 4, 3 K l uc z uda ro w y 1 2 8 0 N m 1 /2 k o mpo zyt K l uc z uda ro w y 1 350 N m 1/2
Numerical integration
Numericl integrtion Recll tht Lgrnge interpoltion of f b f (x) = n f (x i )L n,i (x) i=0 }{{} Lgrnge polnomil P n (x) + f (n+1) (ξ(x)) (n + 1)! n (x x i ) i=0 So we cn tke integrl on both sides: f (x)
Algorytm I. Obliczanie wymaganej powierzchni absorpcji
Algorytm I. Oblcne wymgnej powerchn bsorpcj Wsp. prewodnośc olcj λ Zewnętrny wsp. wnn cepł α Prerój ew. olcj d Prerój wew. olcj d Grubość olcj d r Wsp. prenn cepł r α d π d + * ln λ d + α d Wsp. prenn
Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 07 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U s ł u g i s p r z» t a n i a o b i e k t Gó w d y s k i e g o C e n
Instrukcja obiegu i kontroli dokumentów powodujących skutki finansowo-gospodarcze w ZHP Spis treści
C h o r ą g i e w D o l n o l ą s k a Z H P U c h w a ł a n r 2 1 / I X / 2 0 1 5 K o m e n d y C h o r ą g w i D o l n o 6 l ą s k i e j Z H P z d n i a 2 10. 5. 2 0 1 5 r. w s p r a w i e I n s t r u
I n f o r m a c j e n a t e m a t p o d m i o t u k t ó r e m u z a m a w i a j» c y p o w i e r z y łk p o w i e r z y l i p r o w a d z e p o s t p
A d r e s s t r o n y i n t e r n e t o w e j, n a k t ó r e j z a m i e s z c z o n a b d z i e s p e c y f i k a c j a i s t o t n y c h w a r u n k ó w z a m ó w i e n i a ( j e e ld io t y c z y )
kwartalna sprzeda elazek
Modele elowe MODELE NIELINIOWE Prłd. model low elow - orówe). Kwrl sred ele w lch 996-999 wosł: 4 5 6 7 8 9 4 45 5 57 6 64 68 65 68 67 69 7 7 7 75 Wc rogo rec wrł ro 999. Z wres wd, e red jes rosc lec
ZADANIA Z ANALIZY MATEMATYCZNEJ dla I roku kierunku informatyka WSZiB
pro. dr hb. Stisłw Biłs ZADANIA Z ANALIZY MATEMATYCZNEJ I roku kieruku iormtyk WSZiB I. ELEMENTARNE WŁASNOŚCI FUNKCJI. Wyzczyć dziedzię ukcji: 5 7 log[ log 5 6. b c ] d. Wyzczyć przeciwdziedzię ukcji:
Ł Ę Ę ź Ń Ą Ę Ó Ł Ą Ą Ś ć ć ć ć ź Ą Ę Ę Ę Ę ź Ę Ę Ą Ę ć ć ź Ą Ę ć Ł ź ć Ę ć ć Ę Ą ć Ń ć Ę Ś Ś ć Ę Ę Ę Ę Ń ź Ę Ę Ą ź ź ć Ż Ś ź Ń ź ź ź ź ć ź ć ź Ł Ś ć Ł Ę Ę ź Ń Ą Ę ź Ę Ł Ł Ł Ł Ł Ę ć Ń Ę Ń Ę Ł Ł Ł Ł Ł
y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.
