ZJAWISKO FOTOELEKTRYCZNE. Edyta Karpicka WPPT/FT/Optometria
|
|
- Aleksandra Kurowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 ZJAWISKO FOTOELEKTRYCZNE Edyta Karpicka WPPT/FT/Optometria
2 Plan prezentacji 1. Historia odkrycia zjawiska fotoelektrycznego 2. Badanie zjawiska fotoelektrycznego 3. Maksymalna energia kinetyczna elektronów 4. Charakterystyka prądowo-napięciowa fotokomórki. 5. Częstotliwość graniczna. 6. Wyznaczanie stałej Plancka 7. Podsumowanie doświadczenia
3 Historia odkrycia zjawiska fotoelektrycznego H. Hertz (1887)- w trakcie badań nad wyładowaniami iskrowymi między dwiema powierzchniami metalowymi zauwaŝył, Ŝe pierwotna iskra z jednej powierzchni wytwarza wtórną iskrę na drugiej. W. Hallwachs (1888)-pokazał, Ŝe oczyszczona, izolowana, płytka cynkowa wystawiona na promieniowanie ultrafioletowe ładuje się dodatnio, a płytka naładowana ujemnie traci ładunek, nawet jeśli jest umieszczona w próŝni. [Ŝródło: Dr M. Klisowaka, Instytut Fizyki Uniwersytetu Rzeszowskiego] J.J.Thomas stwierdził, Ŝe fotoefekt polega na emisji elektronów : zmierzył stosunek (ładunek/masa) dla emitowanych cząsteczek (1897), a w 1899 wyznaczył ich ładunek.
4 Historia odkrycia zjawiska fotoelektrycznego J.Elster i H.F.Geitel (na fot.)stwierdzili w 1900 r., Ŝe prąd fotoelektryczny jest proporcjonalny do natęŝenia światła i powstaje natychmiast po oświetleniu metalu. P.Lenard (1902)- stwierdził, iŝ energia wybitych elektronów w ogóle nie zaleŝy od natęŝenia światła,rośnie natomiast wraz z jego częstotliwością. A.Einstein (1905)- zaproponował wytłomaczenie fotoefektu: jeden kwant światła, zupełnie niezaleŝnie od pozostałych, przekazuje swoją energie elektronowi. Elektron wyrzucony z metalu traci pewną jej część, zanim dotrze do powierzchni. E=hv Nobel prize 1922
5 Badanie efektu fotoelektrycznego -Obwód elektryczny pozwala na przyłoŝenie między elektrody napięcia U regulowanego za pomocą potencjometru P, oraz na mierzenie galwanometrem natęŝenia prądu I przepływającego między nimi. -Po przyłoŝeniu do anody potencjału dodatniego względem fotokatody i przy braku oświetlenia fotokatody nie obserwuje się przepływu prądu. Schemat układu pomiarowego do badania efektu fotoelektrycznego. [źródło: -Pojawia się natychmiast gdy oświetlimy fotokatodę światłem o dostatecznie duŝej częstotliwości.
6 Maksymalna energia kinetyczna elektronów V h - potencjał hamujący dla napięć mniejszych od pewnego V h prąd przez ogniwo przestaje płynąć: -V < - V h E max -maksymalna energia kinetyczna jest równa pracy pola elektrycznego (między anodą i katodą) potrzebnej do całkowitego zahamowania elektronu w fotokomórce: E max =e V h gdzie e - ładunek elektronu V h a więc E max nie zaleŝy od natęŝenia światła [źródło:
7 Charakterystyka prądowo-napięciowa JeŜeli Ф1 < Ф2 to : -szybszy wzrost natęŝenia prądu w miarę wzrostu napięcia między anodą i katodą -brak zmiany potencjału hamującego Charakterystykia prądowo-napięciowa dla dwóch róŝnych natęŝeń światła Ф1 i Ф2 (Vh - potencjał hamujący) [Ŝródło:Jerzy Filipowicz, Badanie efektu fotoelektrycznego zewnętrznego]
8 Częstotliwość graniczna -poniŝej częstości granicznej nie obserwujemy EF -wartość częstości granicznej zaleŝy od materiału katody -zgodnie ze wzorem Einsteina, częstość graniczna mierzy pracę wyjścia W: W = hvg ZaleŜność natęŝenia prądu od częstotliwości v dla dwóch róŝnych materiałów fotokatody A i B Vo charakterystyczna częstotliwość graniczna dla danego materiału [źródło:
9 Wyznaczanie stałej Plancka hv=w+emax (1) Emax=e V h (2) Vh= (h/e)v-w/e Tak więc teoria Einstaina przewiduje liniowy związek między potencjałem hamowania Vh, a częstotliwością padającego światła v. prosta: y=ax+b gdzie y=vh, x=v, a= h/e, b=w/e ZaleŜność potencjału hamowania Vh od częstotliwości v padającego światła tan α = (W/e) / ν= (hν/e) / ν = h/e h= 6,626755*10-34 J s Vg - częstotliwość graniczna W-praca wyjścia e-ładunek elektronu [źródło:
10 Podsumowanie doświadczenia 1. Potencjał hamujący, a co za tym idzie maksymalna energia kinetyczna fotoelektronów E max nie zaleŝy od natęŝenia światła 2. Dla kaŝdej fotokatody istnieje charakterystyczna częstotliwość graniczna v (zaleŝna od materiału fotokatody). Dla częstotliwości mniejszych od vg efekt fotoelektryczny nie występuje,niezaleŝnie od tego jak silne jest natęŝenie światła 3. Nie występuje opóźnienie w czasie pomiędzy padaniem światła na fotokatodę a pojawienie się fotoprądu nawet dla małych natęŝeń światła.
