Arytmetyka liczb wymiernych w języku C++

Wielkość: px
Rozpocząć pokaz od strony:

Download "Arytmetyka liczb wymiernych w języku C++"

Transkrypt

1 Arytmetyka liczb wymiernych w języku C++ Monika Zagała Wydział Inżynierii Mechanicznej i Informatyki Kierunek Informatyka, Rok V m_zagala@o2.pl Streszczenie Poniższa praca przedstawia projekt oraz implementację nowego typu danych mzrational dla języka C++, służącego do prostych operacji arytmetycznych na liczbach wymiernych. Artykuł wykazuje jego słabe i mocne strony, na podstawie porównania z liczbami zmiennoprzecinkowymi (dostępnymi w standardzie języka), precyzji wyników otrzymanych dla prostych działań matematycznych. Ponadto, została zaproponowana arytmetyka mieszana między liczbami wymiernymi, a liczbami zmiennopozycyjnymi oraz omówione zostały problemy, jakie się z tym wiążą. 1 Wstęp Wraz, z pojawieniem się pierwszych maszyn liczących, czynności związane z pobieraniem i przetwarzaniem danych liczbowych, zostały zautomatyzowane. Do wykonywania działań arytmetycznych stosowany jest powszechnie typ zmiennopozycyjny. Niestety, w wielu przypadkach, obliczenia wykonywane przy jego pomocy, dają przybliżone rezultaty. Występujące błędy, są spowodowane min. brakiem skończonego rozwinięcia dziesiętnego, dla niektórych ułamków zwykłych [1]. Inną istotną sprawą jest kolejność wykonywania działań. Ma ona duży wpływ na precyzję otrzymywanych wyników [2]. Fakt, że reprezentacja liczb zmiennoprzecinkowych w pamięci komputera nie zawsze jest precyzyjna, nasuwa ideę zastosowania zamiennie danych, w postaci wymiernej. Dzięki temu, że są one przedstawiane za pomocą pary liczb: licznika i mianownika, uniknąć można np. błędów zaokrąglenia liczb, które towarzyszą postaci dziesiętnej implementacji. Ze względu na brak ogólnodostępnego typu liczb wymiernych dla języka C++ oraz przez wzgląd na jego duże zapotrzebowanie w wielu dziedzinach nauki i techniki, została zaprojektowana biblioteka zawierająca zestaw algorytmów i funkcji, umożliwiajacych wykonywanie operacji arytmetycznych, na liczbach reprezentowanych w postaci ułamków zwykłych. Praca zorganizowana jest w nastepujący sposób: W rozdziale drugim przedstawiona została reprezentacja liczb zmiennoprzecinkowych, wraz z charakterystyką najczęściej spotykanych błędów wystepujących w obliczeniach. Rozdział trzeci zawiera definicję typu mzrational oraz jego porównanie z typami zmiennopozycyjnymi, na podstawie prostych przykładów działań arytmetycznych. Rozdział czwarty określa zasady arytmetyki mieszanej opracowanego typu liczb wymiernych, z istniejącymi postaciami reprezentacji liczb rzeczywistych. 1

2 2 Reprezentacja liczb zmiennoprzecinkowych Liczba zmiennoprzecinkowa (ang. floating point number) służy do przedstawienia ograniczonego przedziału liczb rzeczywistych w pamięci komputera. Wszystkie założenia, związane z reprezentacją tego typu, zdefiniowane zostały przez standard IEEE 754 [3]. W praktyce stosowane są trzy metody wyświetlania liczb zmiennoprzecinkowych: dziesiętna, naukowa oraz inżynierska. Najbardziej popularnym zapisem jest notacja naukowa[4]. Stosując dynamiczne przesunięcie przecinka oraz używając potęgi podstawy do o- kreślenia jego rzeczywistego położenia, możemy reprezentować dowolne liczby za pomocą kilku cyfr [5]. Ogólny wzór wygląda następująco: z m M β z cc (1) gdzie : M mantysa liczby (ang. mantissa), C cecha (ang. exponent), β używana podstawa systemu liczbowego (ang. base), z m znak mantysy, z c znak cechy. Zarówno, dla mantysy, jak i wykładnika ilość cyfr jest z góry ustalona. Zatem, dana liczba jest reprezentowana, z pewną skończoną dokładnością i należy, do policzalnego zbioru wartości [2]. Przy obliczeniach, wykonywanych na liczbach zmiennopozycyjnych, można napotkać podstawowe rodzaje błedów : Błędy danych wejściowych występują wówczas, gdy dane liczbowe wprowadzone do pamięci, lub rejestrów maszyny cyfrowej, odbiegają od dokładnych ich wartości. Błędy reprezentacji problem isnieje, w przypadku reprezentacji wszystkich liczb niewymiernych np. Π, 3, liczb o nieskończonym rozwinięciu dziesiętnym np. 1/3, 1/6, 1/7 oraz dla ułamków dziesiętnych o nieskończonym rozwinięciu binarnym np. 0.1, 0.2. Nieuniknione jest wówczas zaokrąglenie. Błędy obcięcia powstają podczas obliczeń, na skutek zmniejszania liczby działań. Na przykład, podczas dodawania bardzo małej i bardzo dużej liczby, ze względu na ograniczoną reprezentację mantysy wyniku, jej przesunięcie względem tych samych cech, powoduje brak dodania liczb, a otrzymanym wynikiem będzie wartość liczby większej. Błędy zaokragleń pojawiają się podczas obliczeń, na skutek konieczności zaokrąglania wartości, ze wzgledu na ograniczoną długość słów binarnych. Błędy te można czasem zmniejszyć, ustalając umiejętnie sposób i kolejność wykonywania działań. Liczbę zmiennoprzecinkową można potraktować, jako sumę wartości dokładnej oraz poprawki do wartości liczby zmiennoprzecinkowej [3]: f = d + p (2) gdzie: f wartość zmiennoprzecinkowa; d wartość dokładna, którą reprezentuje liczba f ; p poprawka wartości d do wartości f, zwana również błędem zaokrąglenia (może przyjmować wartości dodatnie oraz ujemne). Dla przykładu, liczby: 2