The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Eplain your answer, write in complete sentences. 1. Find the derivative of the functions y 7 (b) (a) ( ) y t 1 + t 1 (c)
http://www.viamoda.edu.pl/rekrutacja/studia-podyplomowe_s_37.html
O Strona 1/288 01-07-2016 09:00:13 F Strona 2/288 01-07-2016 09:00:13 E Strona 3/288 01-07-2016 09:00:13 R Strona 4/288 01-07-2016 09:00:13 T Strona 5/288 01-07-2016 09:00:13 A Strona 6/288 01-07-2016
Kurs Komputerowy S System Symboliczny Mathematica
Kurs Komputerowy S System Symboliczny Mathematica Obliczenia numeryczne Dokladnosc i precyzja Precision[wartosc] SetPrecision[wartosc, precyzja] Accuracy[wartosc] SetAccuracy[wartosc, dokladnosc] MachinePrecision
Ł Ś Ą ó ó ó ś ó ó ś ó ó ó ó ó Ó ś ó ś ó ó ś Ó ó Ó ś ó ś ó ó ó Ź ó ó ś ó ó ó ś ó ść ó ó ó Ą ó ś ó ó ó ś śó ó ó ź ó ó ś ó Ź ś ó ć ó ś Ę Ą ó ś óź ó ó ś ó ś Ę ó Ó ź ść ó ó ś ś ś Ó ó ź ó ś Ó ó ó ó ó ó ś Ó ó
PROJEKT I WALIDACJA URZĄDZEŃ POMIAROWYCH
M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X P R O J E K T I W A L I D A C J A U R Z Ą D Z E P O M I A R O W Y C H a S I Y W L I N I E I K Ą T A W Y C H Y L E N I A L I
Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 11 Promieniowanie 3 11.1 Promieniowanie dipolowe............... 3 11
Chorągiew Dolnośląska ZHP 1. Zarządzenia i informacje 1.1. Zarządzenia
C h o r ą g i e w D o l n o l ą s k a Z H P W r o c ł a w, 3 0 l i s t o p a d a2 0 1 4 r. Z w i ą z e k H a r c e r s t w a P o l s k i e g o K o m e n d a n t C h o r ą g w i D o l n o 6 l ą s k i e
Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 0 33 2 0 1 7 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U s ł u g i s p r z» t a n i a o b i e k t ó w G d y s k i e g o C e
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Rozdział 9 Przegląd niektórych danych doświadczalnych o produkcji hadronów. Rozpraszanie elastyczne. Rozkłady krotności
Rozdział 9 Przegląd niektórych danych doświadczalnych o produkcji hadronów. Rozpraszanie elastyczne. Rozkłady krotności Krotności hadronów a + b c 1 + c +...+ c i +...+ c N Reakcje ekskluzywne: wszystkie
Rachunek ró»niczkowy funkcji jednej zmiennej
Lista Nr 5 Rachunek ró»niczkowy funkcji jednej zmiennej 5.0. Obliczanie pochodnej funkcji Pochodne funkcji podstawowych. f() = α f () = α α. f() = log a f () = ln a '. f() = ln f () = 3. f() = a f () =
SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA
Z n a k s p r a w y GC S D Z P I 2 7 1 0 1 42 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e p r a c p i e l g n a c y j n o r e n o w a c y j n
00 O O PO y N O N N N N. c O, O p O,' W. W pn. Nao Wr 3o y y 6x C 0 : > M1. 0 " C " 1 CD. 4. r' m < xmi. k b z a C 4. Inv z0. 1 wxo. XNC7 nv22.
U V V, VD,, P M I V IV,,',. 6. t - " < : > M. " " D.. < ' < ' MI k I E k b " ` '< " l = V > < t `'"' l Lf ) 7 ` `-]! II. b t9 F