11 Bibliografia -R. Eisberg, R. Resnick, Fizyka kwantowa, PWN, Warszawa D. Halliday, R. Resnick, J.Walker, Podstawy fizyki, PWN, Warszawa J.Orear, Fizyka tom 2, Wydawnictwo Naukowo-Techniczne, Warszawa Jerzy Filipowicz, Badanie efektu fotoelektrycznego zewnętrznego, Politechnika Warszawska - Janusz Skalski, Kwanty światła, efekt fotoelektryczny i realność fotonów, Instytut Problemów Jądrowych im. A. Sołtana. - dr M. Niemiec, Rok 1905 narodziny współczesnej fizyki, Instytut Fizyki Uniwersytet Opolski - dr M. Klisowska, Fotony Alberta Einstaina czyli o efekcie fotoelektrycznym, Instytut Fizyki Uniwesytet Rzeszowski, -
BADANIE EFEKTU FOTOELEKTRYCZNEGO ZEWNĘTRZNEGO
Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki I P Jerzy Politechnika Filipowicz Warszawska Wydział Fizyki Laboratorium Fizyki I P Jerzy Filipowicz BADANIE EFEKTU FOTOELEKTRYCZNEGO ZEWNĘTRZNEGO
Bardziej szczegółowoRozładowanie promieniowaniem nadfioletowym elektroskopu naładowanego ujemnie, do którego przymocowana jest płytka cynkowa
Pokazy Rozładowanie promieniowaniem nadfioletowym elektroskopu naładowanego ujemnie, do którego przymocowana jest płytka cynkowa Zjawisko fotoelektryczne Zjawisko fotoelektryczne polega na tym, że w wyniku
Bardziej szczegółowoEfekt fotoelektryczny
Ćwiczenie 82 Efekt fotoelektryczny Cel ćwiczenia Celem ćwiczenia jest obserwacja efektu fotoelektrycznego: wybijania elektronów z metalu przez światło o różnej częstości (barwie). Pomiar energii kinetycznej
Bardziej szczegółowoSCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa. Cele kształcenia wymagania ogólne:
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:
Bardziej szczegółowoBADANIE ZEWNĘTRZNEGO ZJAWISKA FOTOELEKTRYCZNEGO
ĆWICZENIE 91 BADANIE ZEWNĘTRZNEGO ZJAWISKA FOTOELEKTRYCZNEGO Cel ćwiczenia: Wyznaczenie charakterystyki prądowo napięciowej I(U) fotokomórki w zależności od wartości strumienia promieniowania padającego;
Bardziej szczegółowoŚwiatło fala, czy strumień cząstek?
1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie
Bardziej szczegółowoEFEKT FOTOELEKTRYCZNY ZEWNĘTRZNY
ĆWICZENIE 91 EFEKT FOTOELEKTRYCZNY ZEWNĘTRZNY Instrukcja wykonawcza 1. Wykaz przyrządów 1. Monochromator 5. Zasilacz stabilizowany oświetlacza. Oświetlacz 6. Zasilacz fotokomórki 3. Woltomierz napięcia
Bardziej szczegółowoFizyka współczesna. Pracownia dydaktyki fizyki. Instrukcja dla studentów. Tematy ćwiczeń
Pracownia dydaktyki fizyki Fizyka współczesna Instrukcja dla studentów Tematy ćwiczeń I. Wyznaczanie stałej Plancka z wykorzystaniem zjawiska fotoelektrycznego II. Wyznaczanie stosunku e/m I. Wyznaczanie
Bardziej szczegółowoII. KWANTY A ELEKTRONY
II. KWANTY A ELEKTRONY II.1. PROMIENIE KATODOWE Promienie katodowe są przyczyną fluorescencji. Odegrały one bardzo ważną rolę w odkryciu elektronów. Skład promieniowania katodowego stanowią cząstki elektrycznie
Bardziej szczegółowoFOTOKOMÓRKA. CHARAKTERYSTYKI STATYCZNE FOTOKOMÓRKI PRÓŻNIOWEJ
FOTOKOMÓRKA. CHARAKTERYSTYKI STATYCZNE FOTOKOMÓRKI PRÓŻNIOWEJ I. Cel ćwiczenia: wyznaczenie charakterystyk statycznych fotokomórki, potencjału hamowania, wartości liczbowej stałej Plancka. II. Przyrządy:
Bardziej szczegółowo39 DUALIZM KORPUSKULARNO FALOWY.