3 float d1 = float d2 = są reprezentowane jako: f 1 = d1 + p1 i f 2 = d2 + p2, przy czym: f1 = , f2 = natomiast błędy zaokrąglenia wynoszą odpowiednio: p1 = , p2 = Podczas dodawania dwóch liczb zmiennoprzecinkowych mamy do czynienia, z sumowaniem się błędów: f 1 + f 2 = d1 + p1 + d2 + p2 = (d1 + d2) + (p1 + p2) ; (3) }{{} błąd Jeżeli, poprawki: p1 i p2 mają przeciwne znaki, wówczas błąd może być nieco mniejszy. Teoretycznie, po podstawieniu do wzoru liczb otrzymamy: f = d = p = Wyniki otrzymane, przy użyciu kompilatora dla języka C++, różnią się od przedstawionych wyżej, gdyż dochodzą jeszcze błędy reprezentacji poszczególnych składników działań arytmetycznych oraz otrzymanego wyniku. Stąd, f = , natomiast poprawka p = Mnożenie dwóch liczb zmiennoprzecinkowych, przedstawia poniższe równanie: f 1 f 2 = (d1 + p1) (d2 + p2) = (d1 d2) + (d1 p2 + d2 p1 + p1 p2) ; (4) }{{} błąd Dodając, do wartości ujętej w nawias klamrowy (z wzoru (4) ), błędy numeryczne, wynikające z niedokładnej reprezentacji tych liczb, uzyskany błąd całkowity może być duży. Biorąc pod uwagę, że jest to jedynie pojedyncza operacja, warto zastanowić się, kiedy dokonywanie bardziej skomplikowanych operacji arytmetycznych ma w ogóle sens [2]. 3 Działania arytmetyczne na liczbach wymiernych Z poprzedniego rozdziału wynika, że typ zmiennopozycyjny niesie ze sobą wiele niedoskonałości. Można łatwo uzyskać bezużyteczne wyniki, czyli takie, które obarczone są bardzo dużym błędem. Zastosowanie większej precyzji liczb zmiennoprzecinkowych, jest jedną z metod osłabiającą ryzyko uzyskania niedokładnych wyników [2]. Jednak, w wielu laboratoriach naukowych, technicznych, czy przemysłowych, gdzie jakość obliczeń ma bardzo duże znaczenie, arytmetyka zmiennopozycyjna może okazać się zawodna. Fakt ten, przyczynił się do prac nad nowym typem danych zwanym ogólnie Rational. Głównym założeniem jest przedstawienie liczb rzeczywistych, wymiernych, za pomocą ułamków zwykłych. Licznik i mianownik są zapisywane w postaci liczb całkowitych, i dlatego podstawowe działania matematyczne wykonywane są z pełną precyzją. Na przykład dla języków takich jak: Java, czy Python istnieją odpowiedniki takiej biblioteki. 3

4 Na stronie internetowej Boost a [6] można znależć implementację typu rational dla języka C++, wraz z podstawowymi algorytmami i funkcjami. Brakuje jednak operandów dla arytmetyki mieszanej i możliwosci rzutowania typu zmiennopozycyjnego, na typ wymierny. Pakiet ten jest biblioteką "otwartą", wciąż opracowywaną. Na jego podstawie została zaprojektowana własna biblioteka mzrational, z operandami: dodawania, odejmowania, mnożenia i dzielenia, a także relacji porównania. Dodatkowo zostały przeciążone operatory typów zmiennoprzecinkowych oraz zdefionowana została ich konwersja do mzrational, wraz z funkcjami dla całej arytmetyki mieszanej. Na podstawie przykładowych dwóch liczb: a = i b = 2e-8 zostało dokonane porównanie operacji dodawania i mnożenia pomiędzy danymi typu mzrational, gdzie poszczególne składowe ułamka zwykłego zdefiniowane zostały jako long long int oraz liczbami zmiennoprzecinkowymi typu double. Otrzymane wyniki były następujace: operacja mzrational double + ( / ) ( / ) dla wymiernej reprezentacji rezultat był prawidłowy, zarówno dla operacji dodawania oraz mnożenia. W przypadku liczb zapisanych w postaci dziesietnej, operacja dodawania dała wynik równy większemu czynnikowi, czyli wystapił typowy błąd obcięcia, charakterystyczny dla tego typu danych. Natomiast mnożenie zostało przeprowadzone precyzyjnie, z niewielkim błędem reprezentacji. Nasuwa się tutaj wniosek, że typ mzrational wykazuje zdecydowaną przewagę nad typem zmiennopozycyjnym, w operacjach dodawania (odejmowania) liczb skrajnie różnych. Porównanie arytmetyki, dla dwóch innych liczb: c = 45e12 oraz d = 5e-8, wykazało, że mnożenie wykonane zostało prawidłowo na liczbach mzrational, natomiast dodawanie zakończyło się błędem spowodowanym przekroczeniem najwyższej wartości liczby typu long long int. Podobnie, dla operacji mnożenia może wystąpić overflow (underflow), czyli tzw. bład nadmiaru (niedomiaru), szczególnie wtedy, gdy redukcja ułamków zwykłych jest niewykonalna. Zatem problem zachowania precyzji nie jest do końca rozwiązany. W tym konkretnym przypadku widoczna jest wyższość typów zmiennopozycyjnych typu double(long double). Przy zastosowaniu liczb typu float sprawa przedstawia się inaczej. Porównanie zakresów możliwych prezentowanych wyników wypada na korzyść reprezentacji mzrational. Dodatkowym atutem, reprezentacji liczb w postaci wymiernej, jest łatwość ich porównywania. Powszechnie wiadomo, że takie operacje na liczbach prezentowanych w postaci ułamków dziesiętnych nie są możliwe. Można jedynie sprawdzić, czy dana liczba zmiennopozycyjna mieści się w pewnym jej zakresie, otoczeniu [3]. Typ mzrational zapewnia nam operatory (<, >, ==,! =) dla tego typu relacji, zwracające odpowiednio true, jeżeli została ona spełniona, w przeciwnym razie false. Poniżej znajduje się fragment implementacji operatora mniejszości: template<typename Int> bool mzrational<int>::operator<( const mzrational<int>& less){ mzrational<int> l(*this); mzrational<int> r(less); 4