Ę Ą Ę Ł Ł Ę ż Ł ż Ą ż ż ż ć ż ć Ł ż Ę Ą Ę Ł ż Ó ć ŚĆ Ś Ś Ń ż ż Ż Ć Ń Ę Ę ÓĘ ć ż ż Ó Ę Ó ć ć ż ż ż ż ż Ą ć Ł ż Ó ć ć Ł Ś ć Ż Ź Ś ć ć ż Ę ż ć ć ż ć Ą ż Ś Ł Ł ż ć ż ć Ą ż ć Ś ż ż ż ć ć ć ć Ć ż ć ż ć ż ż ż
Ó Ć Ó Ż Ó Ó Ó Ó Ż Ó Ę Ę Ę Ó Ź Ź Ę Ź Ź Ó Ź Ż Ó Ó Ę Ó Ń Ą Ó Ą Ź Ź Ó Ę Ź Ó Ż Ń Ź Ż Ż Ź Ę Ż Ł Ó Ź Ó Ń Ż Ę Ó Ź Ó Ż Ó Ć Ę Ó Ó Ó Ć Ż Ę Ę Ó ÓĘ Ż Ź Ż Ę Ó Ź Ź Ą Ó Ę Ź Ó Ź Ł Ń Ę Ę Ń Ó Ó Ę Ó Ó Ź Ż Ó Ó Ź Ź Ó Ó Ż Ó
Oscillating scalar fields and the Hubble tension: a solution with novel features
Oscllatg scalar felds ad the Hule teso: a soluto wth ovel features rtcal/sold) ad log zc (horzotal/dashed) as a fucto of the axo mass, e cotours for = ad the lack for = 3. Sce H0 = 0h km/s/mpc = tetal
PONIEDZIAŁEK piątek, 8 stycznia 2016
Rok szkolny 215/216 Aktualizacja 216 godz. 2: PONEDZAŁEK piątek, 8 stycznia 216 KLA Chemia KW J.angielski MC WO, rozsz.,, ED, WO, rozsz.,,, ED, Historia, RR, HS, JO, HS, EŁ, EDB, RB, gr.1, AR, s.15 gr.2,
δ δ δ 1 ε δ δ δ 1 ε ε δ δ δ ε ε = T T a b c 1 = T = T = T
M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 8 9 6-7 7 X M O D E L O W A N I E P A S Z C Z Y Z N B A Z O W Y C H K O R P U S W N A P O D S T A W I E P O M W S P R Z D N O C I O W Y C H
DOPASOWANIE ZALEŻNOŚCI LINIOWEJ DO WYNIKÓW POMIARÓW
DOPAOWANIE ZALEŻNOŚCI LINIOWEJ DO WYNIKÓW POMIARÓW Jedm stotch gdeń l dch pomroch jest dopsoe leżośc teoretcej do kó pomró. Dotc oo stucj gd dokoo ser pomró pr elkośc które są e soą poąe leżoścą f... m
Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 0 2 8 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e ro b ó t b u d o w l a n y c h w b u d y n k u H
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
Ł Ł Ś Ś ź Ć ź ź ź Ń Ł Ż Ś ź Ę Ż Ń Ę ź ź ź Ę ź Ł Ę ź Ę Ę Ę ź ź Ś ź ź Ł Ł Ź Ę Ł Ś ź Ę Ę Ę ń ź Ą ó Ę ĘĘ ź Ę ź Ą Ł Ę Ł Ą ź Ę ó Ź Ś ź Ń Ę Ę ĘĘ Ą Ś Ę Ł Ę Ć Ź ź Ź Ę Ę Ź ź Ź Ź Ź Ł Ż Ł Ę ź Ż Ź ź Ź Ź Ź Ź Ą Ż ŚĆ
Ł Ł ń ń Ą ń ń Ś ń Ź ń ń ń Ż ń Ł ń Ś ń ń ń Ą Ą Ł Ż ń ń Ś ń Ź ń ń ć Ź ń ć Ś ć ć ń Ź ń Ą Ł Ł Ę ĘĘ Ż Ź ć Ł ń Ś Ą Ł Ł Ł Ą Ę Ę ń Ń ń Ź ń ć Ż ń Ż Ś ń Ń ń Ń Ź Ą ć Ł ń ć ć Ź Ą Ą Ą Ź Ą Ł Ą Ś ń ń Ś Ś Ą Ć ŚĆ Ł ć Ż
Ą Ń Ś Ę ź Ś Ś ź ź Ś Ś ź Ł Ś Ś Ś Ł ĘĘ Ś Ś Ś ć Ś Ś Ś Ś Ł Ó Ś Ł ć Ś Ść Ś Ś Ś Ń ć Ś Ł Ś Ź Ą ć ć Ł ź Ś Ą Ś Ł Ą Ś Ś Ą Ś Ś ź Ś ć Ł ć ć Ł Ł ć Ź ć ć Ś ć ź Ź ć Ś ć ć ć Ś Ą Ś Ś Ś ć Ś Ść Ś ć Ł ć Ś ć Ś Ś Ń ć ć Ł Ś
Ź Ę Ę Ś Ś Ś ć Ę ć Ś ć Ź Ż Ś ć Ż Ź Ż Ą Ż Ę Ś Ź Ę Ź Ż Ó Ś ć ć Ś Ż Ć ź Ś Ń Ź ć Ó ź Ś Ń ź Ń Ź Ź ź Ż Ź Ź Ź Ź Ż Ź ć Ż Ę ź Ę ź ć Ń ć ć ć ć Ź Ę Ą ć Ę ć Ń ć ć Ź Ż ć Ó Ó Ó Ż ć Ó Ż Ę Ą Ź Ó Ń Ł ź ź Ń ć ć Ż ć Ś Ą
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA
Z n a k s p r a w y G C S D Z P I 2 7 1 0 2 02 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A U s ł u g a d r u k o w a n i a d l a p o t r z e b G d y s k i e g o
FUZZY SUPPORT VECTOR MACHINES BASED ON DENSITY ESTIMATION WITH GAUSSIAN MIXTURE FOR MULTICLASS PROBLEMS
STUDIA INFORATICA 2009 Volume 30 Number 2A (83 Jerzy ARTYNA Uwersytet Jagellońsk, Istytut Iformatyk FUZZY SUPPORT VECTOR ACHINES BASED ON DENSITY ESTIATION WITH GAUSSIAN IXTURE FOR ULTICLASS PROBLES Summary.