Włodzimierz Wolczyński 39 DUALIZM KORPUSKULARNO FALOWY. ZJAWISKO FOTOELEKTRYCZNE. FALE DE BROGILE Fale radiowe Fale radiowe ultrakrótkie Mikrofale Podczerwień IR Światło Ultrafiolet UV Promienie X (Rentgena)
Bardziej szczegółowoWFiIS. Wstęp teoretyczny:
WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA Cel ćwiczenia: Wyznaczenie
Bardziej szczegółowoĆwiczenie nr 82: Efekt fotoelektryczny
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 82: Efekt fotoelektryczny
Bardziej szczegółowoWykład 7 Kwantowe własności promieniowania
Wykład 7 Kwantowe własności promieniowania zdolność absorpcyjna, zdolność emisyjna, prawo Kirchhoffa, prawo Stefana-Boltzmana, prawo Wiena, postulaty Plancka, zjawisko fotoelektryczne, efekt Comptona W7.
Bardziej szczegółowoOPTYKA. Leszek Błaszkieiwcz
OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający
Bardziej szczegółowoKwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale
Bardziej szczegółowoKorpuskularna natura światła i materii
Podręcznik zeszyt ćwiczeń dla uczniów Korpuskularna natura światła i materii Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza 11/12, 80-233 Gdańsk, tel. +48 58 348
Bardziej szczegółowoKwantowa natura promieniowania
Kwantowa natura promieniowania Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało, które absorbuje całe padające na nie promieniowanie bez względu na częstotliwość. Promieniowanie ciała
Bardziej szczegółowoĆWICZENIE 50 ZEWNĘTRZNE ZJAWISKO FOTOELEKTRYCZNE
ĆWICZENIE 50 ZEWNĘTRZNE ZJAWISKO FOTOELEKTRYCZNE I. Wprowadzenie Promieniowanie elektromagnetyczne padające na środowisko wypełnione gazem, cieczą lub ciałem stałym może ulec rozproszeniu ( w szczególnym
Bardziej szczegółowoPromieniowanie cieplne ciał.
Wypromieniowanie fal elektromagnetycznych przez ciała Promieniowanie cieplne (termiczne) Luminescencja Chemiluminescencja Elektroluminescencja Katodoluminescencja Fotoluminescencja Emitowanie fal elektromagnetycznych
Bardziej szczegółowoKwanty światła, efekt fotoelektryczny i realność fotonów
18 Kwanty światła, efekt fotoelektryczny i realność fotonów Janusz Skalski Instytut Problemów Jądrowych im. A. Sołtana Gościnny przedruk z Delty 6/2005 W marcu 1905 r. Albert Einstein wysłał do publikacji
Bardziej szczegółowoSPRAWDZENIE PRAWA OHMA POMIAR REZYSTANCJI METODĄ TECHNICZNĄ
Laboratorium Podstaw Elektroniki Marek Siłuszyk Ćwiczenie M 4 SPWDZENE PW OHM POM EZYSTNCJ METODĄ TECHNCZNĄ opr. tech. Mirosław Maś niwersytet Przyrodniczo - Humanistyczny Siedlce 2013 1. Wstęp Celem ćwiczenia
Bardziej szczegółowoPoczątek XX wieku. Dualizm korpuskularno - falowy
Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy
Bardziej szczegółowoE12. Wyznaczanie parametrów użytkowych fotoogniwa
1/5 E12. Wyznaczanie parametrów użytkowych fotoogniwa Celem ćwiczenia jest poznanie podstaw zjawiska konwersji energii świetlnej na elektryczną, zasad działania fotoogniwa oraz wyznaczenie jego podstawowych
Bardziej szczegółowoZjawisko fotoelektryczne zewnętrzne i stała Plancka - Dobór długości fali spektrometrem siatkowym