5 } if(l.num < 0 && r.num >= 0) return true; if(l.num >= 0 && r.num <= 0) return false; if(l.den == r.den) return l.num < r.num; l.normalize(); r.normalize(); Int gcd1 = gcd(l.num, r.num); Int gcd2 = gcd(r.den, l.den); return (l.num/gcd1) * (r.den/gcd2) < (l.den/gcd2) * (r.num/gcd1); Funkcja normalize() służy do redukcji ułamków zwykłych, natomiast gcd(), jako rezultat zwraca największy wspólny dzielnik. Zastosowanie operatora < wymaga zdefiniowania dwóch obiektów typu mzrational i porównaniu ich ze sobą. Ilustruje to poniższy przykład: int main(){ mzrational<long int> a(12, 78); mzrational<long int> b(34, 13); if(a < b){...} return 0; } Inną cechą typu mzrational, jest reprezentacja wyników w postaci zredukowanych ułamków zwykłych. Notacja dziesiętna jest zdecydowanie bardziej przyswajalna, od tego rodzaju prezentacji danych. Na przykład, liczba a = zostanie przedstawiona odpowiednio przez typ zmiennopozycyjny jako: natomiast mzrational wyświetli się jako: ( / 2) Tę małą niedogodność rekompensuje możliwość zamiany typu z mzrational na dowolny typ zmiennoprzecinkowy. Trzeba się liczyć z tym, że w niektórych przypadkach, konwersja może przyczynić się, do utraty dokładności prezentowanej liczby. Porównanie typów: mzrational ze wszystkimi typami zmiennopozycyjnymi nie miało na celu wykazania, który z nich jest lepszy. Zarówno jedna, jak i druga reprezentacja niesie ze sobą wiele zalet i wad. Jednakże, wykazanie słabych i mocnych stron pomaga w dobraniu odpowiedniego typu, w zależności od wykonywanych operacji. 4 Definicja arytmetyki mieszanej Najważniejszym, a zarazem najtrudniejszym zagadnieniem jest arytmetyka liczb mieszanych, czyli określenie zasad działania na liczbach wymiernych typu mzrational, z liczbami zmiennopozycyjnymi w dowolnym formacie. Stosowanie zamiennie liczb zmiennopozycyjnych i wymiernych wymaga zdefiniowania operatorów rzutowania: operator float( ){...} operator double( ){...} operator long double( ){...} do zamiany typu mzrational, na jeden z powyższych typów zmiennopozycyjnych oraz zdefiniowania konwersji odwrotnej, czyli liczby rzeczywistej w dowolnej reprezentacji zmiennoprzecinkowej na liczbę mzrational: 5

6 template<typename Real> explicit mzrational(real x){...} Rzutowaniu ułamków, z postaci zwykłej na postać dziesietną, towarzyszy często utrata precyzji. Jest to związane przede wszystkim z błędami w reprezentacji zmiennoprzecinkowej. Odwrotna zamiana typów również nie pozwala uniknąć błędów. Przyczyny tego mogą być następujące. Po pierwsze, zamieniana liczba zmiennoprzecinkowa nie mieści się w granicach reprezentacji liczby wymiernej, wówczas konieczne jest obcięcie, bądź zaokrąglenie liczby do n cyfr (w jezyku C++, liczby typu long long int są zazwyczaj, co najwyżej 18 cyfrowe). Drugi rodzaj błędu, z jakim można się spotkać przy konwersji liczb rzeczywistych do typu mzrational, wynika z niedokładnej reprezentacji liczby zmiennoprzecinkowej. Ostatnim powodem utraty precyzji jest zamiana liczb niewymiernych na postać wymierną. Tego typu dane nigdy nie zostaną poprawnie przedstawione, co wynika z własności tych liczb [7]. Faktem jest, że nie każda zamiana typów spowoduje, że wartości liczbowe utracą swoją pierwotną dokładność. Jednak świadomość tego, kiedy i gdzie są popełniane błędy ułatwia określenie zasad dodawania, odejmowania, mnożenia i dzielenia liczb mieszanych, w taki sposób, by osiągnąć jak najwyższą prezyję otrzymywanych wyników. 5 Podsumowanie Artykuł przedstawia ogólną charakterystykę typu mzrational. Liczby prezentowane, jako ułamki zwykłe, poszerzają dotychczasowe możliwości, o wykonywanie precyzyjnego dodawania (a co za tym idzie, odejmowania) liczb, szczególnie o dużej rozbieżności wykładników. Ponadto, łatwość wykonywania porównań, takich jak: która z liczb jest większa, bądź: czy dwie liczby są równe, czy różne - to dodatkowy atut typu mzrational. Niestety, każdy reprezentacja danych, w pamięci komputera posiada pewne wady. Tak też jest w przypadku reprezentacji wymiernej implementacji. Świadczą o tym wyżej przedstawione przykłady. Dzięki poznaniu i zrozumieniu wszelkich ograniczeń, zastosowanie w konkretnych aplikacjach arytmetyki liczb wymiernych, staje się o wiele prostsze i bardziej efektywne. Literatura [1] W. Hebish, A. Szustalewicz, K. Tabisz, Wstęp do informatyki, [2] D. Goldberg, What Every Computer Scientist Should Know About Floating-Point Arithmetic, [3] K. Adamski, Liczby zmiennoprzecinkowe, [4] Wikipedia, [5] P. Furmański, Ś. Sobieski, Wstęp do Informatyki, wer. RCI, [6] Boost, [7] T. Trajdos, Matematyka, wyd. VI,