, , , , 0
S T E R O W N I K G R E E N M I L L A Q U A S Y S T E M 2 4 V 4 S E K C J I G B 6 9 6 4 C, 8 S E K C J I G B 6 9 6 8 C I n s t r u k c j a i n s t a l a c j i i o b s ł u g i P r z e d r o z p o c z ę
Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH
Kierunek Elektronika i Telekomunikacja, Studia II stopnia Specjalność: Systemy wbudowane Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH Zagadnienia
SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA
Z a m a w i a j» c y G D Y S K I O R O D E K S P O R T U I R E K R E A C J I J E D N O S T K A B U D E T O W A 8 1 5 3 8 G d y n i a, u l O l i m p i j s k a 5k 9 Z n a k s p r a w y G O S I R D Z P I
e mail: i metodami analitycznymi.
Budownctwo Archtektura () (04) 4-5 w Eurokodu przy kon owych e mal: w.baran@po.opole.pl Streszczene: W pracy opsano rodzaje analz oblczenowych przy projektowanu ch dla dowolneo sposobu znych na metodam
SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA
Z n a k s p r a w y G C S D Z P I 2 7 1 0 1 12 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A D o s t a w a ( u d o s t p n i e n i e ) a g r e g a t u p r» d o t w
u l. W i d o k 8 t e l. 2 2 6 9 0 6 9 6 9
T A D E U S Z R O L K E J U T R O B Ę D Z I E L E P I E J T o m o r r o w W i l l B e B e t t e r K a w i a r n i a F a f i k, K r a k ó w, 1 9 9 2 F a f i k C a f e, C r a c o w, 1 9 9 2 W ł a c i c i
Podstawowe dane o pawilonach wystawienniczych
JZD RG O HE FR RE MGZY REHOSE MGZY REHOSE MGZY REHOSE MGZY REHOSE MGZY REHOSE MGZY REHOSE OGRODZEE / BRRER BDYEK DMSRCYJY FR OFFCES PRKG R / GRVE SF / SPH POCZ POS OFFCE POS G ÓE M OGRODZEE / BRRER PRKG
impuls o profilu f(x ) rozchodzący się w kierunku x: harmoniczna fala bieżąca rozchodząca się w kierunku +x: cos
Rów Scrodgr Fucj flow wow rprcj jdo wrow pułp lroów fucj flow sońco sońco sud pocjłu o wodoru rów Scrodgr wprowd rową lro swobod lro w sońcoj sud pocjłu PRZYPOMNINI: Fl bżąc sojąc w pęj sru Hlld, Rsc,
Projekt C-E.N.T.E.R.