Zagadnienia powiązane Energia fotonu, absorpcja fotonu, zjawisko fotoelektryczne zewnętrzne, praca wyjścia, fotoogniwo, teoria kwantów, stała Plancka, spektrometr siatkowy. Podstawy Zjawisko fotoelektryczne
Bardziej szczegółowoWybrane Działy Fizyki
Wybrane Działy Fizyki energia elektryczna i jadrowa W. D ebski 25.11.2009 Rodzaje energii energia mechaniczna energia cieplna (chemiczna) energia elektryczna energia jadrowa debski@igf.edu.pl: W5-1 WNZ
Bardziej szczegółowoBADANIE CHARAKTERYSTYK FOTOELEMENTU
Ćwiczenie E7 BADANIE CHARAKTERYSTYK FOTOELEMENTU Przyrzady: Przyrząd do badania zjawiska fotoelektrycznego, płytki absorbenta suwmiarka, fotoelementy (fotoopór, fotodioda, lub fototranzystor). Zjawisko
Bardziej szczegółowoZJAWISKA KWANTOWO-OPTYCZNE
ZJAWISKA KWANTOWO-OPTYCZNE Źródła światła Prawo promieniowania Kirchhoffa Ciało doskonale czarne Promieniowanie ciała doskonale czarnego Prawo promieniowania Plancka Prawo Stefana-Boltzmanna Prawo przesunięć
Bardziej szczegółowoEfekt Fotoelektryczny
Paweł Kogut Projekt efizyka Multimedialne środowisko nauczania fizyki dla szkół ponad gimnazjalnych Wirtualne Laboratorium Fizyki Ćwiczenie: Efekt Fotoelektryczny (Instrukcja obsługi) Projekt współfinansowany
Bardziej szczegółowoFizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła
W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY Z FIZYKI
Miejsce na naklejkę z kodem (Wpisuje zdający przed rozpoczęciem pracy) KOD ZDAJĄCEGO OKRĘGOWA K O M I S J A EGZAMINACYJNA w KRAKOWIE PRÓBNY EGZAMIN MATURALNY Z FIZYKI Czas pracy 120 minut Informacje 1.
Bardziej szczegółowoFizyka 2. Janusz Andrzejewski
Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii
Bardziej szczegółowoBADANIE FOTOPOWIELACZA
Ćwiczenie 6 BADANIE FOTOPOWIELACZA 19.1. Wiadomości ogólne Fotopowielacz elektronowy jest urządzeniem, w którym wykorzystano zjawisko zewnętrznej fotoemisji elektronów oraz emisji wtórnej elektronów. Fotoemisję
Bardziej szczegółowoIA. Fotodioda. Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody.
1 A. Fotodioda Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody. Zagadnienia: Efekt fotowoltaiczny, złącze p-n Wprowadzenie Fotodioda jest urządzeniem półprzewodnikowym w którym zachodzi
Bardziej szczegółowoDioda półprzewodnikowa
COACH 10 Dioda półprzewodnikowa Program: Coach 6 Projekt: na MN060c CMA Coach Projects\PTSN Coach 6\ Elektronika\dioda_2.cma Przykład wyników: dioda2_2.cmr Cel ćwiczenia - Pokazanie działania diody - Wyznaczenie
Bardziej szczegółowoElementy optyki kwantowej. Ciało doskonale czarne. Teoria Wiena. Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek
Elementy optyki kwantowej dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Elementy optyki kwantowej Ciało doskonale czarne Rozkład
Bardziej szczegółowoPodstawy fizyki kwantowej
Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa
Bardziej szczegółowoE12. Wyznaczanie parametrów użytkowych fotoogniwa
E12. Wyznaczanie parametrów użytkowych fotoogniwa 1/5 E12. Wyznaczanie parametrów użytkowych fotoogniwa Celem ćwiczenia jest zapoznanie z podstawami zjawiska konwersji energii świetlnej na elektryczną,
Bardziej szczegółowoFIZYKA I ASTRONOMIA. Matura z Kwazarem. Życzymy powodzenia!