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Reprezentacja

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 1 / 23 LICZBY RZECZYWISTE - Algorytm Hornera

Bardziej szczegółowo

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne 1. Bit Pozycja rejestru lub komórki pamięci służąca do przedstawiania (pamiętania) cyfry w systemie (liczbowym)

Bardziej szczegółowo

3.3.1. Metoda znak-moduł (ZM)

3.3.1. Metoda znak-moduł (ZM) 3.3. Zapis liczb binarnych ze znakiem 1 0-1 0 1 : 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 1 reszta 0 0 0 0 0 0 0 1 3.3. Zapis liczb binarnych ze znakiem W systemie dziesiętnym liczby ujemne opatrzone są specjalnym

Bardziej szczegółowo

Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński

Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Temat: Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy.

Bardziej szczegółowo

Wstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym

Wstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym Wstęp do programowania Reprezentacje liczb Liczby naturalne, całkowite i rzeczywiste w układzie binarnym System dwójkowy W komputerach stosuje się dwójkowy system pozycyjny do reprezentowania zarówno liczb

Bardziej szczegółowo

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie

Bardziej szczegółowo

Obliczenia Naukowe. O arytmetyce komputerów, Czyli jak nie dać się zaskoczyć. Bartek Wilczyński 29.

Obliczenia Naukowe. O arytmetyce komputerów, Czyli jak nie dać się zaskoczyć. Bartek Wilczyński 29. Obliczenia Naukowe O arytmetyce komputerów, Czyli jak nie dać się zaskoczyć Bartek Wilczyński bartek@mimuw.edu.pl 29. lutego 2016 Plan semestru Arytmetyka komputerów, wektory, macierze i operacje na nich

Bardziej szczegółowo

Systemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10).

Systemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10). Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 1. Systemy liczbowe Cel dydaktyczny: Poznanie zasad reprezentacji liczb w systemach pozycyjnych o różnych podstawach. Kodowanie liczb dziesiętnych

Bardziej szczegółowo

Wprowadzenie do metod numerycznych. Krzysztof Patan

Wprowadzenie do metod numerycznych. Krzysztof Patan Wprowadzenie do metod numerycznych Krzysztof Patan Metody numeryczne Dział matematyki stosowanej Każde bardziej złożone zadanie wymaga opracowania indywidualnej metody jego rozwiązywania na maszynie cyfrowej

Bardziej szczegółowo

Liczby zmiennoprzecinkowe i błędy

Liczby zmiennoprzecinkowe i błędy i błędy Elementy metod numerycznych i błędy Kontakt pokój B3-10 tel.: 829 53 62 http://golinski.faculty.wmi.amu.edu.pl/ golinski@amu.edu.pl i błędy Plan wykładu 1 i błędy Plan wykładu 1 2 i błędy Plan

Bardziej szczegółowo

Wielkości liczbowe. Wykład z Podstaw Informatyki dla I roku BO. Piotr Mika

Wielkości liczbowe. Wykład z Podstaw Informatyki dla I roku BO. Piotr Mika Wielkości liczbowe Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje 0 oraz liczby naturalne

Bardziej szczegółowo

Kod IEEE754. IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci

Kod IEEE754. IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci Kod IEEE754 IEEE Institute of Electrical and Electronics Engineers IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci (-1) s 1.f

Bardziej szczegółowo

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika Wielkości liczbowe Wykład z Podstaw Informatyki Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje oraz liczby naturalne od do 255

Bardziej szczegółowo

Reprezentacja stałoprzecinkowa. Reprezentacja zmiennoprzecinkowa zapis zmiennoprzecinkowy liczby rzeczywistej

Reprezentacja stałoprzecinkowa. Reprezentacja zmiennoprzecinkowa zapis zmiennoprzecinkowy liczby rzeczywistej Informatyka, studia niestacjonarne I stopnia Rok akademicki /, Wykład nr 4 /6 Plan wykładu nr 4 Informatyka Politechnika Białostocka - Wydział lektryczny lektrotechnika, semestr II, studia niestacjonarne

Bardziej szczegółowo

SYSTEMY LICZBOWE. SYSTEMY POZYCYJNE: dziesiętny (arabski): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M

SYSTEMY LICZBOWE. SYSTEMY POZYCYJNE: dziesiętny (arabski): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M SYSTEMY LICZBOWE SYSTEMY POZYCYJNE: dziesiętny (arabski):,, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M System pozycyjno wagowy: na przykład liczba 444 4 4 4 4 4 4 Wagi systemu dziesiętnego:,,,,...

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 4 Jan Kazimirski 1 Reprezentacja danych 2 Plan wykładu Systemy liczbowe Zapis dwójkowy liczb całkowitych Działania arytmetyczne Liczby rzeczywiste Znaki i łańcuchy znaków

Bardziej szczegółowo

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łan Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łan Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn Metody numeryczne Wykład 2 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Arytmetyka zmiennopozycyjna

Bardziej szczegółowo

Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł

Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł Lp. Temat Kształcone umiejętności 1 Zasady pracy na lekcjach matematyki. Dział I. LICZBY

Bardziej szczegółowo

Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci:

Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci: Reprezentacja liczb rzeczywistych w komputerze. Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci: k = m * 2 c gdzie: m częśd ułamkowa,

Bardziej szczegółowo

Teoretyczne Podstawy Informatyki

Teoretyczne Podstawy Informatyki Teoretyczne Podstawy Informatyki cel zajęć Celem kształcenia jest uzyskanie umiejętności i kompetencji w zakresie budowy schematów blokowych algor ytmów oraz ocenę ich złożoności obliczeniowej w celu optymizacji