Projekt C-E.N.T.E.R. Projekt: Competence, cooperation and communication in the dissemination and exploitation of EU Projects Program: LLP Key Activity 4 Partnerstwo: 14 partnerów z 13 krajów (AT, BE, DE,
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 5 32 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e p r z e g l» d ó w k o n s e r w a c y j n o -
Całkowanie. dx d) x 3 x+ 4 x. + x4 big)dx g) e x 4 3 x +a x b x. dx k) 2x ; x 0. 2x 2 ; x 1. (x 2 +3) 6 j) 6x 2. x 3 +3 dx k) xe x2 dx l) 6 1 x dx
Wydził Mtemtyki Stosownej Zestw zdń nr 5 Akdemi Górniczo-Hutnicz w Krkowie WFiIS, informtyk stosown, I rok Elżbiet Admus 3 listopd 6r. Cłk nieoznczon Cłkownie. Podstwowe metody cłkowni Zdnie. Oblicz cłki:
Before Adam starts work he needs to know where everything is. Maria shows him around the restaurant.
9. PLACE OF WORK MIEJSCE PRACY Before Adam starts work he needs to know where everything is. Maria shows him around the restaurant. Zanim Adam rozpocznie pracę, musi wiedzieć gdzie wszystko jest. Maria
Ź ź Ę Ś Ś Ń ę ę ż Ę ż ę ż ę ż ę ż ż ę ż ż Ń ź ę ę Ę Ć ż Ź Ś ę ż ż ę ż Ź Ó ę Ź ż Ś ż ę ż Ź ę Ę Ź ż ę ę ż Ś ę ę Ó Ś ę Ę ę ę ę Ą Ę Ą Ę Ś ę ż ż Ź ę Ń Ź Ś Ś ę Ź ż Ź ź ę ć Ó ż ż Ę Ó ę ż Ń ż ę Ź ę Ź Ą ę ż ż Źę
Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa
W Z Ó R U M O W Y z a w a r t a w G d y n i w d n i u 2 0 1 4 r po m i d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j i j e d n o s t k a b u d e t o w a ( 8 1-5 3 8 G d y n i a ), l
Układ zasilania automatyki
9 0 Zsilnie z Trnsformtor Odbiory Rozdzielnic Rnn L L L P P NW NW W VM X/P X/ X/ X/ X/ L L L RM KN X/9 X/0 X/ L L L LK LK LK0 RM KN KN LK LK 0. 0. 0 X/ X/ X/ X/ X/9 UX PL, M0 str.,,, str.,,,, teri Kond.
ZESZYTY NAUKOWE NR 10(82) AKADEMII MORSKIEJ W SZCZECINIE. Probabilistic Analysis of Marine Binary Technical Systems Represented by Boolean Models
ISSN 733-8670 ZSZYTY NAUKOW NR 08 AKADMII MORSKIJ W SZCZCINI IV MI DZYNARODOWA KONFRNCJA NAUKOWO-TCHNICZNA X L O - S H I 0 0 6 robablstc Aalyss of Mare Bary Techcal Systems Represeted by Boolea Models
Previously on CSCI 4622
More Naïve Bayes aaace3icbvfba9rafj7ew423vr998obg2gpzkojyh4rcx3ys4lafzbjmjifdototmhoilml+hf/mn3+kl+jkdwtr64gbj+8yl2/ywklhsfircg/dvnp33s796mhdr4+fdj4+o3fvywvorkuqe5zzh0oanjakhwe1ra5zhaf5xvgvn35f62rlvtcyxpnm50awundy1hzwi46jbmgprbtrrvidrg4jre4g07kak+picee6xfgiwvfaltorirucni64eeigkqhpegbwaxglabftpyq4gjbls/hw2ci7tr2xj5ddfmfzwtazj6ubmyddgchbzpf88dmrktfonct6vazputos5zakunhfweow5ukcn+puq8m1ulm7kq+d154pokysx4zgxw4nwq6dw+rcozwnhbuu9et/tgld5cgslazuci1yh1q2ynca/u9ais0kukspulds3xxegvtyfycu8iwk1598e0z2xx/g6ef94ehbpo0d9ok9yiowsvfskh1ix2zcbpsdvaxgww7wj4zdn+he2hogm8xz9s+e7/4cuf/ata==
Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo
POPRAWKA do POLSKIEJ NORMY ICS 29.060.10 PNEN 50182:2002/AC Wprowadza EN 50182:2001/AC:2013, IDT Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo Poprawka do Normy Europejskiej
Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych
Tranzystorowe wzmacniacze OE OB OC na tranzystorach bipolarnych Wzmacniacz jest to urządzenie elektroniczne, którego zadaniem jest : proporcjonalne zwiększenie amplitudy wszystkich składowych widma sygnału
H-TAP. Gwintowniki do stali od 25 ~ 45 HRC. Vol. 2
H-TA Gwintowniki o sti o 25 ~ 45 HRC Vo. 2 czowe fnkcje: H-TA 1 Seri H: o sti o 25 ~ 45 HRC 2 Również o sti nrzęziowych 3 Oksyowne oprw włściwości smrnych 4 St proszkow? Wysok oporność n ściernie H-SFT
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Zestawienie porownawcze najpopularniejszych i darmowych programow GPS. dostepnych na smartfony i tablety
Zesee pre pplres r prr prr r ere, prr pree prr s sep sr ble ; > s r J Ž ˆ š š š š Ÿ š š rr e pr r p Ws ble e p ere ps rps Trs r sr l Dse r r r r r r r r ere ers prr..2 6.2..7 2. 2. 7. 8....2.2 2. 7...2
Ó ź Ó ź Ź Ó Ź Ó Ó Ę Ź Ą Ć Ó Ó Ź Ś Ź ź Ę Ź ŚÓ Ś Ó ź Ó Ę Ź Ó Ó Ó ŚÓ Ź Ó ź ź Ź ź ź Ę Ś ź Ą Ś Ź ź Ę Ł Ś Ź Ś ź ź Ł Ś ź Ś Ś Ś Ę Ę Ł Ł Ą Ś Ę Ą Ę Ź Ę Ę Ó Ś Ę Ń Ś Ć Ś Ś Ó Ś Ę Ę Ł Ą Ę Ą Ś Ź Ć Ó Ł ź Ń Ź Ą ź Ę Ź Ź
Ś Ś Ś ż Ł Ą Ą Ń Ś ż Ś ż Ą ż ż Ó Ź Ź ć ć ż ć Ą ć ć Ś ć ŚÓ ć ć ć ż ź Ł ż Ś Ł Ą Ó ż Ź ż ć Ś Ą Ó ż ć ż ź ż ć Ś ć Ź ż Ń Ł Ł ż ż Ą Ś ź ż ć ć Ł Ą Ą Ś Ś ż ć Ó Ó Ś Ź ź ź ż Ą ż ż ć Ść Ó ż ć Ś ź Ś Ś Ł Ś Ł Ł Ł Ł Ł
Ń ŚÓ Ź Ś ź Ś Ś ć Ą ć Ź ć ć Ś ć Ś ź ć Ś ź Ś ć ź ć Ś ź Ę ć ć Ś Ś Ą ź Ś Ś Ś Ś ć Ś Ś Ś ź Ś Ś Ś Ś Ż ć Ś Ć ć ć ź ć Ś Ś Ś ŚĆ Ś ź Ś Ś ć ć ć Ś Ć ć ć Ć Ś Ś Ś ŚĆ Ś Ś Ś ć ć ź Ś Ż Ś Ś Ś Ś Ś Ś Ą Ż Ś Ś Ś Ś Ś ć ć Ó ź
ó ś ń Ś Ó Ó Ó Ó ś Ó ż Ó Ś Ę Ó ó Ó ó Ś Ó óó Ś ś Ó ć Ź Ó ś ś ż ó ó ś Ó Ó ń Ś ś Ó ń ż ś ś Ó Ę Ó Ó Ó ś ó ś Ó Ś Ó Ś ń ń Ó ó ń ż ś Ó Ó ż ń Ś ó ż ń Ó Ś ż ń Ś ść ż ó ń ż Ś ż Ś Ś Ś Ó ń ś Ś Ó ń Ó Ą Ó Ą ć ż Ą ś ń
ń ń ś Ś Ó Ó ń ń ść ś ś ś ś ś ś ś ś ć ś ść ś ś ć ś Ż ć ś ś ś ść ć ś ń ć Ź Ż ń ń ś Ż Ą ć ń ń ś śó Ż ś ć Ź ś Ó ś Ż ś Ź ś ś ś Ż ś ś ś Ź ś ń ś Ę ć ś ś ń ś ś ś ń Ż Ż ś ś ś ń ć ć Ż ś ń Ż ś ń Ą ś ś ć ś ś Ż ś ś
Ń Ł Ń Ó Ł Ę Ó Ó Ę ĘŚ Ó ÓŚ Ó Ę Ć Ó Ć Ę Ł Ó Ę Ć Ś Ż Ś Ś Ó Ó Ś Ń Ś Ó Ę Ę Ż Ć Ś Ó Ę Ó Ę Ę Ę Ę Ó Ś Ę Ę Ł Ć Ć Ś Ó Ę Ź Ę Ż Ź Ś Ź Ę Ę Ę Ó Ó Ó Ę Ę Ę Ę Ó Ę Ę Ć Ę Ć Ł Ź Ę Ę Ś Ń Ę Ć Ź Ó Ź Ó Ó Ę Ć Ć Ć Ź Ę Ę Ć Ę Ę
dr inż. Zbigniew Szklarski