FIZYKA I ASTRONOMIA Matura z Kwazarem ARKUSZ PRÓBNEJ MATURY FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY Instrukcje dla zdającego: 1. Sprawdź, czy arkusz egzaminacyjny zawiera 12 stron (zadania 1 6). Ewentualny
Bardziej szczegółowoĆwiczenie E17 BADANIE CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH MODUŁU OGNIW FOTOWOLTAICZNYCH I SPRAWNOŚCI KONWERSJI ENERGII PADAJĄCEGO PROMIENIOWANIA
Ćwiczenie E17 BADANIE CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH MODUŁU OGNIW FOTOWOLTAICZNYCH I SPRAWNOŚCI KONWERSJI ENERGII PADAJĄCEGO PROMIENIOWANIA Cel: Celem ćwiczenia jest zbadanie charakterystyk prądowo
Bardziej szczegółowoLABORATORIUM PODSTAWY ELEKTROTECHNIKI
LABORATORIUM PODSTAWY ELEKTROTECHNIKI CHARAKTERYSTYKI TRANSFORMATORA JEDNOFAZOWEGO Badanie właściwości transformatora jednofazowego. Celem ćwiczenia jest poznanie budowy oraz wyznaczenie charakterystyk
Bardziej szczegółowoBADANIE FOTOPOWIELACZA
BDNIE FOTOPOWIELCZ I. Cel ćwiczenia: zapoznanie z budową, przeznaczeniem i zastosowaniem fotopowielacza oraz ze zjawiskiem fotoelektrycznym zewnętrznym. II. Przyrządy: zasilacz wysokiego napięcia ZWN-41
Bardziej szczegółowoĆwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X
Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Oskar Gawlik, Jacek Grela 16 lutego 2009 1 Podstawy teoretyczne 1.1 Liczniki proporcjonalne Wydajność detekcji promieniowania elektromagnetycznego
Bardziej szczegółowoDioda półprzewodnikowa OPRACOWANIE: MGR INŻ. EWA LOREK
Dioda półprzewodnikowa OPRACOWANIE: MGR INŻ. EWA LOREK Budowa diody Dioda zbudowana jest z dwóch warstw półprzewodników: półprzewodnika typu n (nośnikami prądu elektrycznego są elektrony) i półprzewodnika
Bardziej szczegółowoTechniki Jądrowe w Diagnostyce i Terapii Medycznej
Techniki Jądrowe w Diagnostyce i Terapii Medycznej Wykład 2-5 marca 2019 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Rozpad Przemiana Widmo
Bardziej szczegółowoRys.2. Schemat działania fotoogniwa.
Ćwiczenie E16 BADANIE NATĘŻENIA PRĄDU FOTOELEKTRYCZNEGO W ZALEŻNOŚCI OD ODLEGŁOŚCI ŹRÓDŁA ŚWIATŁA Cel: Celem ćwiczenia jest zbadanie zależności natężenia prądu generowanego światłem w fotoogniwie od odległości
Bardziej szczegółowoChemia ogólna - część I: Atomy i cząsteczki
dr ab. Wacław Makowski Cemia ogólna - część I: Atomy i cząsteczki 1. Kwantowanie. Atom wodoru 3. Atomy wieloelektronowe 4. Termy atomowe 5. Cząsteczki dwuatomowe 6. Hybrydyzacja 7. Orbitale zdelokalizowane
Bardziej szczegółowoSpektroskop, rurki Plückera, cewka Ruhmkorffa, aparat fotogtaficzny, źródło prądu
Imię i nazwisko ucznia Nazwa i adres szkoły Imię i nazwisko nauczyciela Tytuł eksperymentu Dział fizyki Potrzebne materiały do doświadczeń Kamil Jańczyk i Mateusz Kowalkowski I Liceum Ogólnokształcące
Bardziej szczegółowoEnergia promieniowania termicznego sprawdzenie zależności temperaturowej
6COACH 25 Energia promieniowania termicznego sprawdzenie zależności temperaturowej Program: Coach 6 Projekt: komputer H C:\Program Files (x86)\cma\coach6\full.en\cma Coach Projects\PTSN Coach 6 \Termodynamika\Promieniowanie
Bardziej szczegółowoBadanie schematu rozpadu jodu 128 I
J8 Badanie schematu rozpadu jodu 128 I Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 I Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią [1,3] a) efekt fotoelektryczny b) efekt Comptona
Bardziej szczegółowoFalowa natura materii
r. akad. 2012/2013 wykład I - II Podstawy Procesów i Konstrukcji Inżynierskich Falowa natura materii 1 r. akad. 2012/2013 Podstawy Procesów i Konstrukcji Inżynierskich Warunki zaliczenia: Aby uzyskać dopuszczenie
Bardziej szczegółowoMetody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA)
Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Promieniowaniem X nazywa się promieniowanie elektromagnetyczne o długości fali od około
Bardziej szczegółowoWYZNACZANIE STAŁEJ PLANCKA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH. Irena Jankowska-Sumara, Magdalena Krupska
1 II PRACOWNIA FIZYCZNA: FIZYKA ATOMOWA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH Irena Jankowska-Sumara, Magdalena Krupska Cel ćwiczenia Celem ćwiczenia jest wyznaczenie
Bardziej szczegółowoRysunek 3-19 Model ciała doskonale czarnego
3.4. Początki teorii kwantów narodziny fizyki kwantowej Od czasów sformułowania przez Isaaca Newtona zasad mechaniki klasycznej teoria ta stała się podstawą wszystkich nowopowstałych atomistycznych modeli
Bardziej szczegółowoInstrukcja do ćwiczenia laboratoryjnego nr 13
Instrukcja do ćwiczenia laboratoryjnego nr 13 Temat: Charakterystyki i parametry dyskretnych półprzewodnikowych przyrządów optoelektronicznych Cel ćwiczenia. Celem ćwiczenia jest poznanie budowy, zasady
Bardziej szczegółowoĆwiczenie nr 5 Doświadczenie Franka-Hertza. Pomiar energii wzbudzenia atomów neonu.