Bardziej szczegółowo

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia. ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb

Bardziej szczegółowo

Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 7

Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 7 Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 7 Zadanie domowe 0 = 4 4 + 4 4, 2 = 4: 4 + 4: 4, 3 = 4 4: 4 4, 4 = 4 4 : 4 + 4, 6 = 4 + (4 + 4): 4, 7 =

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej

Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Dział I. LICZBY RZECZYWISTE I DZIALANIA

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII

KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII Na ocenę dopuszczającą uczeń powinien : Na ocenę dostateczną uczeń powinien: Na ocenę dobrą uczeń powinie: Na ocenę bardzo dobrą uczeń powinien: Na ocenę celującą

Bardziej szczegółowo

Powtórzenie podstawowych zagadnień. związanych ze sprawnością rachunkową *

Powtórzenie podstawowych zagadnień. związanych ze sprawnością rachunkową * Powtórzenie podstawowych zagadnień związanych ze sprawnością rachunkową * (Materiały dydaktyczne do laboratorium fizyki) Politechnika Koszalińska październik 2010 Spis treści 1. Zbiory liczb..................................................

Bardziej szczegółowo

Zwykle liczby rzeczywiste przedstawia się w notacji naukowej :

Zwykle liczby rzeczywiste przedstawia się w notacji naukowej : Arytmetyka zmiennoprzecinkowa a procesory cyfrowe Prawa algebry stosują się wyłącznie do arytmetyki o nieograniczonej precyzji x=x+1 dla x będącego liczbą całkowitą jest zgodne z algebrą, dopóki nie przekroczymy

Bardziej szczegółowo

Systemy zapisu liczb.

Systemy zapisu liczb. Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy. Zdobycie umiejętności wykonywania działań na liczbach w różnych systemach. Zagadnienia:

Bardziej szczegółowo

1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia L.P. DZIAŁ Z PODRĘCZNIKA NaCoBeZu kryteria sukcesu w języku ucznia 1. LICZBY 1. Znam pojęcie liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Potrafię zaznaczyć

Bardziej szczegółowo

Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 7

Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 7 Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 7 Zadanie domowe Zadanie domowe Liczby naturalne (Sztuka nauczania matematyki w szkole podstawowej i gimnazjum,

Bardziej szczegółowo

Dokładność obliczeń numerycznych

Dokładność obliczeń numerycznych Dokładność obliczeń numerycznych Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2016 MOTYWACJA Komputer czasami produkuje nieoczekiwane wyniki >> 10*(1-0.9)-1 # powinno być 0 ans = -2.2204e-016 >>

Bardziej szczegółowo

Technologie Informacyjne Wykład 4

Technologie Informacyjne Wykład 4 Technologie Informacyjne Wykład 4 Arytmetyka komputerów Wojciech Myszka Jakub Słowiński Katedra Mechaniki i Inżynierii Materiałowej Wydział Mechaniczny Politechnika Wrocławska 30 października 2014 Część

Bardziej szczegółowo

Matematyka z kluczem. Szkoła podstawowa nr 18 w Sosnowcu. Przedmiotowe zasady oceniania klasa 7

Matematyka z kluczem. Szkoła podstawowa nr 18 w Sosnowcu. Przedmiotowe zasady oceniania klasa 7 Matematyka z kluczem Szkoła podstawowa nr 18 w Sosnowcu Przedmiotowe zasady oceniania klasa 7 KlasaVII wymagania programowe- wymagania na poszczególne oceny ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane

Bardziej szczegółowo

Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Klasa 1 technikum Przedmiotowy system oceniania wraz z wymaganiami edukacyjnymi Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i

Bardziej szczegółowo

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin . Liczby rzeczywiste (3 h) PRZEDMIOT: Matematyka KLASA: I zasadnicza szkoła zawodowa Dział programowy Temat Wymagania edukacyjne Liczba godzin Hasło z podstawy programowej. Liczby naturalne Liczby naturalne,

Bardziej szczegółowo

Metody numeryczne. Postać zmiennoprzecinkowa liczby. dr Artur Woike. Arytmetyka zmiennoprzecinkowa. Uwarunkowanie zadania.

Metody numeryczne. Postać zmiennoprzecinkowa liczby. dr Artur Woike. Arytmetyka zmiennoprzecinkowa. Uwarunkowanie zadania. Ćwiczenia nr 1 Postać zmiennoprzecinkowa liczby Niech będzie dana liczba x R Mówimy, że x jest liczbą zmiennoprzecinkową jeżeli x = S M B E, gdzie: B N, B 2 (ustalona podstawa systemu liczbowego); S {

Bardziej szczegółowo

Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1

Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1 Robert Malenkowski 1 Liczby rzeczywiste. 1 Liczby naturalne. N {0, 1,, 3, 4, 5, 6, 7, 8...} Liczby naturalne to liczby używane powszechnie do liczenia i ustalania kolejności. Liczby naturalne można ustawić

Bardziej szczegółowo

Pracownia Komputerowa wykład VI

Pracownia Komputerowa wykład VI Pracownia Komputerowa wykład VI dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada 1 Przypomnienie 125 (10) =? (2) Liczby całkowite : Operacja modulo % reszta z dzielenia: 125%2=62 reszta 1

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie IV

Wymagania edukacyjne z matematyki w klasie IV Wymagania edukacyjne z matematyki w klasie IV Na ocenę dopuszczającą uczeń potrafi: Dodawać i odejmować w pamięci liczby dwucyfrowe. Obliczyć wartości wyrażeń arytmetycznych z zachowaniem kolejności wykonywania