Włd : Wetor dr nż. Zgnew Slrs sl@gh.edu.pl http://ler.uc.gh.edu.pl/z.slrs/ Welośc fcne Długość, cs, sł, ms, prędość, pęd, prspesene tempertur, nprężene, premescene, ntężene prądu eletrcnego, ntężene pol
Dziś: Pełna tabela loterii państwowej z poniedziałkowego ciągnienia
Dś: l l ń C D O 0 Ol : Z l N 40 X C R : D l ś 0 R 3 ń 6 93 Oź l ę l ę -H O D ę ź R l ś l R C - O ś ę B l () N H śl ź ę - H l ę ć " Bl : () f l N l l ś 9! l B l R Dl ę R l f G ęś l ś ę ę Y ń (l ) ę f ęś
3. AT THE HOTEL W HOTELU. Adam is at the Garden Inn Hotel reception desk. He is checking-in.
3. AT THE HOTEL W HOTELU Adam is at the Garden Inn Hotel reception desk. He is checking-in. Let me see Can you spell It s Is that right? Actually, it was for a week! Let me check I m sorry. Here is the
O F E R T A H o t e l Z A M E K R Y N * * * * T a m, g d z i e b łł k i t j e z i o r p r z e p l a t a s ił z s o c z y s t z i e l e n i t r a w, a r a d o s n e t r e l e p t a z m i a r o w y m s z
w ww cic oz F o r p U0 a A Zr24 H r wa w wa wa w o UazQ v7 ; V7 v7 ; V7 ; v7 rj. co.. zz fa. A o, 7 F za za za 4 is,, A ) D. 4 FU.
1 68. E E E E 69 69 69 E ) E E E E be 69 69 E n c v u S i hl. ' K cic p. D 2 v7. >- 7 v7 ; V7 v7 ; V7 ; v7 J.. ~" unli. = c.. c.. n q V. ) E- mr + >. ct >. ( j V, f., 7 n = if) is,, ) - ) D. lc. 7 Dn.
Eksperymenty reaktorowe drugiej generacji wyznaczenie ϑ 13
Eksperymenty reaktorowe drugiej generacji wyznaczenie ϑ 13 v Przypomnienie wyniku eksperymentu KamLAND - weryfikującego oscylacje neutrin słonecznych v Formuły na prawdopodobieństwo disappearance antyneutrin
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 02 02 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f Z a b e z p i e c z e n i e m a s o w e j i m p r e z y s p o r t
Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż
Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż
Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń
Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć
DODATKOWE ĆWICZENIA EGZAMINACYJNE
I.1. X Have a nice day! Y a) Good idea b) See you soon c) The same to you I.2. X: This is my new computer. Y: Wow! Can I have a look at the Internet? X: a) Thank you b) Go ahead c) Let me try I.3. X: What
ELEKTRYKA Wojciech MITKOWSKI, Anna OBRĄCZKA Katedra Automatyki, Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie
ELEKTYKA Zeszyt 8) o LVII Wojcech MITKOWSKI Aa OBĄZKA Katedra Automaty Aadema Górczo-Hutcza m. Stasława Staszca w Kraowe ELETIAL HUA'S HAIN NETWOK Summary. I ths paper the hua's cha etwor the state space