Ćwiczenie nr 5 Doświadczenie Franka-Hertza. Pomiar energii wzbudzenia atomów neonu. A. Opis zagadnienia I. Doświadczenie Franka-Hertza W 1914 roku James Franck i Gustav Hertz przeprowadzili doświadczenie,
Bardziej szczegółowoTak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd.
Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman (1918-1988) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Równocześnie Feynman podkreślił, że obliczenia mechaniki
Bardziej szczegółowoRepeta z wykładu nr 8. Detekcja światła. Przypomnienie. Efekt fotoelektryczny
Repeta z wykładu nr 8 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 przegląd detektorów
Bardziej szczegółowoPodstawy fizyki kwantowej. Nikt nie rozumie fizyki kwantowej R. Feynman, laureat Nobla z fizyki
Podstawy fizyki kwantowej Nikt nie rozumie fizyki kwantowej R. Feynman, laureat Nobla z fizyki Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne
Bardziej szczegółowoWyznaczanie cieplnego współczynnika oporności właściwej metali
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 5 V 2009 Nr. ćwiczenia: 303 Temat ćwiczenia: Wyznaczanie cieplnego współczynnika oporności właściwej metali
Bardziej szczegółowoPodstawy fizyki kwantowej
Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa
Bardziej szczegółowoSpektroskopia fotoelektronów (PES)
Spektroskopia fotoelektronów (PES) Efekt fotoelektryczny hν ( UV lub X) E =hν kin W Proces fotojonizacji w PES: M + hν M + + e E kin (e) = hν E B Φ sp E B energia wiązania elektronu w atomie/cząsteczce
Bardziej szczegółowoWyznaczanie sił działających na przewodnik z prądem w polu magnetycznym
Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika
Bardziej szczegółowoInstytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Dualizm korpuskularno falowy światła. 2. Pochodzenie pasm energetycznych w
Bardziej szczegółowoEGZAMIN MATURALNY Z FIZYKI I ASTRONOMII
Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII MFA-R1A1P-062 POZIOM ROZSZERZONY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny
Bardziej szczegółowoĆwiczenie nr 23. Charakterystyka styku między metalem a półprzewodnikiem typu n. str. 1. Cel ćwiczenia:
Ćwiczenie nr 23 Charakterystyka styku między metalem a półprzkiem typu n. Cel ćwiczenia: Wyznaczanie charakterystyki napięciowo - prądowej złącza metal-półprzk n oraz zaobserwowanie działania elementów
Bardziej szczegółowoPOLITECHNIKA WARSZAWSKA Wydział Elektryczny Instytut Elektroenergetyki Zakład Elektrowni i Gospodarki Elektroenergetycznej
POLITECHNIKA WARSZAWSKA Wydział Elektryczny Instytut Elektroenergetyki Zakład Elektrowni i Gospodarki Elektroenergetycznej INSTRUKCJA DO ĆWICZENIA: BADANIE BATERII SŁONECZNYCH W ZALEśNOŚCI OD NATĘśENIA
Bardziej szczegółowoWszechświat czastek elementarnych
Wykład 2: prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 2: Detekcja Czastek 27 lutego 2008 p.1/36 Wprowadzenie Istota obserwacji w świecie czastek
Bardziej szczegółowoInstrukcja do ćwiczenia laboratoryjnego nr 13
Instrukcja do ćwiczenia laboratoryjnego nr 13 Temat: Charakterystyki i parametry dyskretnych półprzewodnikowych przyrządów optoelektronicznych Cel ćwiczenia. Celem ćwiczenia jest poznanie budowy, zasady
Bardziej szczegółowoJ6 - Pomiar absorpcji promieniowania γ
J6 - Pomiar absorpcji promieniowania γ Celem ćwiczenia jest pomiar współczynnika osłabienia promieniowania γ w różnych absorbentach przy użyciu detektora scyntylacyjnego. Materiał, który należy opanować
Bardziej szczegółowoBadanie własności hallotronu, wyznaczenie stałej Halla (E2)
Badanie własności hallotronu, wyznaczenie stałej Halla (E2) 1. Wymagane zagadnienia - ruch ładunku w polu magnetycznym, siła Lorentza, pole elektryczne - omówić zjawisko Halla, wyprowadzić wzór na napięcie
Bardziej szczegółowoLVI OLIMPIADA FIZYCZNA (2006/2007). Stopień III, zadanie doświadczalne D
LI OLIMPIADA FIZYCZNA (26/27). Stopień III, zadanie doświadczalne D Źródło: Autor: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej. Andrzej ysmołek Komitet Główny Olimpiady Fizycznej,
Bardziej szczegółowoBadanie baterii słonecznych w zależności od natężenia światła