Bardziej szczegółowo

1 P roste e t ypy p d a d n a ych c - c ąg ą g d a d l a szy 2 T y T py p z ł z o ł żo ż ne e d a d n a ych c : T BLICE

1 P roste e t ypy p d a d n a ych c - c ąg ą g d a d l a szy 2 T y T py p z ł z o ł żo ż ne e d a d n a ych c : T BLICE 1. Proste typy danych- ciąg dalszy 2. Typy złożone danych : TABLICE Wykład 3 ZMIENNE PROSTE: TYPY WBUDOWANE Typy zmiennoprzecinkowe: float double long double Różne rozmiary bajtowe. W konsekwencji różne

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII

WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 2. odczytuje liczby naturalne dodatnie zapisane w

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej

Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej Ocenę dopuszczającą otrzymuje uczeń, który: rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne,

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny branżowa szkoła I stopnia klasa 1 po gimnazjum

Wymagania edukacyjne na poszczególne oceny branżowa szkoła I stopnia klasa 1 po gimnazjum Wymagania edukacyjne na poszczególne oceny branżowa szkoła I stopnia klasa 1 po gimnazjum I. Liczby rzeczywiste 1. Liczby naturalne 2. Liczby całkowite. 3. Liczby wymierne 4. Rozwinięcie dziesiętne liczby

Bardziej szczegółowo

Wymagania edukacyjne z matematyki na poszczególne śródroczne oceny klasyfikacyjne dla klasy VII w roku 2019/2020.

Wymagania edukacyjne z matematyki na poszczególne śródroczne oceny klasyfikacyjne dla klasy VII w roku 2019/2020. Wymagania edukacyjne z matematyki na poszczególne śródroczne oceny klasyfikacyjne dla klasy VII w roku 2019/2020. Ocenę niedostateczną otrzymuje uczeń, który nie spełnia wymagań edukacyjnych niezbędynych

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej

Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej ROZDZIAŁ I LICZBY Uczeń otrzymuje ocenę dopuszczającą jeśli: 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie

Bardziej szczegółowo

Arytmetyka. Działania na liczbach, potęga, pierwiastek, logarytm

Arytmetyka. Działania na liczbach, potęga, pierwiastek, logarytm Arytmetyka Działania na liczbach, potęga, pierwiastek, logarytm Zbiory liczbowe Zbiór liczb naturalnych N = {1,2,3,4, }. Zbiór liczb całkowitych Z = {, 3, 2, 1,0,1,2,3, }. Zbiory liczbowe Zbiór liczb wymiernych

Bardziej szczegółowo

BŁĘDY OBLICZEŃ NUMERYCZNYCH

BŁĘDY OBLICZEŃ NUMERYCZNYCH BŁĘDY OBLICZEŃ NUMERYCZNYCH błędy zaokrągleń skończona liczba cyfr (bitów) w reprezentacji numerycznej błędy obcięcia rozwinięcia w szeregi i procesy iteracyjne - w praktyce muszą być skończone błędy metody

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy VII

Wymagania edukacyjne z matematyki dla klasy VII Wymagania edukacyjne z matematyki dla klasy VII Szkoły Podstawowej nr 100 w Krakowie Na podstawie programu Matematyka z plusem Na ocenę dopuszczającą Uczeń: rozumie rozszerzenie osi liczbowej na liczby

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI Klasa IV Stopień dopuszczający otrzymuje uczeń, który potrafi: odejmować liczby w zakresie 100 z przekroczeniem progu dziesiątkowego,

Bardziej szczegółowo

METODY NUMERYCZNE. Po co wprowadzamy liczby w formacie zmiennoprzecinkowym (floating point)?

METODY NUMERYCZNE. Po co wprowadzamy liczby w formacie zmiennoprzecinkowym (floating point)? METODY NUMERYCZNE Wykład 2. Analiza błędów w metodach numerycznych Met.Numer. wykład 2 1 Po co wprowadzamy liczby w formacie zmiennoprzecinkowym (floating point)? Przykład 1. W jaki sposób można zapisać

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV Zna zależności wartości cyfry od jej położenia w liczbie Zna kolejność działań bez użycia nawiasów Zna algorytmy czterech działań pisemnych

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne System binarny Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności October 7, 26 Pojęcie bitu 2 Systemy liczbowe 3 Potęgi dwójki 4 System szesnastkowy 5 Kodowanie informacji 6 Liczby ujemne

Bardziej szczegółowo

LABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q

LABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q LABORAORIUM PROCESORY SYGAŁOWE W AUOMAYCE PRZEMYSŁOWEJ Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q 1. Zasady arytmetyki stałoprzecinkowej. Kody stałopozycyjne mają ustalone

Bardziej szczegółowo

Liczby. Wymagania programowe kl. VII. Dział

Liczby. Wymagania programowe kl. VII. Dział Wymagania programowe kl. VII Dział Liczby rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 odczytuje liczby naturalne dodatnie zapisane w systemie rzymskim w zakresie do

Bardziej szczegółowo

Arytmetyka binarna - wykład 6

Arytmetyka binarna - wykład 6 SWB - Arytmetyka binarna - wykład 6 asz 1 Arytmetyka binarna - wykład 6 Adam Szmigielski aszmigie@pjwstk.edu.pl SWB - Arytmetyka binarna - wykład 6 asz 2 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2

Bardziej szczegółowo

Arytmetyka stało i zmiennoprzecinkowa

Arytmetyka stało i zmiennoprzecinkowa Arytmetyka stało i zmiennoprzecinkowa Michał Rudowicz 171047 Łukasz Sidorkiewicz 170991 Piotr Lemański 171009 Wydział Elektroniki Politechnika Wrocławska 26 października 2011 Spis Treści 1 Reprezentacja

Bardziej szczegółowo

Adam Korzeniewski p Katedra Systemów Multimedialnych

Adam Korzeniewski p Katedra Systemów Multimedialnych Adam Korzeniewski adamkorz@sound.eti.pg.gda.pl p. 732 - Katedra Systemów Multimedialnych Sygnały dyskretne są z reguły przetwarzane w komputerach (zwykłych lub wyspecjalizowanych, takich jak procesory