POLITECHNIKA WARSZAWSKA Instytut Elektroenergetyki, Zakład Elektrowni i Gospodarki Elektroenergetycznej Przemiany energii laboratorium Ćwiczenie Badanie baterii słonecznych w zależności od natężenia światła
Bardziej szczegółowoPodstawy fizyki sezon Dualizm światła i materii
Podstawy fizyki sezon 2 10. Dualizm światła i materii Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha W poprzednim
Bardziej szczegółowoE1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA
E1. OBWODY PRĄDU STŁEGO WYZNCZNIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁ tekst opracowała: Bożena Janowska-Dmoch Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych wywołany
Bardziej szczegółowoBADANIA MODELOWE OGNIW SŁONECZNYCH
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 Bartosz CERAN* BADANIA MODELOWE OGNIW SŁONECZNYCH W artykule przedstawiono model matematyczny modułu fotowoltaicznego.
Bardziej szczegółowoSZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU II. Zadanie 28. Kołowrót
SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU II Zadanie 8. Kołowrót Numer dania Narysowanie sił działających na układ. czynność danie N N Q 8. Zapisanie równania ruchu obrotowego kołowrotu.
Bardziej szczegółowoFotoelementy. Symbole graficzne półprzewodnikowych elementów optoelektronicznych: a) fotoogniwo b) fotorezystor
Fotoelementy Wstęp W wielu dziedzinach techniki zachodzi potrzeba rejestracji, wykrywania i pomiaru natężenia promieniowania elektromagnetycznego o różnych długościach fal, w tym i promieniowania widzialnego,
Bardziej szczegółowoSPEKTROSKOPIA RENTGENOWSKA
Intensywność ĆWICZENIE 105 SPEKTROSKOPIA RENTGENOWSKA Cel ćwiczenia: obserwacja ciągłego i charakterystycznego promieniowania rentgenowskiego, którego źródłem jest wolfram; wyznaczenie energii promieniowania
Bardziej szczegółowoBADANIE WŁAŚCIWOŚCI FOTOOPORNIKA I FOTOOGNIWA
Ćwiczenie O -12 BADANIE WŁAŚCIWOŚCI FOTOOPORNIKA I FOTOOGNIWA I Cel ćwiczenia: wprowadzenie w problematykę fotometrii fizycznej (obiektywnej) półprzewodnikowych detektorów światła widzialnego oraz zbadanie
Bardziej szczegółowoMatura z fizyki i astronomii 2012
Matura z fizyki i astronomii 2012 Arkusz A1 poziom podstawowy Odpowiedzi do zadań z serwisu filoma.org fizyka matura i zadania na filoma.org 1 2 3 4 5 6 7 8 9 10 D B C D C D A C C B Zadanie 11 a) 3 b)
Bardziej szczegółowoPOLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE. Obwody nieliniowe.
POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE Obwody nieliniowe. (E 3) Opracował: dr inż. Leszek Remiorz Sprawdził: dr
Bardziej szczegółowoLekcja 43. Pojemność elektryczna
Lekcja 43. Pojemność elektryczna Pojemność elektryczna przewodnika zależy od: Rozmiarów przewodnika, Obecności innych przewodników, Ośrodka w którym się dany przewodnik znajduje. Lekcja 44. Kondensator
Bardziej szczegółowoWykład FIZYKA II. 11. Optyka kwantowa. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 11. Optyka kwantowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ FIZYKA KLASYCZNA A FIZYKA WSPÓŁCZESNA Fizyka klasyczna
Bardziej szczegółowoBadanie schematu rozpadu jodu 128 J
J8A Badanie schematu rozpadu jodu 128 J Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 J Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią (1,3) a/ efekt fotoelektryczny b/ efekt Comptona
Bardziej szczegółowoOptyka kwantowa wprowadzenie. Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej
Optyka kwantowa wprowadzenie Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej Krótka (pre-)historia fotonu (1900-1923) Własności światła i jego oddziaływania
Bardziej szczegółowoPrzyrządy i Układy Półprzewodnikowe
VI. Prostownik jedno i dwupołówkowy Cel ćwiczenia: Poznanie zasady działania układu prostownika jedno i dwupołówkowego. A) Wstęp teoretyczny Prostownik jest układem elektrycznym stosowanym do zamiany prądu
Bardziej szczegółowoPodstawy fizyki wykład 3
D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,
Bardziej szczegółowoE wektor natęŝenia pola, a dr element obwodu, którego zwrot określa przyjęty kierunek obchodzenia danego oczka.