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII Ocena Dopuszczający Osiągnięcia ucznia rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 odczytuje liczby naturalne dodatnie zapisane

Bardziej szczegółowo

Adam Korzeniewski p Katedra Systemów Multimedialnych

Adam Korzeniewski p Katedra Systemów Multimedialnych Adam Korzeniewski adamkorz@sound.eti.pg.gda.pl p. 732 - Katedra Systemów Multimedialnych Sygnały dyskretne są z reguły przetwarzane w komputerach (zwykłych lub wyspecjalizowanych, takich jak procesory

Bardziej szczegółowo

Podstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 5 Liczby w komputerze

Podstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 5 Liczby w komputerze Podstawy Informatyki Inżynieria Ciepła, I rok Wykład 5 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny To się liczy! Branżowa Szkoła I stopnia, klasa 1 po szkole podstawowej

Wymagania edukacyjne na poszczególne oceny To się liczy! Branżowa Szkoła I stopnia, klasa 1 po szkole podstawowej Wymagania edukacyjne na poszczególne oceny To się liczy! Branżowa Szkoła I stopnia, klasa 1 po szkole podstawowej Wymagania dostosowano do sześciostopniowej skali ocen. I. Liczby rzeczywiste zna cechy

Bardziej szczegółowo

Przypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z?

Przypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z? Przypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z? Liczby naturalne porządkowe, (0 nie jest sztywno związane z N). Przykłady: 1, 2, 6, 148, Liczby całkowite to liczby naturalne, przeciwne

Bardziej szczegółowo

Pozycyjny system liczbowy

Pozycyjny system liczbowy Arytmetyka binarna Pozycyjny system liczbowy w pozycyjnych systemach liczbowych wkład danego symbolu do wartości liczby jest określony zarówno przez sam symbol, jak i jego pozycję w liczbie i tak np. w

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGÓLNE OCENY

WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGÓLNE OCENY WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA V Wymagania konieczne i podstawowe - na ocenę dopuszczającą i dostateczną. Uczeń powinien umieć: dodawać i odejmować w pamięci liczby dwucyfrowe

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ Ocenę niedostateczną otrzymuje uczeń, jeśli nie opanował wiadomości i umiejętności na ocenę dopuszczającą, nie wykazuje chęci poprawy

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne w klasie V

Wymagania na poszczególne oceny szkolne w klasie V Wymagania na poszczególne oceny szkolne w klasie V Wymagania Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Zastosowania matematyki praktycznych liczbę

Bardziej szczegółowo

Samodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 =

Samodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 = Systemy liczbowe Dla każdej liczby naturalnej x Î N oraz liczby naturalnej p >= 2 istnieją jednoznacznie wyznaczone: liczba n Î N oraz ciąg cyfr c 0, c 1,..., c n-1 (gdzie ck Î {0, 1,..., p - 1}) taki,

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne OCENĘ NIEDOSTATECZNĄ OTRZYMUJE UCZEŃ KTÓRY NIE SPEŁNIA KRYTERIÓW DLA OCENY DOPUSZCZAJĄCEJ, NIE KORZYSTA Z PROPONOWANEJ POMOCY W POSTACI ZAJĘĆ WYRÓWNAWCZYCH, PRACUJE

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie piątej

Wymagania edukacyjne z matematyki w klasie piątej Wymagania edukacyjne z matematyki w klasie piątej Klasa V Wymagania Wymagania ponad Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Zastosowania matematyki

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III Program nauczania matematyki w gimnazjum Matematyka dla przyszłości DKW 4014 162/99 Opracowała: mgr Mariola Bagińska 1. Liczby i działania Podaje rozwinięcia

Bardziej szczegółowo

Metody numeryczne. Janusz Szwabiński. nm_slides.tex Metody numeryczne Janusz Szwabiński 2/10/ :02 p.

Metody numeryczne. Janusz Szwabiński. nm_slides.tex Metody numeryczne Janusz Szwabiński 2/10/ :02 p. Metody numeryczne Janusz Szwabiński szwabin@ift.uni.wroc.pl nm_slides.tex Metody numeryczne Janusz Szwabiński 2/10/2002 23:02 p.1/63 Plan wykładu 1. Dokładność w obliczeniach numerycznych 2. Złożoność

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

Naturalny kod binarny (NKB)

Naturalny kod binarny (NKB) SWB - Arytmetyka binarna - wykład 6 asz 1 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2 1 0 wartość 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 wartość 128 64 32 16 8 4 2 1 bity b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 System

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KLASY VII Matematyka z plusem

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KLASY VII Matematyka z plusem WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KLASY VII Matematyka z plusem Ocena dopuszczająca: Pojęcie liczby naturalnej, całkowitej, wymiernej Rozszerzenie osi liczbowej na liczby ujemne Porównywanie

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem pojęcie liczby naturalnej, całkowitej, wymiernej rozszerzenie osi liczbowej na liczby ujemne sposób i potrzebę zaokrąglania

Bardziej szczegółowo

Programowanie w C++ Wykład 2. Katarzyna Grzelak. 4 marca K.Grzelak (Wykład 1) Programowanie w C++ 1 / 44

Programowanie w C++ Wykład 2. Katarzyna Grzelak. 4 marca K.Grzelak (Wykład 1) Programowanie w C++ 1 / 44 Programowanie w C++ Wykład 2 Katarzyna Grzelak 4 marca 2019 K.Grzelak (Wykład 1) Programowanie w C++ 1 / 44 Na poprzednim wykładzie podstawy C++ Każdy program w C++ musi mieć funkcję o nazwie main Wcięcia

Bardziej szczegółowo

1259 (10) = 1 * * * * 100 = 1 * * * *1

1259 (10) = 1 * * * * 100 = 1 * * * *1 Zamiana liczba zapisanych w dowolnym systemie na system dziesiętny: W systemie pozycyjnym o podstawie 10 wartości kolejnych cyfr odpowiadają kolejnym potęgom liczby 10 licząc od strony prawej i numerując

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania rocznych ocen klasyfikacyjnych z matematyki w klasie VII.

Wymagania edukacyjne niezbędne do uzyskania rocznych ocen klasyfikacyjnych z matematyki w klasie VII. Przedmiotowy system oceniania z matematyki w klasie VII. Ocena roczna Wyróżniono następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza

Bardziej szczegółowo

BŁĘDY PRZETWARZANIA NUMERYCZNEGO

BŁĘDY PRZETWARZANIA NUMERYCZNEGO BŁĘDY PRZETWARZANIA NUMERYCZNEGO Maciej Patan Uniwersytet Zielonogórski Dlaczego modelujemy... systematyczne rozwiązywanie problemów, eksperymentalna eksploracja wielu rozwiązań, dostarczanie abstrakcyjnych

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016 SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016 Szczegółowe kryteria ocen dla klasy czwartej. 1. Ocenę dopuszczającą otrzymuje uczeń, który: Zna zależności wartości cyfry od jej

Bardziej szczegółowo

Pracownia Komputerowa wyk ad VI

Pracownia Komputerowa wyk ad VI Pracownia Komputerowa wyk ad VI dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Przypomnienie 125 (10) =? (2) Liczby ca kowite

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Klasa V Rozdział Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca) 2 podstawowe (ocena dostateczna) 3 rozszerzające (ocena dobra) 4

Bardziej szczegółowo

I. Wymagania edukacyjne niezbędne do uzyskania śródrocznych ocen klasyfikacyjnych z matematyki w klasie VII.

I. Wymagania edukacyjne niezbędne do uzyskania śródrocznych ocen klasyfikacyjnych z matematyki w klasie VII. Przedmiotowy system oceniania z matematyki w klasie VII. Ocena śródroczna Wyróżniono następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne Klasa VI - matematyka

Wymagania na poszczególne oceny szkolne Klasa VI - matematyka Wymagania na poszczególne oceny szkolne Klasa VI - matematyka Dział 1. Działania na ułamkach zwykłych i dziesiętnych wykonuje działania na ułamkach dziesiętnych z pomocą kalkulatora; mnoży ułamki zwykłe

Bardziej szczegółowo

Wymagania edukacyjne z matematyki na poszczególne do klasy VII szkoły podstawowej na rok szkolny 2018/2019

Wymagania edukacyjne z matematyki na poszczególne do klasy VII szkoły podstawowej na rok szkolny 2018/2019 Wymagania edukacyjne z matematyki na poszczególne do klasy VII szkoły podstawowej na rok szkolny 2018/2019 LICZBY Uczeń otrzymuje ocenę dopuszczającą, jeśli: rozpoznaje cyfry używane do zapisu liczb w

Bardziej szczegółowo

Wymagania z matematyki ( zakres wiedzy) dla klasy VII na poszczególne oceny

Wymagania z matematyki ( zakres wiedzy) dla klasy VII na poszczególne oceny Wymagania z matematyki ( zakres wiedzy) dla klasy VII na poszczególne oceny dopuszczającą ocenę dostateczną Dział 1. Przybliżenia i zaokrąglenie. Oś liczbowa. 1. Liczby dodatnie i ujemne 2. Rozwinięcia

Bardziej szczegółowo

Wymagania i plan wynikowy z matematyki dla klasy I BO

Wymagania i plan wynikowy z matematyki dla klasy I BO Wymagania i plan wynikowy z matematyki dla klasy I BO Lekcja Liczba Treści z podstawy godzin programowej I. Liczby rzeczywiste (9 h) 1. Liczby naturalne 1 Przypomnienie ze szkoły podstawowej ułatwiające

Bardziej szczegółowo

Metody numeryczne I. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/61

Metody numeryczne I. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/61 Metody numeryczne I Dokładność obliczeń numerycznych. Złożoność obliczeniowa algorytmów Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/61 ... the purpose of

Bardziej szczegółowo

Pracownia komputerowa. Dariusz Wardecki, wyk. VI

Pracownia komputerowa. Dariusz Wardecki, wyk. VI Pracownia komputerowa Dariusz Wardecki, wyk. VI Powtórzenie Ile wynoszą poniższe liczby w systemie dwójkowym/ dziesiętnym? 1001101 =? 77! 63 =? 111111! Arytmetyka w reprezentacji bezznakowej Mnożenie liczb

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne OCENĘ NIEDOSTATECZNĄ OTRZYMUJE UCZEŃ KTÓRY NIE SPEŁNIA KRYTERIÓW DLA OCENY DOPUSZCZAJĄCEJ, NIE KORZYSTA Z PROPONOWANEJ POMOCY W POSTACI ZAJĘĆ WYRÓWNAWCZYCH, PRACUJE

Bardziej szczegółowo

Wstęp do informatyki- wykład 2

Wstęp do informatyki- wykład 2 MATEMATYKA 1 Wstęp do informatyki- wykład 2 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5 WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5 Na ocenę niedostateczną (1) uczeń nie spełnia wymagań koniecznych. Na ocenę dopuszczającą (2) uczeń spełnia wymagania konieczne tzn.: 1. posiada i

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Podstawa programowa z 23 grudnia 2008r. do nauczania matematyki w zasadniczych szkołach zawodowych Podręcznik: wyd.

Bardziej szczegółowo

Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R.

Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R. Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R. Liczby naturalne - to liczby całkowite, dodatnie: 1,2,3,4,5,6,... Czasami

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej. rozumie rozszerzenie

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń:

podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Klasa V Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem

Bardziej szczegółowo