Lista 9. do kursu Fizyka; rok. ak. 2012/13 sem. letni W. InŜ. Środ.; kierunek InŜ. Środowiska Tabele wzorów matematycznych (http://www.if.pwr.wroc.pl/~wsalejda/mat-wzory.pdf) i fizycznych (http://www.if.pwr.wroc.pl/~wsalejda/wzf1.pdf;
Bardziej szczegółowoWykład 32. ciało doskonale czarne T = 2000 K. wolfram T = 2000 K
Wykład 32 32. Światło a fizyka kwantowa 32.1 Źródła światła Najbardziej znanymi źródłami światła są rozgrzane ciała stałe i gazy, w których zachodzi wyładowanie elektryczne; np. wolframowe włókna żarówek
Bardziej szczegółowoPodstawy fizyki kwantowej
Podstawy fizyki kwantowej Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona Fizyka kwantowa - po co? Jeśli chcemy badać zjawiska, które zachodzą w skali mikro -
Bardziej szczegółowoPOMIARY REZYSTANCJI. Cel ćwiczenia. Program ćwiczenia
Pomiary rezystancji 1 POMY EZYSTNCJI Cel ćwiczenia Celem ćwiczenia jest poznanie typowych metod pomiaru rezystancji elementów liniowych i nieliniowych o wartościach od pojedynczych omów do kilku megaomów,
Bardziej szczegółowoĆwiczenie nr 34. Badanie elementów optoelektronicznych
Ćwiczenie nr 34 Badanie elementów optoelektronicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z elementami optoelektronicznymi oraz ich podstawowymi parametrami, a także doświadczalne sprawdzenie
Bardziej szczegółowoPracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC
Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWICZENIE Połączenia szeregowe oraz równoległe elementów C. CEL ĆWICZENIA Celem ćwiczenia jest praktyczno-analityczna ocena wartości
Bardziej szczegółowoCHARAKTERYSTYKA LICZNIKA GEIGERA-MÜLLERA I BADANIE STATYSTYCZNEGO CHARAKTERU ROZPADU PROMIENIOTWÓRCZEGO
Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki II p. Piotr Kurek Do użytku wewnętrznego Ćwiczenie nr 1 CHARAKTERYSTYKA LICZNIKA GEIGERA-MÜLLERA I BADANIE STATYSTYCZNEGO CHARAKTERU ROZPADU PROMIENIOTWÓRCZEGO
Bardziej szczegółowoPL B1. Sposób oceny dokładności transformacji indukcyjnych przekładników prądowych dla prądów odkształconych. POLITECHNIKA ŁÓDZKA, Łódź, PL
PL 223692 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 223692 (13) B1 (21) Numer zgłoszenia: 399602 (51) Int.Cl. G01R 35/02 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:
Bardziej szczegółowoĆWICZENIE 38. WYZNACZANIE CHARAKTERYSTYK I PARAMETRÓW LAMP ELEKTRONOWYCH Kraków 2015
Piotr Janas Zakład Fizyki, Uniwersytet Rolniczy Do użytku wewnętrznego ĆWICZENIE 38 WYZNACZANIE CHARAKTERYSTYK I PARAMETRÓW LAMP ELEKTRONOWYCH Kraków 2015 SPIS TREŚCI I. CZĘŚĆ TEORETYCZNA... 2 1. WSTĘP...
Bardziej szczegółowoRepeta z wykładu nr 6. Detekcja światła. Plan na dzisiaj. Metal-półprzewodnik
Repeta z wykładu nr 6 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 - kontakt omowy
Bardziej szczegółowoRozmaite dziwne i specjalne
Rozmaite dziwne i specjalne dyskretne przyrządy półprzewodnikowe Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego
Bardziej szczegółowoFizyka 3. Konsultacje: p. 329, Mechatronika
Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0
Bardziej szczegółowo